langchainrb 0.6.18 → 0.6.19
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/README.md +3 -3
- data/lib/langchain/vectorsearch/base.rb +3 -6
- data/lib/langchain/vectorsearch/chroma.rb +8 -7
- data/lib/langchain/vectorsearch/elasticsearch.rb +147 -0
- data/lib/langchain/vectorsearch/milvus.rb +3 -2
- data/lib/langchain/vectorsearch/pgvector.rb +9 -3
- data/lib/langchain/vectorsearch/pinecone.rb +4 -3
- data/lib/langchain/vectorsearch/qdrant.rb +4 -3
- data/lib/langchain/vectorsearch/weaviate.rb +3 -2
- data/lib/langchain/version.rb +1 -1
- data/lib/langchain.rb +2 -0
- metadata +17 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d7be5e031274fba7a4c0d7fc2cd3f472ed83fb66d8c6b355fb71fbf69a825b73
|
4
|
+
data.tar.gz: 745cbc4f3d7b569d2e1407acc8be123f77a0aac2964840d7c3dca215592811ee
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e1392abe2fc0c4928593bd77d0e62688e3959ec39fd3f7bb5effc784b47599402c611ecc545868178b5d04ec688d68d6406f220697e8bfe40771cc593292a192
|
7
|
+
data.tar.gz: 926bccf20c71af3d31d942cf439336df9edc489a8e5e0359a6c24bb26e5b818be048a7ef63ebcce721bb99392b49e407288ffdd7387dd33d3f0161e92ff6e045
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,9 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.6.19] - 2023-10-18
|
4
|
+
- Elasticsearch vector search support
|
5
|
+
- Fix `lib/langchain/railtie.rb` not being loaded with the gem
|
6
|
+
|
3
7
|
## [0.6.18] - 2023-10-16
|
4
8
|
- Introduce `Langchain::LLM::Response`` object
|
5
9
|
- Introduce `Langchain::Chunk` object
|
data/README.md
CHANGED
@@ -19,11 +19,11 @@ Langchain.rb is a library that's an abstraction layer on top many emergent AI, M
|
|
19
19
|
|
20
20
|
Install the gem and add to the application's Gemfile by executing:
|
21
21
|
|
22
|
-
|
22
|
+
bundle add langchainrb
|
23
23
|
|
24
24
|
If bundler is not being used to manage dependencies, install the gem by executing:
|
25
25
|
|
26
|
-
|
26
|
+
gem install langchainrb
|
27
27
|
|
28
28
|
## Usage
|
29
29
|
|
@@ -37,7 +37,7 @@ require "langchain"
|
|
37
37
|
| -------- |:------------------:| -------:| -----------------:| -------:| -----------------:|
|
38
38
|
| [Chroma](https://trychroma.com/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | :white_check_mark: |
|
39
39
|
| [Hnswlib](https://github.com/nmslib/hnswlib/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | WIP |
|
40
|
-
| [Milvus](https://milvus.io/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP |
|
40
|
+
| [Milvus](https://milvus.io/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | :white_check_mark: |
|
41
41
|
| [Pinecone](https://www.pinecone.io/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | :white_check_mark: |
|
42
42
|
| [Pgvector](https://github.com/pgvector/pgvector) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | :white_check_mark: |
|
43
43
|
| [Qdrant](https://qdrant.tech/) | :white_check_mark: | :white_check_mark: | :white_check_mark: | WIP | :white_check_mark: |
|
@@ -1,7 +1,5 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require "forwardable"
|
4
|
-
|
5
3
|
module Langchain::Vectorsearch
|
6
4
|
# = Vector Databases
|
7
5
|
# A vector database a type of database that stores data as high-dimensional vectors, which are mathematical representations of features or attributes. Each vector has a certain number of dimensions, which can range from tens to thousands, depending on the complexity and granularity of the data.
|
@@ -9,11 +7,13 @@ module Langchain::Vectorsearch
|
|
9
7
|
# == Available vector databases
|
10
8
|
#
|
11
9
|
# - {Langchain::Vectorsearch::Chroma}
|
10
|
+
# - {Langchain::Vectorsearch::Elasticsearch}
|
11
|
+
# - {Langchain::Vectorsearch::Hnswlib}
|
12
12
|
# - {Langchain::Vectorsearch::Milvus}
|
13
|
+
# - {Langchain::Vectorsearch::Pgvector}
|
13
14
|
# - {Langchain::Vectorsearch::Pinecone}
|
14
15
|
# - {Langchain::Vectorsearch::Qdrant}
|
15
16
|
# - {Langchain::Vectorsearch::Weaviate}
|
16
|
-
# - {Langchain::Vectorsearch::Pgvector}
|
17
17
|
#
|
18
18
|
# == Usage
|
19
19
|
#
|
@@ -150,9 +150,6 @@ module Langchain::Vectorsearch
|
|
150
150
|
raise NotImplementedError, "#{self.class.name} does not support asking questions"
|
151
151
|
end
|
152
152
|
|
153
|
-
def_delegators :llm,
|
154
|
-
:default_dimension
|
155
|
-
|
156
153
|
# HyDE-style prompt
|
157
154
|
#
|
158
155
|
# @param [String] User's question
|
@@ -5,7 +5,8 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# Wrapper around Chroma DB
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "chroma-db", "~> 0.6.0"
|
9
10
|
#
|
10
11
|
# Usage:
|
11
12
|
# chroma = Langchain::Vectorsearch::Chroma.new(url:, index_name:, llm:, llm_api_key:, api_key: nil)
|
@@ -29,14 +30,15 @@ module Langchain::Vectorsearch
|
|
29
30
|
|
30
31
|
# Add a list of texts to the index
|
31
32
|
# @param texts [Array<String>] The list of texts to add
|
33
|
+
# @param ids [Array<String>] The list of ids to use for the texts (optional)
|
34
|
+
# @param metadatas [Array<Hash>] The list of metadata to use for the texts (optional)
|
32
35
|
# @return [Hash] The response from the server
|
33
|
-
def add_texts(texts:, ids: [])
|
36
|
+
def add_texts(texts:, ids: [], metadatas: [])
|
34
37
|
embeddings = Array(texts).map.with_index do |text, i|
|
35
38
|
::Chroma::Resources::Embedding.new(
|
36
39
|
id: ids[i] ? ids[i].to_s : SecureRandom.uuid,
|
37
40
|
embedding: llm.embed(text: text).embedding,
|
38
|
-
|
39
|
-
metadata: {}, # metadatas[index],
|
41
|
+
metadata: metadatas[i] || {},
|
40
42
|
document: text # Do we actually need to store the whole original document?
|
41
43
|
)
|
42
44
|
end
|
@@ -45,13 +47,12 @@ module Langchain::Vectorsearch
|
|
45
47
|
collection.add(embeddings)
|
46
48
|
end
|
47
49
|
|
48
|
-
def update_texts(texts:, ids:)
|
50
|
+
def update_texts(texts:, ids:, metadatas: [])
|
49
51
|
embeddings = Array(texts).map.with_index do |text, i|
|
50
52
|
::Chroma::Resources::Embedding.new(
|
51
53
|
id: ids[i].to_s,
|
52
54
|
embedding: llm.embed(text: text).embedding,
|
53
|
-
|
54
|
-
metadata: [], # metadatas[index],
|
55
|
+
metadata: metadatas[i] || {},
|
55
56
|
document: text # Do we actually need to store the whole original document?
|
56
57
|
)
|
57
58
|
end
|
@@ -0,0 +1,147 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::Vectorsearch
|
4
|
+
class Elasticsearch < Base
|
5
|
+
#
|
6
|
+
# Wrapper around Elasticsearch vector search capabilities.
|
7
|
+
#
|
8
|
+
# Setting up Elasticsearch:
|
9
|
+
# 1. Get Elasticsearch up and running with Docker: https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html
|
10
|
+
# 2. Copy the HTTP CA certificate SHA-256 fingerprint and set the ELASTICSEARCH_CA_FINGERPRINT environment variable
|
11
|
+
# 3. Set the ELASTICSEARCH_URL environment variable
|
12
|
+
#
|
13
|
+
# Gem requirements:
|
14
|
+
# gem "elasticsearch", "~> 8.0.0"
|
15
|
+
#
|
16
|
+
# Usage:
|
17
|
+
# llm = Langchain::LLM::OpenAI.new(api_key: ENV["OPENAI_API_KEY"])
|
18
|
+
# es = Langchain::Vectorsearch::Elasticsearch.new(
|
19
|
+
# url: ENV["ELASTICSEARCH_URL"],
|
20
|
+
# index_name: "docs",
|
21
|
+
# llm: llm,
|
22
|
+
# es_options: {
|
23
|
+
# transport_options: {ssl: {verify: false}},
|
24
|
+
# ca_fingerprint: ENV["ELASTICSEARCH_CA_FINGERPRINT"]
|
25
|
+
# }
|
26
|
+
# )
|
27
|
+
#
|
28
|
+
# es.create_default_schema
|
29
|
+
# es.add_texts(texts: ["..."])
|
30
|
+
# es.similarity_search(text: "...")
|
31
|
+
#
|
32
|
+
attr_accessor :es_client, :index_name, :options
|
33
|
+
|
34
|
+
def initialize(url:, index_name:, llm:, api_key: nil, es_options: {})
|
35
|
+
require "elasticsearch"
|
36
|
+
|
37
|
+
@options = {
|
38
|
+
url: url,
|
39
|
+
request_timeout: 20,
|
40
|
+
log: false
|
41
|
+
}.merge(es_options)
|
42
|
+
|
43
|
+
@es_client = ::Elasticsearch::Client.new(**options)
|
44
|
+
@index_name = index_name
|
45
|
+
|
46
|
+
super(llm: llm)
|
47
|
+
end
|
48
|
+
|
49
|
+
def add_texts(texts: [])
|
50
|
+
body = texts.map do |text|
|
51
|
+
[
|
52
|
+
{index: {_index: index_name}},
|
53
|
+
{input: text, input_vector: llm.embed(text: text).embedding}
|
54
|
+
]
|
55
|
+
end.flatten
|
56
|
+
|
57
|
+
es_client.bulk(body: body)
|
58
|
+
end
|
59
|
+
|
60
|
+
def update_texts(texts: [], ids: [])
|
61
|
+
body = texts.map.with_index do |text, i|
|
62
|
+
[
|
63
|
+
{index: {_index: index_name, _id: ids[i]}},
|
64
|
+
{input: text, input_vector: llm.embed(text: text).embedding}
|
65
|
+
]
|
66
|
+
end.flatten
|
67
|
+
|
68
|
+
es_client.bulk(body: body)
|
69
|
+
end
|
70
|
+
|
71
|
+
def create_default_schema
|
72
|
+
es_client.indices.create(
|
73
|
+
index: index_name,
|
74
|
+
body: default_schema
|
75
|
+
)
|
76
|
+
end
|
77
|
+
|
78
|
+
def delete_default_schema
|
79
|
+
es_client.indices.delete(
|
80
|
+
index: index_name
|
81
|
+
)
|
82
|
+
end
|
83
|
+
|
84
|
+
def default_vector_settings
|
85
|
+
{type: "dense_vector", dims: llm.default_dimension}
|
86
|
+
end
|
87
|
+
|
88
|
+
def vector_settings
|
89
|
+
options[:vector_settings] || default_vector_settings
|
90
|
+
end
|
91
|
+
|
92
|
+
def default_schema
|
93
|
+
{
|
94
|
+
mappings: {
|
95
|
+
properties: {
|
96
|
+
input: {
|
97
|
+
type: "text"
|
98
|
+
},
|
99
|
+
input_vector: vector_settings
|
100
|
+
}
|
101
|
+
}
|
102
|
+
}
|
103
|
+
end
|
104
|
+
|
105
|
+
def default_query(query_vector)
|
106
|
+
{
|
107
|
+
script_score: {
|
108
|
+
query: {match_all: {}},
|
109
|
+
script: {
|
110
|
+
source: "cosineSimilarity(params.query_vector, 'input_vector') + 1.0",
|
111
|
+
params: {
|
112
|
+
query_vector: query_vector
|
113
|
+
}
|
114
|
+
}
|
115
|
+
}
|
116
|
+
}
|
117
|
+
end
|
118
|
+
|
119
|
+
# TODO: Implement this
|
120
|
+
# def ask()
|
121
|
+
# end
|
122
|
+
|
123
|
+
def similarity_search(text: "", k: 10, query: {})
|
124
|
+
if text.empty? && query.empty?
|
125
|
+
raise "Either text or query should pass as an argument"
|
126
|
+
end
|
127
|
+
|
128
|
+
if query.empty?
|
129
|
+
query_vector = llm.embed(text: text).embedding
|
130
|
+
|
131
|
+
query = default_query(query_vector)
|
132
|
+
end
|
133
|
+
|
134
|
+
es_client.search(body: {query: query, size: k}).body
|
135
|
+
end
|
136
|
+
|
137
|
+
def similarity_search_by_vector(embedding: [], k: 10, query: {})
|
138
|
+
if embedding.empty? && query.empty?
|
139
|
+
raise "Either embedding or query should pass as an argument"
|
140
|
+
end
|
141
|
+
|
142
|
+
query = default_query(embedding) if query.empty?
|
143
|
+
|
144
|
+
es_client.search(body: {query: query, size: k}).body
|
145
|
+
end
|
146
|
+
end
|
147
|
+
end
|
@@ -5,7 +5,8 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# Wrapper around Milvus REST APIs.
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "milvus", "~> 0.9.2"
|
9
10
|
#
|
10
11
|
# Usage:
|
11
12
|
# milvus = Langchain::Vectorsearch::Milvus.new(url:, index_name:, llm:, api_key:)
|
@@ -70,7 +71,7 @@ module Langchain::Vectorsearch
|
|
70
71
|
type_params: [
|
71
72
|
{
|
72
73
|
key: "dim",
|
73
|
-
value: default_dimension.to_s
|
74
|
+
value: llm.default_dimension.to_s
|
74
75
|
}
|
75
76
|
]
|
76
77
|
}
|
@@ -5,10 +5,12 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# The PostgreSQL vector search adapter
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "sequel", "~> 5.68.0"
|
10
|
+
# gem "pgvector", "~> 0.2"
|
9
11
|
#
|
10
12
|
# Usage:
|
11
|
-
#
|
13
|
+
# pgvector = Langchain::Vectorsearch::Pgvector.new(url:, index_name:, llm:, namespace: nil)
|
12
14
|
#
|
13
15
|
|
14
16
|
# The operators supported by the PostgreSQL vector search adapter
|
@@ -91,7 +93,7 @@ module Langchain::Vectorsearch
|
|
91
93
|
def create_default_schema
|
92
94
|
db.run "CREATE EXTENSION IF NOT EXISTS vector"
|
93
95
|
namespace_column = @namespace_column
|
94
|
-
vector_dimension = default_dimension
|
96
|
+
vector_dimension = llm.default_dimension
|
95
97
|
db.create_table? table_name.to_sym do
|
96
98
|
primary_key :id
|
97
99
|
text :content
|
@@ -150,3 +152,7 @@ module Langchain::Vectorsearch
|
|
150
152
|
end
|
151
153
|
end
|
152
154
|
end
|
155
|
+
|
156
|
+
# Rails connection when configuring vectorsearch
|
157
|
+
# Update READMEs
|
158
|
+
# Rails migration to create a migration
|
@@ -5,10 +5,11 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# Wrapper around Pinecone API.
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "pinecone", "~> 0.1.6"
|
9
10
|
#
|
10
11
|
# Usage:
|
11
|
-
#
|
12
|
+
# pinecone = Langchain::Vectorsearch::Pinecone.new(environment:, api_key:, index_name:, llm:, llm_api_key:)
|
12
13
|
#
|
13
14
|
|
14
15
|
# Initialize the Pinecone client
|
@@ -102,7 +103,7 @@ module Langchain::Vectorsearch
|
|
102
103
|
client.create_index(
|
103
104
|
metric: DEFAULT_METRIC,
|
104
105
|
name: index_name,
|
105
|
-
dimension: default_dimension
|
106
|
+
dimension: llm.default_dimension
|
106
107
|
)
|
107
108
|
end
|
108
109
|
|
@@ -5,10 +5,11 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# Wrapper around Qdrant
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "qdrant-ruby", "~> 0.9.3"
|
9
10
|
#
|
10
11
|
# Usage:
|
11
|
-
#
|
12
|
+
# qdrant = Langchain::Vectorsearch::Qdrant.new(url:, api_key:, index_name:, llm:, llm_api_key:)
|
12
13
|
#
|
13
14
|
|
14
15
|
# Initialize the Qdrant client
|
@@ -82,7 +83,7 @@ module Langchain::Vectorsearch
|
|
82
83
|
collection_name: index_name,
|
83
84
|
vectors: {
|
84
85
|
distance: DEFAULT_METRIC.capitalize,
|
85
|
-
size: default_dimension
|
86
|
+
size: llm.default_dimension
|
86
87
|
}
|
87
88
|
)
|
88
89
|
end
|
@@ -5,10 +5,11 @@ module Langchain::Vectorsearch
|
|
5
5
|
#
|
6
6
|
# Wrapper around Weaviate
|
7
7
|
#
|
8
|
-
# Gem requirements:
|
8
|
+
# Gem requirements:
|
9
|
+
# gem "weaviate-ruby", "~> 0.8.3"
|
9
10
|
#
|
10
11
|
# Usage:
|
11
|
-
#
|
12
|
+
# weaviate = Langchain::Vectorsearch::Weaviate.new(url:, api_key:, index_name:, llm:, llm_api_key:)
|
12
13
|
#
|
13
14
|
|
14
15
|
# Initialize the Weaviate adapter
|
data/lib/langchain/version.rb
CHANGED
data/lib/langchain.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.6.
|
4
|
+
version: 0.6.19
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-10-
|
11
|
+
date: 2023-10-18 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: baran
|
@@ -220,6 +220,20 @@ dependencies:
|
|
220
220
|
- - "~>"
|
221
221
|
- !ruby/object:Gem::Version
|
222
222
|
version: 0.8.0
|
223
|
+
- !ruby/object:Gem::Dependency
|
224
|
+
name: elasticsearch
|
225
|
+
requirement: !ruby/object:Gem::Requirement
|
226
|
+
requirements:
|
227
|
+
- - "~>"
|
228
|
+
- !ruby/object:Gem::Version
|
229
|
+
version: 8.2.0
|
230
|
+
type: :development
|
231
|
+
prerelease: false
|
232
|
+
version_requirements: !ruby/object:Gem::Requirement
|
233
|
+
requirements:
|
234
|
+
- - "~>"
|
235
|
+
- !ruby/object:Gem::Version
|
236
|
+
version: 8.2.0
|
223
237
|
- !ruby/object:Gem::Dependency
|
224
238
|
name: eqn
|
225
239
|
requirement: !ruby/object:Gem::Requirement
|
@@ -603,6 +617,7 @@ files:
|
|
603
617
|
- lib/langchain/utils/token_length/token_limit_exceeded.rb
|
604
618
|
- lib/langchain/vectorsearch/base.rb
|
605
619
|
- lib/langchain/vectorsearch/chroma.rb
|
620
|
+
- lib/langchain/vectorsearch/elasticsearch.rb
|
606
621
|
- lib/langchain/vectorsearch/hnswlib.rb
|
607
622
|
- lib/langchain/vectorsearch/milvus.rb
|
608
623
|
- lib/langchain/vectorsearch/pgvector.rb
|