langchainrb 0.6.19 → 0.7.1

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d7be5e031274fba7a4c0d7fc2cd3f472ed83fb66d8c6b355fb71fbf69a825b73
4
- data.tar.gz: 745cbc4f3d7b569d2e1407acc8be123f77a0aac2964840d7c3dca215592811ee
3
+ metadata.gz: 21e6cb42af2a2a6892ab2c4dd76ad993b41574ca7a903702997ad20a9380ff6e
4
+ data.tar.gz: 620eb70528fb4bbeaf6c9b268717d491e4f74063ea4a897404d3ac429f9f1b93
5
5
  SHA512:
6
- metadata.gz: e1392abe2fc0c4928593bd77d0e62688e3959ec39fd3f7bb5effc784b47599402c611ecc545868178b5d04ec688d68d6406f220697e8bfe40771cc593292a192
7
- data.tar.gz: 926bccf20c71af3d31d942cf439336df9edc489a8e5e0359a6c24bb26e5b818be048a7ef63ebcce721bb99392b49e407288ffdd7387dd33d3f0161e92ff6e045
6
+ metadata.gz: 8a82bf546ca46559c966e0669266b6f9b6184f01268b5c82ebfa312a400f9b2480479550fdf78341ccbd05a9c170a44ae0730fb3b9ea594f6d8bd59484b7699b
7
+ data.tar.gz: cae88e17f88a407c16caa29b69b61fcede6e1655c05d1b1710496852c921e036bf1d732dc31d391b07deb402ec44098f36831ed7305e7789dff223b440db0438
data/CHANGELOG.md CHANGED
@@ -1,5 +1,11 @@
1
1
  ## [Unreleased]
2
2
 
3
+ ## [0.7.1] - 2023-10-26
4
+ - Ragas evals tool to evaluate Retrieval Augmented Generation (RAG) pipelines
5
+
6
+ ## [0.7.0] - 2023-10-22
7
+ - BREAKING: Moving Rails-specific code to `langchainrb_rails` gem
8
+
3
9
  ## [0.6.19] - 2023-10-18
4
10
  - Elasticsearch vector search support
5
11
  - Fix `lib/langchain/railtie.rb` not being loaded with the gem
data/README.md CHANGED
@@ -4,8 +4,6 @@
4
4
 
5
5
  👨‍💻👩‍💻 CURRENTLY SEEKING PEOPLE TO FORM THE CORE GROUP OF MAINTAINERS WITH
6
6
 
7
- :warning: UNDER ACTIVE AND RAPID DEVELOPMENT (MAY BE BUGGY AND UNTESTED)
8
-
9
7
  ![Tests status](https://github.com/andreibondarev/langchainrb/actions/workflows/ci.yml/badge.svg?branch=main)
10
8
  [![Gem Version](https://badge.fury.io/rb/langchainrb.svg)](https://badge.fury.io/rb/langchainrb)
11
9
  [![Docs](http://img.shields.io/badge/yard-docs-blue.svg)](http://rubydoc.info/gems/langchainrb)
@@ -521,6 +519,32 @@ Langchain::Loader.load('https://www.example.com/file.pdf')
521
519
  ## Examples
522
520
  Additional examples available: [/examples](https://github.com/andreibondarev/langchainrb/tree/main/examples)
523
521
 
522
+ ## Evaluations (Evals)
523
+ The Evaluations module is a collection of tools that can be used to evaluate and track the performance of the output products by LLM and your RAG (Retrieval Augmented Generation) pipelines.
524
+
525
+ ### RAGAS
526
+ Ragas is helps you evaluate your Retrieval Augmented Generation (RAG) pipelines. The implementation is based on this [paper](https://arxiv.org/abs/2309.15217) and the original Python [repo](https://github.com/explodinggradients/ragas). Ragas tracks the 3 following metrics and assigns the 0.0 - 1.0 scores:
527
+ * Faithfulness - the answer is grounded in the given context
528
+ * Context Relevance - the retrieved context is focused, containing as little irrelevant information as possible
529
+ * Answer Relevance - the generated answer addresses the actual question that was provided
530
+
531
+ ```ruby
532
+ # We recommend using Langchain::LLM::OpenAI as your llm for Ragas
533
+ ragas = Langchain::Evals::Ragas::Main.new(llm: llm)
534
+
535
+ # The answer that the LLM generated
536
+ # The question (or the original prompt) that was asked
537
+ # The context that was retrieved (usually from a vectorsearch database)
538
+ ragas.score(answer: "", question: "", context: "")
539
+ # =>
540
+ # {
541
+ # ragas_score: 0.6601257446503674,
542
+ # answer_relevance_score: 0.9573145866787608,
543
+ # context_relevance_score: 0.6666666666666666,
544
+ # faithfulness_score: 0.5
545
+ # }
546
+ ```
547
+
524
548
  ## Logging
525
549
 
526
550
  LangChain.rb uses standard logging mechanisms and defaults to `:warn` level. Most messages are at info level, but we will add debug or warn statements as needed.
@@ -0,0 +1,71 @@
1
+ # freeze_string_literal: true
2
+
3
+ require "matrix"
4
+
5
+ module Langchain
6
+ module Evals
7
+ module Ragas
8
+ # Answer Relevance refers to the idea that the generated answer should address the actual question that was provided.
9
+ # This metric evaluates how closely the generated answer aligns with the initial question or instruction.
10
+ class AnswerRelevance
11
+ attr_reader :llm, :batch_size
12
+
13
+ # @param llm [Langchain::LLM::*] Langchain::LLM::* object
14
+ # @param batch_size [Integer] Batch size, i.e., number of generated questions to compare to the original question
15
+ def initialize(llm:, batch_size: 3)
16
+ @llm = llm
17
+ @batch_size = batch_size
18
+ end
19
+
20
+ # @param question [String] Question
21
+ # @param answer [String] Answer
22
+ # @return [Float] Answer Relevance score
23
+ def score(question:, answer:)
24
+ generated_questions = []
25
+
26
+ batch_size.times do |i|
27
+ prompt = answer_relevance_prompt_template.format(
28
+ question: question,
29
+ answer: answer
30
+ )
31
+ generated_questions << llm.complete(prompt: prompt).completion
32
+ end
33
+
34
+ scores = generated_questions.map do |generated_question|
35
+ calculate_similarity(original_question: question, generated_question: generated_question)
36
+ end
37
+
38
+ # Find the mean
39
+ scores.sum(0.0) / scores.size
40
+ end
41
+
42
+ private
43
+
44
+ # @param question_1 [String] Question 1
45
+ # @param question_2 [String] Question 2
46
+ # @return [Float] Dot product similarity between the two questions
47
+ def calculate_similarity(original_question:, generated_question:)
48
+ original_embedding = generate_embedding(original_question)
49
+ generated_embedding = generate_embedding(generated_question)
50
+
51
+ vector_1 = Vector.elements(original_embedding)
52
+ vector_2 = Vector.elements(generated_embedding)
53
+ vector_1.inner_product(vector_2)
54
+ end
55
+
56
+ # @param text [String] Text to generate an embedding for
57
+ # @return [Array<Float>] Embedding
58
+ def generate_embedding(text)
59
+ llm.embed(text: text).embedding
60
+ end
61
+
62
+ # @return [PromptTemplate] PromptTemplate instance
63
+ def answer_relevance_prompt_template
64
+ @template ||= Langchain::Prompt.load_from_path(
65
+ file_path: Langchain.root.join("langchain/evals/ragas/prompts/answer_relevance.yml")
66
+ )
67
+ end
68
+ end
69
+ end
70
+ end
71
+ end
@@ -0,0 +1,46 @@
1
+ # freeze_string_literal: true
2
+
3
+ require "pragmatic_segmenter"
4
+
5
+ module Langchain
6
+ module Evals
7
+ module Ragas
8
+ # Context Relevance refers to the idea that the retrieved context should be focused, containing as little irrelevant information as possible.
9
+ class ContextRelevance
10
+ attr_reader :llm
11
+
12
+ # @param llm [Langchain::LLM::*] Langchain::LLM::* object
13
+ def initialize(llm:)
14
+ @llm = llm
15
+ end
16
+
17
+ # @param question [String] Question
18
+ # @param context [String] Context
19
+ # @return [Float] Context Relevance score
20
+ def score(question:, context:)
21
+ prompt = context_relevance_prompt_template.format(
22
+ question: question,
23
+ context: context
24
+ )
25
+ sentences = llm.complete(prompt: prompt).completion
26
+
27
+ (sentence_count(sentences).to_f / sentence_count(context).to_f)
28
+ end
29
+
30
+ private
31
+
32
+ def sentence_count(context)
33
+ ps = PragmaticSegmenter::Segmenter.new(text: context)
34
+ ps.segment.length
35
+ end
36
+
37
+ # @return [PromptTemplate] PromptTemplate instance
38
+ def context_relevance_prompt_template
39
+ @template ||= Langchain::Prompt.load_from_path(
40
+ file_path: Langchain.root.join("langchain/evals/ragas/prompts/context_relevance.yml")
41
+ )
42
+ end
43
+ end
44
+ end
45
+ end
46
+ end
@@ -0,0 +1,83 @@
1
+ # freeze_string_literal: true
2
+
3
+ module Langchain
4
+ module Evals
5
+ module Ragas
6
+ # Faithfulness refers to the idea that the answer should be grounded in the given context,
7
+ # ensuring that the retrieved context can act as a justification for the generated answer.
8
+ # The answer is faithful to the context if the claims that are made in the answer can be inferred from the context.
9
+ #
10
+ # Score calculation:
11
+ # F = |V| / |S|
12
+ #
13
+ # F = Faithfulness
14
+ # |V| = Number of statements that were supported according to the LLM
15
+ # |S| = Total number of statements extracted.
16
+ #
17
+ class Faithfulness
18
+ attr_reader :llm
19
+
20
+ # @param llm [Langchain::LLM::*] Langchain::LLM::* object
21
+ def initialize(llm:)
22
+ @llm = llm
23
+ end
24
+
25
+ # @param question [String] Question
26
+ # @param answer [String] Answer
27
+ # @param context [String] Context
28
+ # @return [Float] Faithfulness score
29
+ def score(question:, answer:, context:)
30
+ statements = statements_extraction(question: question, answer: answer)
31
+ statements_count = statements
32
+ .split("\n")
33
+ .count
34
+
35
+ verifications = statements_verification(statements: statements, context: context)
36
+ verifications_count = count_verified_statements(verifications)
37
+
38
+ (verifications_count.to_f / statements_count.to_f)
39
+ end
40
+
41
+ private
42
+
43
+ def count_verified_statements(verifications)
44
+ match = verifications.match(/Final verdict for each statement in order:\s*(.*)/)
45
+ verdicts = match.captures.first
46
+ verdicts
47
+ .split(".")
48
+ .count { |value| value.strip.to_boolean }
49
+ end
50
+
51
+ def statements_verification(statements:, context:)
52
+ prompt = statements_verification_prompt_template.format(
53
+ statements: statements,
54
+ context: context
55
+ )
56
+ llm.complete(prompt: prompt).completion
57
+ end
58
+
59
+ def statements_extraction(question:, answer:)
60
+ prompt = statements_extraction_prompt_template.format(
61
+ question: question,
62
+ answer: answer
63
+ )
64
+ llm.complete(prompt: prompt).completion
65
+ end
66
+
67
+ # @return [PromptTemplate] PromptTemplate instance
68
+ def statements_verification_prompt_template
69
+ @template_two ||= Langchain::Prompt.load_from_path(
70
+ file_path: Langchain.root.join("langchain/evals/ragas/prompts/faithfulness_statements_verification.yml")
71
+ )
72
+ end
73
+
74
+ # @return [PromptTemplate] PromptTemplate instance
75
+ def statements_extraction_prompt_template
76
+ @template_one ||= Langchain::Prompt.load_from_path(
77
+ file_path: Langchain.root.join("langchain/evals/ragas/prompts/faithfulness_statements_extraction.yml")
78
+ )
79
+ end
80
+ end
81
+ end
82
+ end
83
+ end
@@ -0,0 +1,70 @@
1
+ # freeze_string_literal: true
2
+
3
+ module Langchain
4
+ module Evals
5
+ # The RAGAS (Retrieval Augmented Generative Assessment) is a framework for evaluating RAG (Retrieval Augmented Generation) pipelines.
6
+ # Based on the following research: https://arxiv.org/pdf/2309.15217.pdf
7
+ module Ragas
8
+ class Main
9
+ attr_reader :llm
10
+
11
+ def initialize(llm:)
12
+ @llm = llm
13
+ end
14
+
15
+ # Returns the RAGAS scores, e.g.:
16
+ # {
17
+ # ragas_score: 0.6601257446503674,
18
+ # answer_relevance_score: 0.9573145866787608,
19
+ # context_relevance_score: 0.6666666666666666,
20
+ # faithfulness_score: 0.5
21
+ # }
22
+ #
23
+ # @param question [String] Question
24
+ # @param answer [String] Answer
25
+ # @param context [String] Context
26
+ # @return [Hash] RAGAS scores
27
+ def score(question:, answer:, context:)
28
+ answer_relevance_score = answer_relevance.score(question: question, answer: answer)
29
+ context_relevance_score = context_relevance.score(question: question, context: context)
30
+ faithfulness_score = faithfulness.score(question: question, answer: answer, context: context)
31
+
32
+ {
33
+ ragas_score: ragas_score(answer_relevance_score, context_relevance_score, faithfulness_score),
34
+ answer_relevance_score: answer_relevance_score,
35
+ context_relevance_score: context_relevance_score,
36
+ faithfulness_score: faithfulness_score
37
+ }
38
+ end
39
+
40
+ private
41
+
42
+ # Overall RAGAS score (harmonic mean): https://github.com/explodinggradients/ragas/blob/1dd363e3e54744e67b0be85962a0258d8121500a/src/ragas/evaluation.py#L140-L143
43
+ #
44
+ # @param answer_relevance_score [Float] Answer Relevance score
45
+ # @param context_relevance_score [Float] Context Relevance score
46
+ # @param faithfulness_score [Float] Faithfulness score
47
+ # @return [Float] RAGAS score
48
+ def ragas_score(answer_relevance_score, context_relevance_score, faithfulness_score)
49
+ reciprocal_sum = (1.0 / answer_relevance_score) + (1.0 / context_relevance_score) + (1.0 / faithfulness_score)
50
+ (3 / reciprocal_sum)
51
+ end
52
+
53
+ # @return [Langchain::Evals::Ragas::AnswerRelevance] Class instance
54
+ def answer_relevance
55
+ @answer_relevance ||= Langchain::Evals::Ragas::AnswerRelevance.new(llm: llm)
56
+ end
57
+
58
+ # @return [Langchain::Evals::Ragas::ContextRelevance] Class instance
59
+ def context_relevance
60
+ @context_relevance ||= Langchain::Evals::Ragas::ContextRelevance.new(llm: llm)
61
+ end
62
+
63
+ # @return [Langchain::Evals::Ragas::Faithfulness] Class instance
64
+ def faithfulness
65
+ @faithfulness ||= Langchain::Evals::Ragas::Faithfulness.new(llm: llm)
66
+ end
67
+ end
68
+ end
69
+ end
70
+ end
@@ -0,0 +1,10 @@
1
+ _type: prompt
2
+ input_variables:
3
+ - answer
4
+ template: |
5
+ Generate question for the given answer.
6
+ Answer: The PSLV-C56 mission is scheduled to be launched on Sunday, 30 July 2023 at 06:30 IST / 01:00 UTC. It will be launched from the Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh, India
7
+ Question: When is the scheduled launch date and time for the PSLV-C56 mission, and where will it be launched from?
8
+
9
+ Answer: {answer}
10
+ Question:
@@ -0,0 +1,10 @@
1
+ _type: prompt
2
+ input_variables:
3
+ - question
4
+ - context
5
+ template: |
6
+ Please extract relevant sentences from the provided context that is absolutely required answer the following question. If no relevant sentences are found, or if you believe the question cannot be answered from the given context, return the phrase "Insufficient Information". While extracting candidate sentences you're not allowed to make any changes to sentences from given context.
7
+
8
+ question:{question}
9
+ context:\n{context}
10
+ candidate sentences:\n
@@ -0,0 +1,9 @@
1
+ _type: prompt
2
+ input_variables:
3
+ - question
4
+ - answer
5
+ template: |
6
+ Given a question and answer, create one or more statements from each sentence in the given answer.
7
+ question: {question}
8
+ answer: {answer}
9
+ statements:\n
@@ -0,0 +1,27 @@
1
+ _type: prompt
2
+ input_variables:
3
+ - statements
4
+ - context
5
+ template: |
6
+ Consider the given context and following statements, then determine whether they are supported by the information present in the context.
7
+ Provide a brief explanation for each statement before arriving at the verdict (Yes/No). Provide a final verdict for each statement in order at the end in the given format.
8
+ Do not deviate from the specified format.
9
+
10
+ Context:\nJohn is a student at XYZ University. He is pursuing a degree in Computer Science. He is enrolled in several courses this semester, including Data Structures, Algorithms, and Database Management. John is a diligent student and spends a significant amount of time studying and completing assignments. He often stays late in the library to work on his projects.
11
+ statements:\n1. John is majoring in Biology.\n2. John is taking a course on Artificial Intelligence.\n3. John is a dedicated student.\n4. John has a part-time job.\n5. John is interested in computer programming.\n
12
+ Answer:
13
+ 1. John is majoring in Biology.
14
+ Explanation: John's major is explicitly mentioned as Computer Science. There is no information suggesting he is majoring in Biology. Verdict: No.
15
+ 2. John is taking a course on Artificial Intelligence.
16
+ Explanation: The context mentions the courses John is currently enrolled in, and Artificial Intelligence is not mentioned. Therefore, it cannot be deduced that John is taking a course on AI. Verdict: No.
17
+ 3. John is a dedicated student.
18
+ Explanation: The prompt states that he spends a significant amount of time studying and completing assignments. Additionally, it mentions that he often stays late in the library to work on his projects, which implies dedication. Verdict: Yes.
19
+ 4. John has a part-time job.
20
+ Explanation: There is no information given in the context about John having a part-time job. Therefore, it cannot be deduced that John has a part-time job. Verdict: No.
21
+ 5. John is interested in computer programming.
22
+ Explanation: The context states that John is pursuing a degree in Computer Science, which implies an interest in computer programming. Verdict: Yes.
23
+ Final verdict for each statement in order: No. No. Yes. No. Yes.
24
+
25
+ context:\n{context}
26
+ statements:\n{statements}
27
+ Answer:
@@ -0,0 +1,34 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Langchain
4
+ module Utils
5
+ class CosineSimilarity
6
+ attr_reader :vector_a, :vector_b
7
+
8
+ # @param vector_a [Array<Float>] First vector
9
+ # @param vector_b [Array<Float>] Second vector
10
+ def initialize(vector_a, vector_b)
11
+ @vector_a = vector_a
12
+ @vector_b = vector_b
13
+ end
14
+
15
+ # Calculate the cosine similarity between two vectors
16
+ # @return [Float] The cosine similarity between the two vectors
17
+ def calculate_similarity
18
+ return nil unless vector_a.is_a? Array
19
+ return nil unless vector_b.is_a? Array
20
+ return nil if vector_a.size != vector_b.size
21
+
22
+ dot_product = 0
23
+ vector_a.zip(vector_b).each do |v1i, v2i|
24
+ dot_product += v1i * v2i
25
+ end
26
+
27
+ a = vector_a.map { |n| n**2 }.reduce(:+)
28
+ b = vector_b.map { |n| n**2 }.reduce(:+)
29
+
30
+ dot_product / (Math.sqrt(a) * Math.sqrt(b))
31
+ end
32
+ end
33
+ end
34
+ end
@@ -25,8 +25,7 @@ module Langchain::Vectorsearch
25
25
  # url: ENV["WEAVIATE_URL"],
26
26
  # api_key: ENV["WEAVIATE_API_KEY"],
27
27
  # index_name: "Documents",
28
- # llm: :openai, # or :cohere, :hugging_face, :google_palm, or :replicate
29
- # llm_api_key: ENV["OPENAI_API_KEY"] # API key for the selected LLM
28
+ # llm: Langchain::LLM::OpenAI.new(api_key:)
30
29
  # )
31
30
  #
32
31
  # # You can instantiate other supported vector databases the same way:
@@ -9,7 +9,7 @@ module Langchain::Vectorsearch
9
9
  # gem "chroma-db", "~> 0.6.0"
10
10
  #
11
11
  # Usage:
12
- # chroma = Langchain::Vectorsearch::Chroma.new(url:, index_name:, llm:, llm_api_key:, api_key: nil)
12
+ # chroma = Langchain::Vectorsearch::Chroma.new(url:, index_name:, llm:, api_key: nil)
13
13
  #
14
14
 
15
15
  # Initialize the Chroma client
@@ -152,7 +152,3 @@ module Langchain::Vectorsearch
152
152
  end
153
153
  end
154
154
  end
155
-
156
- # Rails connection when configuring vectorsearch
157
- # Update READMEs
158
- # Rails migration to create a migration
@@ -9,7 +9,7 @@ module Langchain::Vectorsearch
9
9
  # gem "pinecone", "~> 0.1.6"
10
10
  #
11
11
  # Usage:
12
- # pinecone = Langchain::Vectorsearch::Pinecone.new(environment:, api_key:, index_name:, llm:, llm_api_key:)
12
+ # pinecone = Langchain::Vectorsearch::Pinecone.new(environment:, api_key:, index_name:, llm:)
13
13
  #
14
14
 
15
15
  # Initialize the Pinecone client
@@ -9,7 +9,7 @@ module Langchain::Vectorsearch
9
9
  # gem "qdrant-ruby", "~> 0.9.3"
10
10
  #
11
11
  # Usage:
12
- # qdrant = Langchain::Vectorsearch::Qdrant.new(url:, api_key:, index_name:, llm:, llm_api_key:)
12
+ # qdrant = Langchain::Vectorsearch::Qdrant.new(url:, api_key:, index_name:, llm:)
13
13
  #
14
14
 
15
15
  # Initialize the Qdrant client
@@ -9,7 +9,7 @@ module Langchain::Vectorsearch
9
9
  # gem "weaviate-ruby", "~> 0.8.3"
10
10
  #
11
11
  # Usage:
12
- # weaviate = Langchain::Vectorsearch::Weaviate.new(url:, api_key:, index_name:, llm:, llm_api_key:)
12
+ # weaviate = Langchain::Vectorsearch::Weaviate.new(url:, api_key:, index_name:, llm:)
13
13
  #
14
14
 
15
15
  # Initialize the Weaviate adapter
@@ -1,5 +1,5 @@
1
1
  # frozen_string_literal: true
2
2
 
3
3
  module Langchain
4
- VERSION = "0.6.19"
4
+ VERSION = "0.7.1"
5
5
  end
data/lib/langchain.rb CHANGED
@@ -3,6 +3,7 @@
3
3
  require "logger"
4
4
  require "pathname"
5
5
  require "colorize"
6
+ require "to_bool"
6
7
  require "zeitwerk"
7
8
  loader = Zeitwerk::Loader.for_gem
8
9
  loader.ignore("#{__dir__}/langchainrb.rb")
@@ -89,5 +90,3 @@ module Langchain
89
90
  class BaseError < StandardError; end
90
91
  end
91
92
  end
92
-
93
- require "langchain/railtie" if defined?(Rails)
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: langchainrb
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.6.19
4
+ version: 0.7.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrei Bondarev
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2023-10-18 00:00:00.000000000 Z
11
+ date: 2023-10-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: baran
@@ -70,16 +70,16 @@ dependencies:
70
70
  name: zeitwerk
71
71
  requirement: !ruby/object:Gem::Requirement
72
72
  requirements:
73
- - - '='
73
+ - - "~>"
74
74
  - !ruby/object:Gem::Version
75
- version: 2.6.11
75
+ version: '2.5'
76
76
  type: :runtime
77
77
  prerelease: false
78
78
  version_requirements: !ruby/object:Gem::Requirement
79
79
  requirements:
80
- - - '='
80
+ - - "~>"
81
81
  - !ruby/object:Gem::Version
82
- version: 2.6.11
82
+ version: '2.5'
83
83
  - !ruby/object:Gem::Dependency
84
84
  name: pragmatic_segmenter
85
85
  requirement: !ruby/object:Gem::Requirement
@@ -94,6 +94,34 @@ dependencies:
94
94
  - - "~>"
95
95
  - !ruby/object:Gem::Version
96
96
  version: 0.3.0
97
+ - !ruby/object:Gem::Dependency
98
+ name: to_bool
99
+ requirement: !ruby/object:Gem::Requirement
100
+ requirements:
101
+ - - "~>"
102
+ - !ruby/object:Gem::Version
103
+ version: 2.0.0
104
+ type: :runtime
105
+ prerelease: false
106
+ version_requirements: !ruby/object:Gem::Requirement
107
+ requirements:
108
+ - - "~>"
109
+ - !ruby/object:Gem::Version
110
+ version: 2.0.0
111
+ - !ruby/object:Gem::Dependency
112
+ name: matrix
113
+ requirement: !ruby/object:Gem::Requirement
114
+ requirements:
115
+ - - ">="
116
+ - !ruby/object:Gem::Version
117
+ version: '0'
118
+ type: :runtime
119
+ prerelease: false
120
+ version_requirements: !ruby/object:Gem::Requirement
121
+ requirements:
122
+ - - ">="
123
+ - !ruby/object:Gem::Version
124
+ version: '0'
97
125
  - !ruby/object:Gem::Dependency
98
126
  name: dotenv-rails
99
127
  requirement: !ruby/object:Gem::Requirement
@@ -539,7 +567,6 @@ files:
539
567
  - LICENSE.txt
540
568
  - README.md
541
569
  - lib/langchain.rb
542
- - lib/langchain/active_record/hooks.rb
543
570
  - lib/langchain/agent/base.rb
544
571
  - lib/langchain/agent/react_agent.rb
545
572
  - lib/langchain/agent/react_agent/react_agent_prompt.yaml
@@ -562,6 +589,14 @@ files:
562
589
  - lib/langchain/conversation/response.rb
563
590
  - lib/langchain/data.rb
564
591
  - lib/langchain/dependency_helper.rb
592
+ - lib/langchain/evals/ragas/answer_relevance.rb
593
+ - lib/langchain/evals/ragas/context_relevance.rb
594
+ - lib/langchain/evals/ragas/faithfulness.rb
595
+ - lib/langchain/evals/ragas/main.rb
596
+ - lib/langchain/evals/ragas/prompts/answer_relevance.yml
597
+ - lib/langchain/evals/ragas/prompts/context_relevance.yml
598
+ - lib/langchain/evals/ragas/prompts/faithfulness_statements_extraction.yml
599
+ - lib/langchain/evals/ragas/prompts/faithfulness_statements_verification.yml
565
600
  - lib/langchain/llm/ai21.rb
566
601
  - lib/langchain/llm/anthropic.rb
567
602
  - lib/langchain/llm/base.rb
@@ -601,7 +636,6 @@ files:
601
636
  - lib/langchain/prompt/few_shot_prompt_template.rb
602
637
  - lib/langchain/prompt/loading.rb
603
638
  - lib/langchain/prompt/prompt_template.rb
604
- - lib/langchain/railtie.rb
605
639
  - lib/langchain/tool/base.rb
606
640
  - lib/langchain/tool/calculator.rb
607
641
  - lib/langchain/tool/database.rb
@@ -609,6 +643,7 @@ files:
609
643
  - lib/langchain/tool/ruby_code_interpreter.rb
610
644
  - lib/langchain/tool/weather.rb
611
645
  - lib/langchain/tool/wikipedia.rb
646
+ - lib/langchain/utils/cosine_similarity.rb
612
647
  - lib/langchain/utils/token_length/ai21_validator.rb
613
648
  - lib/langchain/utils/token_length/base_validator.rb
614
649
  - lib/langchain/utils/token_length/cohere_validator.rb
@@ -1,112 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- module Langchain
4
- module ActiveRecord
5
- # This module adds the following functionality to your ActiveRecord models:
6
- # * `vectorsearch` class method to set the vector search provider
7
- # * `similarity_search` class method to search for similar texts
8
- # * `upsert_to_vectorsearch` instance method to upsert the record to the vector search provider
9
- #
10
- # Usage:
11
- # class Recipe < ActiveRecord::Base
12
- # vectorsearch provider: Langchain::Vectorsearch::Weaviate.new(
13
- # api_key: ENV["WEAVIATE_API_KEY"],
14
- # url: ENV["WEAVIATE_URL"],
15
- # index_name: "Recipes",
16
- # llm: Langchain::LLM::OpenAI.new(api_key: ENV["OPENAI_API_KEY"])
17
- # )
18
- #
19
- # after_save :upsert_to_vectorsearch
20
- #
21
- # # Overwriting how the model is serialized before it's indexed
22
- # def as_vector
23
- # [
24
- # "Title: #{title}",
25
- # "Description: #{description}",
26
- # ...
27
- # ]
28
- # .compact
29
- # .join("\n")
30
- # end
31
- # end
32
- #
33
- # Create the default schema
34
- # Recipe.class_variable_get(:@@provider).create_default_schema
35
- # Query the vector search provider
36
- # Recipe.similarity_search("carnivore dish")
37
- # Delete the default schema to start over
38
- # Recipe.class_variable_get(:@@provider).destroy_default_schema
39
- #
40
- module Hooks
41
- def self.included(base)
42
- base.extend ClassMethods
43
- end
44
-
45
- # Index the text to the vector search provider
46
- # You'd typically call this method in an ActiveRecord callback
47
- #
48
- # @return [Boolean] true
49
- # @raise [Error] Indexing to vector search DB failed
50
- def upsert_to_vectorsearch
51
- if previously_new_record?
52
- self.class.class_variable_get(:@@provider).add_texts(
53
- texts: [as_vector],
54
- ids: [id]
55
- )
56
- else
57
- self.class.class_variable_get(:@@provider).update_texts(
58
- texts: [as_vector],
59
- ids: [id]
60
- )
61
- end
62
- end
63
-
64
- # Used to serialize the DB record to an indexable vector text
65
- # Overwrite this method in your model to customize
66
- #
67
- # @return [String] the text representation of the model
68
- def as_vector
69
- to_json
70
- end
71
-
72
- module ClassMethods
73
- # Set the vector search provider
74
- #
75
- # @param provider [Object] The `Langchain::Vectorsearch::*` instance
76
- def vectorsearch(provider:)
77
- class_variable_set(:@@provider, provider)
78
- end
79
-
80
- # Search for similar texts
81
- #
82
- # @param query [String] The query to search for
83
- # @param k [Integer] The number of results to return
84
- # @return [ActiveRecord::Relation] The ActiveRecord relation
85
- def similarity_search(query, k: 1)
86
- records = class_variable_get(:@@provider).similarity_search(
87
- query: query,
88
- k: k
89
- )
90
-
91
- # We use "__id" when Weaviate is the provider
92
- ids = records.map { |record| record.dig("id") || record.dig("__id") }
93
- where(id: ids)
94
- end
95
-
96
- # Ask a question and return the answer
97
- #
98
- # @param question [String] The question to ask
99
- # @param k [Integer] The number of results to have in context
100
- # @yield [String] Stream responses back one String at a time
101
- # @return [String] The answer to the question
102
- def ask(question:, k: 4, &block)
103
- class_variable_get(:@@provider).ask(
104
- question: question,
105
- k: k,
106
- &block
107
- )
108
- end
109
- end
110
- end
111
- end
112
- end
@@ -1,11 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- module Langchain
4
- class Railtie < Rails::Railtie
5
- initializer "langchain" do
6
- ActiveSupport.on_load(:active_record) do
7
- ::ActiveRecord::Base.include Langchain::ActiveRecord::Hooks
8
- end
9
- end
10
- end
11
- end