langchainrb 0.9.1 → 0.9.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 4c9d0655d58ddff57b9c9163065908dd17d91c6bffc5b146bf7fc01b4c9fb96d
4
- data.tar.gz: ee82c644b7e38503fa0587ade2af0447819863303e9fa3755dce1676d68ad5f7
3
+ metadata.gz: cdaafd0889d6666c7aa39d8bee71763f8baf86e0566f9e87312fc6033d07709d
4
+ data.tar.gz: 7acc9f122aed92eab9ab2ac1d50f7ee59c0e24030335dc15878769b7664ffc6b
5
5
  SHA512:
6
- metadata.gz: 05faddd31c819e6d351ed99e05353e462341ab1744769a1b3a9932c37de4c68907b54f79bcd65f6b652d954d5301e80055c5ee8c57b66a3917256918c51cc61f
7
- data.tar.gz: c2fed05da349fdc9ebd9990ea5c2d5c70a68241c491c903c631eb0584bce01da17bab7b04c59fa9fded8282547798219b2a0b951c1c5a8d1062d08f2a930062c
6
+ metadata.gz: b76f62411f75eccba98371791e63b18f0f22225de1af7449cde40680acbd1dc09c4b5a6b7eeb1ac667dd9b029c52534fbfbe10a5fa465fa0859059ddb32a400c
7
+ data.tar.gz: 64052a22206ece081a2fd9fbf0233ba47f40539743b1def6d7fc9beeb31102f5559878514cbc0d503fd13681e5efbb34c2755cacbd62b1b01b67876bc9d6237e
data/CHANGELOG.md CHANGED
@@ -1,5 +1,9 @@
1
1
  ## [Unreleased]
2
2
 
3
+ ## [0.9.2]
4
+ - Fix vectorsearch#ask methods
5
+ - Bump cohere-ruby gem
6
+
3
7
  ## [0.9.1]
4
8
  - Add support for new OpenAI models
5
9
  - Add Ollama#chat method
@@ -126,7 +126,9 @@ module Langchain::Vectorsearch
126
126
 
127
127
  prompt = generate_rag_prompt(question: question, context: context)
128
128
 
129
- response = llm.chat(prompt: prompt, &block)
129
+ messages = [{role: "user", content: prompt}]
130
+ response = llm.chat(messages: messages, &block)
131
+
130
132
  response.context = context
131
133
  response
132
134
  end
@@ -141,7 +141,9 @@ module Langchain::Vectorsearch
141
141
 
142
142
  prompt = generate_rag_prompt(question: question, context: context)
143
143
 
144
- response = llm.chat(prompt: prompt, &block)
144
+ messages = [{role: "user", content: prompt}]
145
+ response = llm.chat(messages: messages, &block)
146
+
145
147
  response.context = context
146
148
  response
147
149
  end
@@ -139,7 +139,9 @@ module Langchain::Vectorsearch
139
139
 
140
140
  prompt = generate_rag_prompt(question: question, context: context)
141
141
 
142
- response = llm.chat(prompt: prompt, &block)
142
+ messages = [{role: "user", content: prompt}]
143
+ response = llm.chat(messages: messages, &block)
144
+
143
145
  response.context = context
144
146
  response
145
147
  end
@@ -151,7 +151,9 @@ module Langchain::Vectorsearch
151
151
 
152
152
  prompt = generate_rag_prompt(question: question, context: context)
153
153
 
154
- response = llm.chat(prompt: prompt, &block)
154
+ messages = [{role: "user", content: prompt}]
155
+ response = llm.chat(messages: messages, &block)
156
+
155
157
  response.context = context
156
158
  response
157
159
  end
@@ -148,7 +148,9 @@ module Langchain::Vectorsearch
148
148
 
149
149
  prompt = generate_rag_prompt(question: question, context: context)
150
150
 
151
- response = llm.chat(prompt: prompt, &block)
151
+ messages = [{role: "user", content: prompt}]
152
+ response = llm.chat(messages: messages, &block)
153
+
152
154
  response.context = context
153
155
  response
154
156
  end
@@ -181,7 +181,9 @@ module Langchain::Vectorsearch
181
181
 
182
182
  prompt = generate_rag_prompt(question: question, context: context)
183
183
 
184
- response = llm.chat(prompt: prompt, &block)
184
+ messages = [{role: "user", content: prompt}]
185
+ response = llm.chat(messages: messages, &block)
186
+
185
187
  response.context = context
186
188
  response
187
189
  end
@@ -137,7 +137,9 @@ module Langchain::Vectorsearch
137
137
 
138
138
  prompt = generate_rag_prompt(question: question, context: context)
139
139
 
140
- response = llm.chat(prompt: prompt, &block)
140
+ messages = [{role: "user", content: prompt}]
141
+ response = llm.chat(messages: messages, &block)
142
+
141
143
  response.context = context
142
144
  response
143
145
  end
@@ -137,7 +137,9 @@ module Langchain::Vectorsearch
137
137
 
138
138
  prompt = generate_rag_prompt(question: question, context: context)
139
139
 
140
- response = llm.chat(prompt: prompt, &block)
140
+ messages = [{role: "user", content: prompt}]
141
+ response = llm.chat(messages: messages, &block)
142
+
141
143
  response.context = context
142
144
  response
143
145
  end
@@ -1,5 +1,5 @@
1
1
  # frozen_string_literal: true
2
2
 
3
3
  module Langchain
4
- VERSION = "0.9.1"
4
+ VERSION = "0.9.2"
5
5
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: langchainrb
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.9.1
4
+ version: 0.9.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrei Bondarev
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2024-02-06 00:00:00.000000000 Z
11
+ date: 2024-02-11 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: baran
@@ -240,14 +240,14 @@ dependencies:
240
240
  requirements:
241
241
  - - "~>"
242
242
  - !ruby/object:Gem::Version
243
- version: 0.9.7
243
+ version: 0.9.8
244
244
  type: :development
245
245
  prerelease: false
246
246
  version_requirements: !ruby/object:Gem::Requirement
247
247
  requirements:
248
248
  - - "~>"
249
249
  - !ruby/object:Gem::Version
250
- version: 0.9.7
250
+ version: 0.9.8
251
251
  - !ruby/object:Gem::Dependency
252
252
  name: docx
253
253
  requirement: !ruby/object:Gem::Requirement