langchainrb 0.6.17 → 0.6.18
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/README.md +15 -0
- data/lib/langchain/active_record/hooks.rb +14 -0
- data/lib/langchain/agent/react_agent.rb +1 -1
- data/lib/langchain/agent/sql_query_agent.rb +2 -2
- data/lib/langchain/chunk.rb +16 -0
- data/lib/langchain/chunker/base.rb +4 -0
- data/lib/langchain/chunker/recursive_text.rb +5 -2
- data/lib/langchain/chunker/semantic.rb +4 -1
- data/lib/langchain/chunker/sentence.rb +4 -2
- data/lib/langchain/chunker/text.rb +5 -2
- data/lib/langchain/conversation.rb +1 -1
- data/lib/langchain/llm/ai21.rb +4 -3
- data/lib/langchain/llm/anthropic.rb +3 -3
- data/lib/langchain/llm/cohere.rb +6 -5
- data/lib/langchain/llm/google_palm.rb +14 -10
- data/lib/langchain/llm/hugging_face.rb +4 -3
- data/lib/langchain/llm/llama_cpp.rb +1 -1
- data/lib/langchain/llm/ollama.rb +18 -6
- data/lib/langchain/llm/openai.rb +7 -6
- data/lib/langchain/llm/replicate.rb +6 -10
- data/lib/langchain/llm/response/ai21_response.rb +13 -0
- data/lib/langchain/llm/response/anthropic_response.rb +29 -0
- data/lib/langchain/llm/response/base_response.rb +79 -0
- data/lib/langchain/llm/response/cohere_response.rb +21 -0
- data/lib/langchain/llm/response/google_palm_response.rb +36 -0
- data/lib/langchain/llm/response/hugging_face_response.rb +13 -0
- data/lib/langchain/llm/response/ollama_response.rb +26 -0
- data/lib/langchain/llm/response/openai_response.rb +51 -0
- data/lib/langchain/llm/response/replicate_response.rb +28 -0
- data/lib/langchain/vectorsearch/base.rb +1 -1
- data/lib/langchain/vectorsearch/chroma.rb +5 -5
- data/lib/langchain/vectorsearch/hnswlib.rb +5 -5
- data/lib/langchain/vectorsearch/milvus.rb +2 -2
- data/lib/langchain/vectorsearch/pgvector.rb +3 -3
- data/lib/langchain/vectorsearch/pinecone.rb +10 -10
- data/lib/langchain/vectorsearch/qdrant.rb +5 -5
- data/lib/langchain/vectorsearch/weaviate.rb +6 -6
- data/lib/langchain/version.rb +1 -1
- data/lib/langchain.rb +3 -0
- metadata +12 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 437c6387ded139ed1a513414bfb7242cdbadf1ba6526c7a89346aa2fa9490fc2
|
4
|
+
data.tar.gz: dd6f437a4bbc4807a16631dd790f66c9de4e9456011b2c4f84302fe3fab1377b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 24748539de50dfa816fdb71173ef00a6b04f9737f32926fca919865a49b9812dd9f1fdb286c361c98e33cc994f67e8988ab688bfdf6bf3020d954eb0c791177c
|
7
|
+
data.tar.gz: 283b10460187cada7485e08a19c89e7485925ab2f73a5ad51b06a72e8fd9ee1600ddac9d000f13c0c1af13f6defece9fdcc272489d0df803f94da96fe1c76cfd
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,16 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.6.18] - 2023-10-16
|
4
|
+
- Introduce `Langchain::LLM::Response`` object
|
5
|
+
- Introduce `Langchain::Chunk` object
|
6
|
+
- Add the ask() method to the Langchain::ActiveRecord::Hooks
|
7
|
+
|
8
|
+
## [0.6.17] - 2023-10-10
|
9
|
+
- Bump weaviate and chroma-db deps
|
10
|
+
- `Langchain::Chunker::Semantic` chunker
|
11
|
+
- Re-structure Conversations class
|
12
|
+
- Bug fixes
|
13
|
+
|
3
14
|
## [0.6.16] - 2023-10-02
|
4
15
|
- HyDE-style similarity search
|
5
16
|
- `Langchain::Chunker::Sentence` chunker
|
data/README.md
CHANGED
@@ -128,6 +128,21 @@ class Product < ActiveRecord::Base
|
|
128
128
|
end
|
129
129
|
```
|
130
130
|
|
131
|
+
### Exposed ActiveRecord methods
|
132
|
+
```ruby
|
133
|
+
# Retrieve similar products based on the query string passed in
|
134
|
+
Product.similarity_search(
|
135
|
+
query:,
|
136
|
+
k: # number of results to be retrieved
|
137
|
+
)
|
138
|
+
```
|
139
|
+
```ruby
|
140
|
+
# Q&A-style querying based on the question passed in
|
141
|
+
Product.ask(
|
142
|
+
question:
|
143
|
+
)
|
144
|
+
```
|
145
|
+
|
131
146
|
Additional info [here](https://github.com/andreibondarev/langchainrb/blob/main/lib/langchain/active_record/hooks.rb#L10-L38).
|
132
147
|
|
133
148
|
### Using Standalone LLMs 🗣️
|
@@ -92,6 +92,20 @@ module Langchain
|
|
92
92
|
ids = records.map { |record| record.dig("id") || record.dig("__id") }
|
93
93
|
where(id: ids)
|
94
94
|
end
|
95
|
+
|
96
|
+
# Ask a question and return the answer
|
97
|
+
#
|
98
|
+
# @param question [String] The question to ask
|
99
|
+
# @param k [Integer] The number of results to have in context
|
100
|
+
# @yield [String] Stream responses back one String at a time
|
101
|
+
# @return [String] The answer to the question
|
102
|
+
def ask(question:, k: 4, &block)
|
103
|
+
class_variable_get(:@@provider).ask(
|
104
|
+
question: question,
|
105
|
+
k: k,
|
106
|
+
&block
|
107
|
+
)
|
108
|
+
end
|
95
109
|
end
|
96
110
|
end
|
97
111
|
end
|
@@ -58,7 +58,7 @@ module Langchain::Agent
|
|
58
58
|
max_iterations.times do
|
59
59
|
Langchain.logger.info("Sending the prompt to the #{llm.class} LLM", for: self.class)
|
60
60
|
|
61
|
-
response = llm.complete(prompt: prompt, stop_sequences: ["Observation:"])
|
61
|
+
response = llm.complete(prompt: prompt, stop_sequences: ["Observation:"]).completion
|
62
62
|
|
63
63
|
# Append the response to the prompt
|
64
64
|
prompt += response
|
@@ -27,7 +27,7 @@ module Langchain::Agent
|
|
27
27
|
|
28
28
|
# Get the SQL string to execute
|
29
29
|
Langchain.logger.info("Passing the inital prompt to the #{llm.class} LLM", for: self.class)
|
30
|
-
sql_string = llm.complete(prompt: prompt)
|
30
|
+
sql_string = llm.complete(prompt: prompt).completion
|
31
31
|
|
32
32
|
# Execute the SQL string and collect the results
|
33
33
|
Langchain.logger.info("Passing the SQL to the Database: #{sql_string}", for: self.class)
|
@@ -36,7 +36,7 @@ module Langchain::Agent
|
|
36
36
|
# Pass the results and get the LLM to synthesize the answer to the question
|
37
37
|
Langchain.logger.info("Passing the synthesize prompt to the #{llm.class} LLM with results: #{results}", for: self.class)
|
38
38
|
prompt2 = create_prompt_for_answer(question: question, sql_query: sql_string, results: results)
|
39
|
-
llm.complete(prompt: prompt2)
|
39
|
+
llm.complete(prompt: prompt2).completion
|
40
40
|
end
|
41
41
|
|
42
42
|
private
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain
|
4
|
+
class Chunk
|
5
|
+
# The chunking process is the process of splitting a document into smaller chunks and creating instances of Langchain::Chunk
|
6
|
+
|
7
|
+
attr_reader :text
|
8
|
+
|
9
|
+
# Initialize a new chunk
|
10
|
+
# @param [String] text
|
11
|
+
# @return [Langchain::Chunk]
|
12
|
+
def initialize(text:)
|
13
|
+
@text = text
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
@@ -24,14 +24,17 @@ module Langchain
|
|
24
24
|
@separators = separators
|
25
25
|
end
|
26
26
|
|
27
|
-
# @return [Array<
|
27
|
+
# @return [Array<Langchain::Chunk>]
|
28
28
|
def chunks
|
29
29
|
splitter = Baran::RecursiveCharacterTextSplitter.new(
|
30
30
|
chunk_size: chunk_size,
|
31
31
|
chunk_overlap: chunk_overlap,
|
32
32
|
separators: separators
|
33
33
|
)
|
34
|
-
|
34
|
+
|
35
|
+
splitter.chunks(text).map do |chunk|
|
36
|
+
Langchain::Chunk.new(text: chunk[:text])
|
37
|
+
end
|
35
38
|
end
|
36
39
|
end
|
37
40
|
end
|
@@ -23,7 +23,7 @@ module Langchain
|
|
23
23
|
@prompt_template = prompt_template || default_prompt_template
|
24
24
|
end
|
25
25
|
|
26
|
-
# @return [Array<
|
26
|
+
# @return [Array<Langchain::Chunk>]
|
27
27
|
def chunks
|
28
28
|
prompt = prompt_template.format(text: text)
|
29
29
|
|
@@ -34,6 +34,9 @@ module Langchain
|
|
34
34
|
.split("---")
|
35
35
|
.map(&:strip)
|
36
36
|
.reject(&:empty?)
|
37
|
+
.map do |chunk|
|
38
|
+
Langchain::Chunk.new(text: chunk)
|
39
|
+
end
|
37
40
|
end
|
38
41
|
|
39
42
|
private
|
@@ -19,10 +19,12 @@ module Langchain
|
|
19
19
|
@text = text
|
20
20
|
end
|
21
21
|
|
22
|
-
# @return [Array<
|
22
|
+
# @return [Array<Langchain::Chunk>]
|
23
23
|
def chunks
|
24
24
|
ps = PragmaticSegmenter::Segmenter.new(text: text)
|
25
|
-
ps.segment
|
25
|
+
ps.segment.map do |chunk|
|
26
|
+
Langchain::Chunk.new(text: chunk)
|
27
|
+
end
|
26
28
|
end
|
27
29
|
end
|
28
30
|
end
|
@@ -24,14 +24,17 @@ module Langchain
|
|
24
24
|
@separator = separator
|
25
25
|
end
|
26
26
|
|
27
|
-
# @return [Array<
|
27
|
+
# @return [Array<Langchain::Chunk>]
|
28
28
|
def chunks
|
29
29
|
splitter = Baran::CharacterTextSplitter.new(
|
30
30
|
chunk_size: chunk_size,
|
31
31
|
chunk_overlap: chunk_overlap,
|
32
32
|
separator: separator
|
33
33
|
)
|
34
|
-
|
34
|
+
|
35
|
+
splitter.chunks(text).map do |chunk|
|
36
|
+
Langchain::Chunk.new(text: chunk[:text])
|
37
|
+
end
|
35
38
|
end
|
36
39
|
end
|
37
40
|
end
|
@@ -58,7 +58,7 @@ module Langchain
|
|
58
58
|
# @return [Response] The response from the model
|
59
59
|
def message(message)
|
60
60
|
@memory.append_message ::Langchain::Conversation::Prompt.new(message)
|
61
|
-
ai_message = ::Langchain::Conversation::Response.new(llm_response)
|
61
|
+
ai_message = ::Langchain::Conversation::Response.new(llm_response.chat_completion)
|
62
62
|
@memory.append_message(ai_message)
|
63
63
|
ai_message
|
64
64
|
end
|
data/lib/langchain/llm/ai21.rb
CHANGED
@@ -8,7 +8,7 @@ module Langchain::LLM
|
|
8
8
|
# gem "ai21", "~> 0.2.1"
|
9
9
|
#
|
10
10
|
# Usage:
|
11
|
-
# ai21 = Langchain::LLM::AI21.new(api_key:)
|
11
|
+
# ai21 = Langchain::LLM::AI21.new(api_key: ENV["AI21_API_KEY"])
|
12
12
|
#
|
13
13
|
class AI21 < Base
|
14
14
|
DEFAULTS = {
|
@@ -30,7 +30,7 @@ module Langchain::LLM
|
|
30
30
|
#
|
31
31
|
# @param prompt [String] The prompt to generate a completion for
|
32
32
|
# @param params [Hash] The parameters to pass to the API
|
33
|
-
# @return [
|
33
|
+
# @return [Langchain::LLM::AI21Response] The completion
|
34
34
|
#
|
35
35
|
def complete(prompt:, **params)
|
36
36
|
parameters = complete_parameters params
|
@@ -38,7 +38,7 @@ module Langchain::LLM
|
|
38
38
|
parameters[:maxTokens] = LENGTH_VALIDATOR.validate_max_tokens!(prompt, parameters[:model], client)
|
39
39
|
|
40
40
|
response = client.complete(prompt, parameters)
|
41
|
-
|
41
|
+
Langchain::LLM::AI21Response.new response, model: parameters[:model]
|
42
42
|
end
|
43
43
|
|
44
44
|
#
|
@@ -51,6 +51,7 @@ module Langchain::LLM
|
|
51
51
|
def summarize(text:, **params)
|
52
52
|
response = client.summarize(text, "TEXT", params)
|
53
53
|
response.dig(:summary)
|
54
|
+
# Should we update this to also return a Langchain::LLM::AI21Response?
|
54
55
|
end
|
55
56
|
|
56
57
|
private
|
@@ -8,7 +8,7 @@ module Langchain::LLM
|
|
8
8
|
# gem "anthropic", "~> 0.1.0"
|
9
9
|
#
|
10
10
|
# Usage:
|
11
|
-
# anthorpic = Langchain::LLM::Anthropic.new(api_key:)
|
11
|
+
# anthorpic = Langchain::LLM::Anthropic.new(api_key: ENV["ANTHROPIC_API_KEY"])
|
12
12
|
#
|
13
13
|
class Anthropic < Base
|
14
14
|
DEFAULTS = {
|
@@ -32,7 +32,7 @@ module Langchain::LLM
|
|
32
32
|
#
|
33
33
|
# @param prompt [String] The prompt to generate a completion for
|
34
34
|
# @param params [Hash] extra parameters passed to Anthropic::Client#complete
|
35
|
-
# @return [
|
35
|
+
# @return [Langchain::LLM::AnthropicResponse] The completion
|
36
36
|
#
|
37
37
|
def complete(prompt:, **params)
|
38
38
|
parameters = compose_parameters @defaults[:completion_model_name], params
|
@@ -43,7 +43,7 @@ module Langchain::LLM
|
|
43
43
|
# parameters[:max_tokens_to_sample] = validate_max_tokens(prompt, parameters[:completion_model_name])
|
44
44
|
|
45
45
|
response = client.complete(parameters: parameters)
|
46
|
-
|
46
|
+
Langchain::LLM::AnthropicResponse.new(response)
|
47
47
|
end
|
48
48
|
|
49
49
|
private
|
data/lib/langchain/llm/cohere.rb
CHANGED
@@ -8,7 +8,7 @@ module Langchain::LLM
|
|
8
8
|
# gem "cohere-ruby", "~> 0.9.6"
|
9
9
|
#
|
10
10
|
# Usage:
|
11
|
-
# cohere = Langchain::LLM::Cohere.new(api_key: "
|
11
|
+
# cohere = Langchain::LLM::Cohere.new(api_key: ENV["COHERE_API_KEY"])
|
12
12
|
#
|
13
13
|
class Cohere < Base
|
14
14
|
DEFAULTS = {
|
@@ -30,14 +30,15 @@ module Langchain::LLM
|
|
30
30
|
# Generate an embedding for a given text
|
31
31
|
#
|
32
32
|
# @param text [String] The text to generate an embedding for
|
33
|
-
# @return [
|
33
|
+
# @return [Langchain::LLM::CohereResponse] Response object
|
34
34
|
#
|
35
35
|
def embed(text:)
|
36
36
|
response = client.embed(
|
37
37
|
texts: [text],
|
38
38
|
model: @defaults[:embeddings_model_name]
|
39
39
|
)
|
40
|
-
|
40
|
+
|
41
|
+
Langchain::LLM::CohereResponse.new response, model: @defaults[:embeddings_model_name]
|
41
42
|
end
|
42
43
|
|
43
44
|
#
|
@@ -45,7 +46,7 @@ module Langchain::LLM
|
|
45
46
|
#
|
46
47
|
# @param prompt [String] The prompt to generate a completion for
|
47
48
|
# @param params[:stop_sequences]
|
48
|
-
# @return [
|
49
|
+
# @return [Langchain::LLM::CohereResponse] Response object
|
49
50
|
#
|
50
51
|
def complete(prompt:, **params)
|
51
52
|
default_params = {
|
@@ -64,7 +65,7 @@ module Langchain::LLM
|
|
64
65
|
default_params[:max_tokens] = Langchain::Utils::TokenLength::CohereValidator.validate_max_tokens!(prompt, default_params[:model], client)
|
65
66
|
|
66
67
|
response = client.generate(**default_params)
|
67
|
-
response
|
68
|
+
Langchain::LLM::CohereResponse.new response, model: @defaults[:completion_model_name]
|
68
69
|
end
|
69
70
|
|
70
71
|
# Cohere does not have a dedicated chat endpoint, so instead we call `complete()`
|
@@ -8,7 +8,7 @@ module Langchain::LLM
|
|
8
8
|
# gem "google_palm_api", "~> 0.1.3"
|
9
9
|
#
|
10
10
|
# Usage:
|
11
|
-
# google_palm = Langchain::LLM::GooglePalm.new(api_key: "
|
11
|
+
# google_palm = Langchain::LLM::GooglePalm.new(api_key: ENV["GOOGLE_PALM_API_KEY"])
|
12
12
|
#
|
13
13
|
class GooglePalm < Base
|
14
14
|
DEFAULTS = {
|
@@ -34,13 +34,13 @@ module Langchain::LLM
|
|
34
34
|
# Generate an embedding for a given text
|
35
35
|
#
|
36
36
|
# @param text [String] The text to generate an embedding for
|
37
|
-
# @return [
|
37
|
+
# @return [Langchain::LLM::GooglePalmResponse] Response object
|
38
38
|
#
|
39
39
|
def embed(text:)
|
40
|
-
response = client.embed(
|
41
|
-
|
42
|
-
|
43
|
-
|
40
|
+
response = client.embed(text: text)
|
41
|
+
|
42
|
+
Langchain::LLM::GooglePalmResponse.new response,
|
43
|
+
model: @defaults[:embeddings_model_name]
|
44
44
|
end
|
45
45
|
|
46
46
|
#
|
@@ -48,7 +48,7 @@ module Langchain::LLM
|
|
48
48
|
#
|
49
49
|
# @param prompt [String] The prompt to generate a completion for
|
50
50
|
# @param params extra parameters passed to GooglePalmAPI::Client#generate_text
|
51
|
-
# @return [
|
51
|
+
# @return [Langchain::LLM::GooglePalmResponse] Response object
|
52
52
|
#
|
53
53
|
def complete(prompt:, **params)
|
54
54
|
default_params = {
|
@@ -68,7 +68,9 @@ module Langchain::LLM
|
|
68
68
|
default_params.merge!(params)
|
69
69
|
|
70
70
|
response = client.generate_text(**default_params)
|
71
|
-
|
71
|
+
|
72
|
+
Langchain::LLM::GooglePalmResponse.new response,
|
73
|
+
model: default_params[:model]
|
72
74
|
end
|
73
75
|
|
74
76
|
#
|
@@ -79,7 +81,7 @@ module Langchain::LLM
|
|
79
81
|
# @param context [String] An initial context to provide as a system message, ie "You are RubyGPT, a helpful chat bot for helping people learn Ruby"
|
80
82
|
# @param examples [Array<Hash>] Examples of messages to provide to the model. Useful for Few-Shot Prompting
|
81
83
|
# @param options [Hash] extra parameters passed to GooglePalmAPI::Client#generate_chat_message
|
82
|
-
# @return [
|
84
|
+
# @return [Langchain::LLM::GooglePalmResponse] Response object
|
83
85
|
#
|
84
86
|
def chat(prompt: "", messages: [], context: "", examples: [], **options)
|
85
87
|
raise ArgumentError.new(":prompt or :messages argument is expected") if prompt.empty? && messages.empty?
|
@@ -108,7 +110,9 @@ module Langchain::LLM
|
|
108
110
|
response = client.generate_chat_message(**default_params)
|
109
111
|
raise "GooglePalm API returned an error: #{response}" if response.dig("error")
|
110
112
|
|
111
|
-
|
113
|
+
Langchain::LLM::GooglePalmResponse.new response,
|
114
|
+
model: default_params[:model]
|
115
|
+
# TODO: Pass in prompt_tokens: prompt_tokens
|
112
116
|
end
|
113
117
|
|
114
118
|
#
|
@@ -8,7 +8,7 @@ module Langchain::LLM
|
|
8
8
|
# gem "hugging-face", "~> 0.3.4"
|
9
9
|
#
|
10
10
|
# Usage:
|
11
|
-
# hf = Langchain::LLM::HuggingFace.new(api_key: "
|
11
|
+
# hf = Langchain::LLM::HuggingFace.new(api_key: ENV["HUGGING_FACE_API_KEY"])
|
12
12
|
#
|
13
13
|
class HuggingFace < Base
|
14
14
|
# The gem does not currently accept other models:
|
@@ -34,13 +34,14 @@ module Langchain::LLM
|
|
34
34
|
# Generate an embedding for a given text
|
35
35
|
#
|
36
36
|
# @param text [String] The text to embed
|
37
|
-
# @return [
|
37
|
+
# @return [Langchain::LLM::HuggingFaceResponse] Response object
|
38
38
|
#
|
39
39
|
def embed(text:)
|
40
|
-
client.embedding(
|
40
|
+
response = client.embedding(
|
41
41
|
input: text,
|
42
42
|
model: DEFAULTS[:embeddings_model_name]
|
43
43
|
)
|
44
|
+
Langchain::LLM::HuggingFaceResponse.new(response, model: DEFAULTS[:embeddings_model_name])
|
44
45
|
end
|
45
46
|
end
|
46
47
|
end
|
@@ -34,7 +34,7 @@ module Langchain::LLM
|
|
34
34
|
|
35
35
|
# @param text [String] The text to embed
|
36
36
|
# @param n_threads [Integer] The number of CPU threads to use
|
37
|
-
# @return [Array] The embedding
|
37
|
+
# @return [Array<Float>] The embedding
|
38
38
|
def embed(text:, n_threads: nil)
|
39
39
|
# contexts are kinda stateful when it comes to embeddings, so allocate one each time
|
40
40
|
context = embedding_context
|
data/lib/langchain/llm/ollama.rb
CHANGED
@@ -22,18 +22,23 @@ module Langchain::LLM
|
|
22
22
|
@url = url
|
23
23
|
end
|
24
24
|
|
25
|
+
#
|
25
26
|
# Generate the completion for a given prompt
|
27
|
+
#
|
26
28
|
# @param prompt [String] The prompt to complete
|
27
29
|
# @param model [String] The model to use
|
28
30
|
# @param options [Hash] The options to use (https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values)
|
29
|
-
# @return [
|
31
|
+
# @return [Langchain::LLM::OllamaResponse] Response object
|
32
|
+
#
|
30
33
|
def complete(prompt:, model: nil, **options)
|
31
34
|
response = +""
|
32
35
|
|
36
|
+
model_name = model || DEFAULTS[:completion_model_name]
|
37
|
+
|
33
38
|
client.post("api/generate") do |req|
|
34
39
|
req.body = {}
|
35
40
|
req.body["prompt"] = prompt
|
36
|
-
req.body["model"] =
|
41
|
+
req.body["model"] = model_name
|
37
42
|
|
38
43
|
req.body["options"] = options if options.any?
|
39
44
|
|
@@ -47,27 +52,34 @@ module Langchain::LLM
|
|
47
52
|
end
|
48
53
|
end
|
49
54
|
|
50
|
-
response
|
55
|
+
Langchain::LLM::OllamaResponse.new(response, model: model_name)
|
51
56
|
end
|
52
57
|
|
58
|
+
#
|
53
59
|
# Generate an embedding for a given text
|
60
|
+
#
|
54
61
|
# @param text [String] The text to generate an embedding for
|
55
62
|
# @param model [String] The model to use
|
56
|
-
# @param options [Hash] The options to use
|
63
|
+
# @param options [Hash] The options to use
|
64
|
+
# @return [Langchain::LLM::OllamaResponse] Response object
|
65
|
+
#
|
57
66
|
def embed(text:, model: nil, **options)
|
67
|
+
model_name = model || DEFAULTS[:embeddings_model_name]
|
68
|
+
|
58
69
|
response = client.post("api/embeddings") do |req|
|
59
70
|
req.body = {}
|
60
71
|
req.body["prompt"] = text
|
61
|
-
req.body["model"] =
|
72
|
+
req.body["model"] = model_name
|
62
73
|
|
63
74
|
req.body["options"] = options if options.any?
|
64
75
|
end
|
65
76
|
|
66
|
-
response.body
|
77
|
+
Langchain::LLM::OllamaResponse.new(response.body, model: model_name)
|
67
78
|
end
|
68
79
|
|
69
80
|
private
|
70
81
|
|
82
|
+
# @return [Faraday::Connection] Faraday client
|
71
83
|
def client
|
72
84
|
@client ||= Faraday.new(url: url) do |conn|
|
73
85
|
conn.request :json
|
data/lib/langchain/llm/openai.rb
CHANGED
@@ -42,7 +42,7 @@ module Langchain::LLM
|
|
42
42
|
#
|
43
43
|
# @param text [String] The text to generate an embedding for
|
44
44
|
# @param params extra parameters passed to OpenAI::Client#embeddings
|
45
|
-
# @return [
|
45
|
+
# @return [Langchain::LLM::OpenAIResponse] Response object
|
46
46
|
#
|
47
47
|
def embed(text:, **params)
|
48
48
|
parameters = {model: @defaults[:embeddings_model_name], input: text}
|
@@ -53,7 +53,7 @@ module Langchain::LLM
|
|
53
53
|
client.embeddings(parameters: parameters.merge(params))
|
54
54
|
end
|
55
55
|
|
56
|
-
|
56
|
+
Langchain::LLM::OpenAIResponse.new(response)
|
57
57
|
end
|
58
58
|
|
59
59
|
#
|
@@ -61,7 +61,7 @@ module Langchain::LLM
|
|
61
61
|
#
|
62
62
|
# @param prompt [String] The prompt to generate a completion for
|
63
63
|
# @param params extra parameters passed to OpenAI::Client#complete
|
64
|
-
# @return [
|
64
|
+
# @return [Langchain::LLM::Response::OpenaAI] Response object
|
65
65
|
#
|
66
66
|
def complete(prompt:, **params)
|
67
67
|
parameters = compose_parameters @defaults[:completion_model_name], params
|
@@ -75,7 +75,7 @@ module Langchain::LLM
|
|
75
75
|
client.chat(parameters: parameters)
|
76
76
|
end
|
77
77
|
|
78
|
-
|
78
|
+
Langchain::LLM::OpenAIResponse.new(response)
|
79
79
|
end
|
80
80
|
|
81
81
|
#
|
@@ -120,7 +120,7 @@ module Langchain::LLM
|
|
120
120
|
# @param examples [Array<Hash>] Examples of messages to provide to the model. Useful for Few-Shot Prompting
|
121
121
|
# @param options [Hash] extra parameters passed to OpenAI::Client#chat
|
122
122
|
# @yield [Hash] Stream responses back one token at a time
|
123
|
-
# @return [
|
123
|
+
# @return [Langchain::LLM::OpenAIResponse] Response object
|
124
124
|
#
|
125
125
|
def chat(prompt: "", messages: [], context: "", examples: [], **options, &block)
|
126
126
|
raise ArgumentError.new(":prompt or :messages argument is expected") if prompt.empty? && messages.empty?
|
@@ -138,7 +138,7 @@ module Langchain::LLM
|
|
138
138
|
|
139
139
|
return if block
|
140
140
|
|
141
|
-
|
141
|
+
Langchain::LLM::OpenAIResponse.new(response)
|
142
142
|
end
|
143
143
|
|
144
144
|
#
|
@@ -154,6 +154,7 @@ module Langchain::LLM
|
|
154
154
|
prompt = prompt_template.format(text: text)
|
155
155
|
|
156
156
|
complete(prompt: prompt, temperature: @defaults[:temperature])
|
157
|
+
# Should this return a Langchain::LLM::OpenAIResponse as well?
|
157
158
|
end
|
158
159
|
|
159
160
|
private
|
@@ -47,38 +47,34 @@ module Langchain::LLM
|
|
47
47
|
# Generate an embedding for a given text
|
48
48
|
#
|
49
49
|
# @param text [String] The text to generate an embedding for
|
50
|
-
# @return [
|
50
|
+
# @return [Langchain::LLM::ReplicateResponse] Response object
|
51
51
|
#
|
52
52
|
def embed(text:)
|
53
53
|
response = embeddings_model.predict(input: text)
|
54
54
|
|
55
55
|
until response.finished?
|
56
56
|
response.refetch
|
57
|
-
sleep(1)
|
57
|
+
sleep(0.1)
|
58
58
|
end
|
59
59
|
|
60
|
-
response
|
60
|
+
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:embeddings_model_name])
|
61
61
|
end
|
62
62
|
|
63
63
|
#
|
64
64
|
# Generate a completion for a given prompt
|
65
65
|
#
|
66
66
|
# @param prompt [String] The prompt to generate a completion for
|
67
|
-
# @return [
|
67
|
+
# @return [Langchain::LLM::ReplicateResponse] Reponse object
|
68
68
|
#
|
69
69
|
def complete(prompt:, **params)
|
70
70
|
response = completion_model.predict(prompt: prompt)
|
71
71
|
|
72
72
|
until response.finished?
|
73
73
|
response.refetch
|
74
|
-
sleep(1)
|
74
|
+
sleep(0.1)
|
75
75
|
end
|
76
76
|
|
77
|
-
|
78
|
-
# The first array element is missing a space at the end, so we add it manually
|
79
|
-
response.output[0] += " "
|
80
|
-
|
81
|
-
response.output.join
|
77
|
+
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:completion_model_name])
|
82
78
|
end
|
83
79
|
|
84
80
|
# Cohere does not have a dedicated chat endpoint, so instead we call `complete()`
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class AnthropicResponse < BaseResponse
|
5
|
+
def model
|
6
|
+
raw_response.dig("model")
|
7
|
+
end
|
8
|
+
|
9
|
+
def completion
|
10
|
+
completions.first
|
11
|
+
end
|
12
|
+
|
13
|
+
def completions
|
14
|
+
[raw_response.dig("completion")]
|
15
|
+
end
|
16
|
+
|
17
|
+
def stop_reason
|
18
|
+
raw_response.dig("stop_reason")
|
19
|
+
end
|
20
|
+
|
21
|
+
def stop
|
22
|
+
raw_response.dig("stop")
|
23
|
+
end
|
24
|
+
|
25
|
+
def log_id
|
26
|
+
raw_response.dig("log_id")
|
27
|
+
end
|
28
|
+
end
|
29
|
+
end
|
@@ -0,0 +1,79 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain
|
4
|
+
module LLM
|
5
|
+
class BaseResponse
|
6
|
+
attr_reader :raw_response, :model
|
7
|
+
|
8
|
+
def initialize(raw_response, model: nil)
|
9
|
+
@raw_response = raw_response
|
10
|
+
@model = model
|
11
|
+
end
|
12
|
+
|
13
|
+
# Returns the completion text
|
14
|
+
#
|
15
|
+
# @return [String]
|
16
|
+
#
|
17
|
+
def completion
|
18
|
+
raise NotImplementedError
|
19
|
+
end
|
20
|
+
|
21
|
+
# Returns the chat completion text
|
22
|
+
#
|
23
|
+
# @return [String]
|
24
|
+
#
|
25
|
+
def chat_completion
|
26
|
+
raise NotImplementedError
|
27
|
+
end
|
28
|
+
|
29
|
+
# Return the first embedding
|
30
|
+
#
|
31
|
+
# @return [Array<Float>]
|
32
|
+
def embedding
|
33
|
+
raise NotImplementedError
|
34
|
+
end
|
35
|
+
|
36
|
+
# Return the completion candidates
|
37
|
+
#
|
38
|
+
# @return [Array]
|
39
|
+
def completions
|
40
|
+
raise NotImplementedError
|
41
|
+
end
|
42
|
+
|
43
|
+
# Return the chat completion candidates
|
44
|
+
#
|
45
|
+
# @return [Array]
|
46
|
+
def chat_completions
|
47
|
+
raise NotImplementedError
|
48
|
+
end
|
49
|
+
|
50
|
+
# Return the embeddings
|
51
|
+
#
|
52
|
+
# @return [Array<Array>]
|
53
|
+
def embeddings
|
54
|
+
raise NotImplementedError
|
55
|
+
end
|
56
|
+
|
57
|
+
# Number of tokens utilized in the prompt
|
58
|
+
#
|
59
|
+
# @return [Integer]
|
60
|
+
def prompt_tokens
|
61
|
+
raise NotImplementedError
|
62
|
+
end
|
63
|
+
|
64
|
+
# Number of tokens utilized to generate the completion
|
65
|
+
#
|
66
|
+
# @return [Integer]
|
67
|
+
def completion_tokens
|
68
|
+
raise NotImplementedError
|
69
|
+
end
|
70
|
+
|
71
|
+
# Total number of tokens utilized
|
72
|
+
#
|
73
|
+
# @return [Integer]
|
74
|
+
def total_tokens
|
75
|
+
raise NotImplementedError
|
76
|
+
end
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
@@ -0,0 +1,21 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class CohereResponse < BaseResponse
|
5
|
+
def embedding
|
6
|
+
embeddings.first
|
7
|
+
end
|
8
|
+
|
9
|
+
def embeddings
|
10
|
+
raw_response.dig("embeddings")
|
11
|
+
end
|
12
|
+
|
13
|
+
def completions
|
14
|
+
raw_response.dig("generations")
|
15
|
+
end
|
16
|
+
|
17
|
+
def completion
|
18
|
+
completions&.dig(0, "text")
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
@@ -0,0 +1,36 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class GooglePalmResponse < BaseResponse
|
5
|
+
attr_reader :prompt_tokens
|
6
|
+
|
7
|
+
def initialize(raw_response, model: nil, prompt_tokens: nil)
|
8
|
+
@prompt_tokens = prompt_tokens
|
9
|
+
super(raw_response, model: model)
|
10
|
+
end
|
11
|
+
|
12
|
+
def completion
|
13
|
+
completions&.dig(0, "output")
|
14
|
+
end
|
15
|
+
|
16
|
+
def embedding
|
17
|
+
embeddings.first
|
18
|
+
end
|
19
|
+
|
20
|
+
def completions
|
21
|
+
raw_response.dig("candidates")
|
22
|
+
end
|
23
|
+
|
24
|
+
def chat_completion
|
25
|
+
chat_completions&.dig(0, "content")
|
26
|
+
end
|
27
|
+
|
28
|
+
def chat_completions
|
29
|
+
raw_response.dig("candidates")
|
30
|
+
end
|
31
|
+
|
32
|
+
def embeddings
|
33
|
+
[raw_response.dig("embedding", "value")]
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
@@ -0,0 +1,26 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class OllamaResponse < BaseResponse
|
5
|
+
def initialize(raw_response, model: nil, prompt_tokens: nil)
|
6
|
+
@prompt_tokens = prompt_tokens
|
7
|
+
super(raw_response, model: model)
|
8
|
+
end
|
9
|
+
|
10
|
+
def completion
|
11
|
+
raw_response.first
|
12
|
+
end
|
13
|
+
|
14
|
+
def completions
|
15
|
+
raw_response.is_a?(String) ? [raw_response] : []
|
16
|
+
end
|
17
|
+
|
18
|
+
def embedding
|
19
|
+
embeddings.first
|
20
|
+
end
|
21
|
+
|
22
|
+
def embeddings
|
23
|
+
[raw_response&.dig("embedding")]
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
@@ -0,0 +1,51 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class OpenAIResponse < BaseResponse
|
5
|
+
def model
|
6
|
+
raw_response["model"]
|
7
|
+
end
|
8
|
+
|
9
|
+
def created_at
|
10
|
+
if raw_response.dig("created")
|
11
|
+
Time.at(raw_response.dig("created"))
|
12
|
+
end
|
13
|
+
end
|
14
|
+
|
15
|
+
def completion
|
16
|
+
completions&.dig(0, "message", "content")
|
17
|
+
end
|
18
|
+
|
19
|
+
def chat_completion
|
20
|
+
completion
|
21
|
+
end
|
22
|
+
|
23
|
+
def embedding
|
24
|
+
embeddings&.first
|
25
|
+
end
|
26
|
+
|
27
|
+
def completions
|
28
|
+
raw_response.dig("choices")
|
29
|
+
end
|
30
|
+
|
31
|
+
def chat_completions
|
32
|
+
raw_response.dig("choices")
|
33
|
+
end
|
34
|
+
|
35
|
+
def embeddings
|
36
|
+
raw_response.dig("data")&.map { |datum| datum.dig("embedding") }
|
37
|
+
end
|
38
|
+
|
39
|
+
def prompt_tokens
|
40
|
+
raw_response.dig("usage", "prompt_tokens")
|
41
|
+
end
|
42
|
+
|
43
|
+
def completion_tokens
|
44
|
+
raw_response.dig("usage", "completion_tokens")
|
45
|
+
end
|
46
|
+
|
47
|
+
def total_tokens
|
48
|
+
raw_response.dig("usage", "total_tokens")
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
@@ -0,0 +1,28 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Langchain::LLM
|
4
|
+
class ReplicateResponse < BaseResponse
|
5
|
+
def completions
|
6
|
+
# Response comes back as an array of strings, e.g.: ["Hi", "how ", "are ", "you?"]
|
7
|
+
# The first array element is missing a space at the end, so we add it manually
|
8
|
+
raw_response.output[0] += " "
|
9
|
+
[raw_response.output.join]
|
10
|
+
end
|
11
|
+
|
12
|
+
def completion
|
13
|
+
completions.first
|
14
|
+
end
|
15
|
+
|
16
|
+
def created_at
|
17
|
+
Time.parse(raw_response.created_at)
|
18
|
+
end
|
19
|
+
|
20
|
+
def embedding
|
21
|
+
embeddings.first
|
22
|
+
end
|
23
|
+
|
24
|
+
def embeddings
|
25
|
+
[raw_response.output]
|
26
|
+
end
|
27
|
+
end
|
28
|
+
end
|
@@ -28,13 +28,13 @@ module Langchain::Vectorsearch
|
|
28
28
|
end
|
29
29
|
|
30
30
|
# Add a list of texts to the index
|
31
|
-
# @param texts [Array] The list of texts to add
|
31
|
+
# @param texts [Array<String>] The list of texts to add
|
32
32
|
# @return [Hash] The response from the server
|
33
33
|
def add_texts(texts:, ids: [])
|
34
34
|
embeddings = Array(texts).map.with_index do |text, i|
|
35
35
|
::Chroma::Resources::Embedding.new(
|
36
36
|
id: ids[i] ? ids[i].to_s : SecureRandom.uuid,
|
37
|
-
embedding: llm.embed(text: text),
|
37
|
+
embedding: llm.embed(text: text).embedding,
|
38
38
|
# TODO: Add support for passing metadata
|
39
39
|
metadata: {}, # metadatas[index],
|
40
40
|
document: text # Do we actually need to store the whole original document?
|
@@ -49,7 +49,7 @@ module Langchain::Vectorsearch
|
|
49
49
|
embeddings = Array(texts).map.with_index do |text, i|
|
50
50
|
::Chroma::Resources::Embedding.new(
|
51
51
|
id: ids[i].to_s,
|
52
|
-
embedding: llm.embed(text: text),
|
52
|
+
embedding: llm.embed(text: text).embedding,
|
53
53
|
# TODO: Add support for passing metadata
|
54
54
|
metadata: [], # metadatas[index],
|
55
55
|
document: text # Do we actually need to store the whole original document?
|
@@ -85,7 +85,7 @@ module Langchain::Vectorsearch
|
|
85
85
|
query:,
|
86
86
|
k: 4
|
87
87
|
)
|
88
|
-
embedding = llm.embed(text: query)
|
88
|
+
embedding = llm.embed(text: query).embedding
|
89
89
|
|
90
90
|
similarity_search_by_vector(
|
91
91
|
embedding: embedding,
|
@@ -94,7 +94,7 @@ module Langchain::Vectorsearch
|
|
94
94
|
end
|
95
95
|
|
96
96
|
# Search for similar texts by embedding
|
97
|
-
# @param embedding [Array] The embedding to search for
|
97
|
+
# @param embedding [Array<Float>] The embedding to search for
|
98
98
|
# @param k [Integer] The number of results to return
|
99
99
|
# @return [Chroma::Resources::Embedding] The response from the server
|
100
100
|
def similarity_search_by_vector(
|
@@ -35,15 +35,15 @@ module Langchain::Vectorsearch
|
|
35
35
|
#
|
36
36
|
# Add a list of texts and corresponding IDs to the index
|
37
37
|
#
|
38
|
-
# @param texts [Array] The list of texts to add
|
39
|
-
# @param ids [Array] The list of corresponding IDs (integers) to the texts
|
38
|
+
# @param texts [Array<String>] The list of texts to add
|
39
|
+
# @param ids [Array<Integer>] The list of corresponding IDs (integers) to the texts
|
40
40
|
# @return [Boolean] The response from the HNSW library
|
41
41
|
#
|
42
42
|
def add_texts(texts:, ids:)
|
43
43
|
resize_index(texts.size)
|
44
44
|
|
45
45
|
Array(texts).each_with_index do |text, i|
|
46
|
-
embedding = llm.embed(text: text)
|
46
|
+
embedding = llm.embed(text: text).embedding
|
47
47
|
|
48
48
|
client.add_point(embedding, ids[i])
|
49
49
|
end
|
@@ -64,7 +64,7 @@ module Langchain::Vectorsearch
|
|
64
64
|
query:,
|
65
65
|
k: 4
|
66
66
|
)
|
67
|
-
embedding = llm.embed(text: query)
|
67
|
+
embedding = llm.embed(text: query).embedding
|
68
68
|
|
69
69
|
similarity_search_by_vector(
|
70
70
|
embedding: embedding,
|
@@ -75,7 +75,7 @@ module Langchain::Vectorsearch
|
|
75
75
|
#
|
76
76
|
# Search for the K nearest neighbors of a given vector
|
77
77
|
#
|
78
|
-
# @param embedding [Array] The embedding to search for
|
78
|
+
# @param embedding [Array<Float>] The embedding to search for
|
79
79
|
# @param k [Integer] The number of results to return
|
80
80
|
# @return [Array] Results in the format `[[id1, distance3], [id2, distance2]]`
|
81
81
|
#
|
@@ -32,7 +32,7 @@ module Langchain::Vectorsearch
|
|
32
32
|
}, {
|
33
33
|
field_name: "vectors",
|
34
34
|
type: ::Milvus::DATA_TYPES["float_vector"],
|
35
|
-
field: Array(texts).map { |text| llm.embed(text: text) }
|
35
|
+
field: Array(texts).map { |text| llm.embed(text: text).embedding }
|
36
36
|
}
|
37
37
|
]
|
38
38
|
)
|
@@ -111,7 +111,7 @@ module Langchain::Vectorsearch
|
|
111
111
|
end
|
112
112
|
|
113
113
|
def similarity_search(query:, k: 4)
|
114
|
-
embedding = llm.embed(text: query)
|
114
|
+
embedding = llm.embed(text: query).embedding
|
115
115
|
|
116
116
|
similarity_search_by_vector(
|
117
117
|
embedding: embedding,
|
@@ -52,7 +52,7 @@ module Langchain::Vectorsearch
|
|
52
52
|
# the added or updated texts.
|
53
53
|
def upsert_texts(texts:, ids:)
|
54
54
|
data = texts.zip(ids).flat_map do |(text, id)|
|
55
|
-
{id: id, content: text, vectors: llm.embed(text: text).to_s, namespace: namespace}
|
55
|
+
{id: id, content: text, vectors: llm.embed(text: text).embedding.to_s, namespace: namespace}
|
56
56
|
end
|
57
57
|
# @db[table_name.to_sym].multi_insert(data, return: :primary_key)
|
58
58
|
@db[table_name.to_sym]
|
@@ -70,7 +70,7 @@ module Langchain::Vectorsearch
|
|
70
70
|
def add_texts(texts:, ids: nil)
|
71
71
|
if ids.nil? || ids.empty?
|
72
72
|
data = texts.map do |text|
|
73
|
-
{content: text, vectors: llm.embed(text: text).to_s, namespace: namespace}
|
73
|
+
{content: text, vectors: llm.embed(text: text).embedding.to_s, namespace: namespace}
|
74
74
|
end
|
75
75
|
|
76
76
|
@db[table_name.to_sym].multi_insert(data, return: :primary_key)
|
@@ -110,7 +110,7 @@ module Langchain::Vectorsearch
|
|
110
110
|
# @param k [Integer] The number of top results to return
|
111
111
|
# @return [Array<Hash>] The results of the search
|
112
112
|
def similarity_search(query:, k: 4)
|
113
|
-
embedding = llm.embed(text: query)
|
113
|
+
embedding = llm.embed(text: query).embedding
|
114
114
|
|
115
115
|
similarity_search_by_vector(
|
116
116
|
embedding: embedding,
|
@@ -31,7 +31,7 @@ module Langchain::Vectorsearch
|
|
31
31
|
end
|
32
32
|
|
33
33
|
# Find records by ids
|
34
|
-
# @param ids [Array] The ids to find
|
34
|
+
# @param ids [Array<Integer>] The ids to find
|
35
35
|
# @param namespace String The namespace to search through
|
36
36
|
# @return [Hash] The response from the server
|
37
37
|
def find(ids: [], namespace: "")
|
@@ -44,8 +44,8 @@ module Langchain::Vectorsearch
|
|
44
44
|
end
|
45
45
|
|
46
46
|
# Add a list of texts to the index
|
47
|
-
# @param texts [Array] The list of texts to add
|
48
|
-
# @param ids [Array] The list of IDs to add
|
47
|
+
# @param texts [Array<String>] The list of texts to add
|
48
|
+
# @param ids [Array<Integer>] The list of IDs to add
|
49
49
|
# @param namespace [String] The namespace to add the texts to
|
50
50
|
# @param metadata [Hash] The metadata to use for the texts
|
51
51
|
# @return [Hash] The response from the server
|
@@ -54,7 +54,7 @@ module Langchain::Vectorsearch
|
|
54
54
|
{
|
55
55
|
id: ids[i] ? ids[i].to_s : SecureRandom.uuid,
|
56
56
|
metadata: metadata || {content: text},
|
57
|
-
values: llm.embed(text: text)
|
57
|
+
values: llm.embed(text: text).embedding
|
58
58
|
}
|
59
59
|
end
|
60
60
|
|
@@ -70,7 +70,7 @@ module Langchain::Vectorsearch
|
|
70
70
|
.flatten
|
71
71
|
.map do |path|
|
72
72
|
data = Langchain::Loader.new(path)&.load&.chunks
|
73
|
-
data.map { |chunk| chunk
|
73
|
+
data.map { |chunk| chunk.text }
|
74
74
|
end
|
75
75
|
|
76
76
|
texts.flatten!
|
@@ -79,8 +79,8 @@ module Langchain::Vectorsearch
|
|
79
79
|
end
|
80
80
|
|
81
81
|
# Update a list of texts in the index
|
82
|
-
# @param texts [Array] The list of texts to update
|
83
|
-
# @param ids [Array] The list of IDs to update
|
82
|
+
# @param texts [Array<String>] The list of texts to update
|
83
|
+
# @param ids [Array<Integer>] The list of IDs to update
|
84
84
|
# @param namespace [String] The namespace to update the texts in
|
85
85
|
# @param metadata [Hash] The metadata to use for the texts
|
86
86
|
# @return [Array] The response from the server
|
@@ -90,7 +90,7 @@ module Langchain::Vectorsearch
|
|
90
90
|
index.update(
|
91
91
|
namespace: namespace,
|
92
92
|
id: ids[i].to_s,
|
93
|
-
values: llm.embed(text: text),
|
93
|
+
values: llm.embed(text: text).embedding,
|
94
94
|
set_metadata: metadata
|
95
95
|
)
|
96
96
|
end
|
@@ -130,7 +130,7 @@ module Langchain::Vectorsearch
|
|
130
130
|
namespace: "",
|
131
131
|
filter: nil
|
132
132
|
)
|
133
|
-
embedding = llm.embed(text: query)
|
133
|
+
embedding = llm.embed(text: query).embedding
|
134
134
|
|
135
135
|
similarity_search_by_vector(
|
136
136
|
embedding: embedding,
|
@@ -141,7 +141,7 @@ module Langchain::Vectorsearch
|
|
141
141
|
end
|
142
142
|
|
143
143
|
# Search for similar texts by embedding
|
144
|
-
# @param embedding [Array] The embedding to search for
|
144
|
+
# @param embedding [Array<Float>] The embedding to search for
|
145
145
|
# @param k [Integer] The number of results to return
|
146
146
|
# @param namespace [String] The namespace to search in
|
147
147
|
# @param filter [String] The filter to use
|
@@ -29,7 +29,7 @@ module Langchain::Vectorsearch
|
|
29
29
|
end
|
30
30
|
|
31
31
|
# Find records by ids
|
32
|
-
# @param ids [Array] The ids to find
|
32
|
+
# @param ids [Array<Integer>] The ids to find
|
33
33
|
# @return [Hash] The response from the server
|
34
34
|
def find(ids: [])
|
35
35
|
client.points.get_all(
|
@@ -41,7 +41,7 @@ module Langchain::Vectorsearch
|
|
41
41
|
end
|
42
42
|
|
43
43
|
# Add a list of texts to the index
|
44
|
-
# @param texts [Array] The list of texts to add
|
44
|
+
# @param texts [Array<String>] The list of texts to add
|
45
45
|
# @return [Hash] The response from the server
|
46
46
|
def add_texts(texts:, ids: [])
|
47
47
|
batch = {ids: [], vectors: [], payloads: []}
|
@@ -49,7 +49,7 @@ module Langchain::Vectorsearch
|
|
49
49
|
Array(texts).each_with_index do |text, i|
|
50
50
|
id = ids[i] || SecureRandom.uuid
|
51
51
|
batch[:ids].push(id)
|
52
|
-
batch[:vectors].push(llm.embed(text: text))
|
52
|
+
batch[:vectors].push(llm.embed(text: text).embedding)
|
53
53
|
batch[:payloads].push({content: text})
|
54
54
|
end
|
55
55
|
|
@@ -95,7 +95,7 @@ module Langchain::Vectorsearch
|
|
95
95
|
query:,
|
96
96
|
k: 4
|
97
97
|
)
|
98
|
-
embedding = llm.embed(text: query)
|
98
|
+
embedding = llm.embed(text: query).embedding
|
99
99
|
|
100
100
|
similarity_search_by_vector(
|
101
101
|
embedding: embedding,
|
@@ -104,7 +104,7 @@ module Langchain::Vectorsearch
|
|
104
104
|
end
|
105
105
|
|
106
106
|
# Search for similar texts by embedding
|
107
|
-
# @param embedding [Array] The embedding to search for
|
107
|
+
# @param embedding [Array<Float>] The embedding to search for
|
108
108
|
# @param k [Integer] The number of results to return
|
109
109
|
# @return [Hash] The response from the server
|
110
110
|
def similarity_search_by_vector(
|
@@ -32,7 +32,7 @@ module Langchain::Vectorsearch
|
|
32
32
|
end
|
33
33
|
|
34
34
|
# Add a list of texts to the index
|
35
|
-
# @param texts [Array] The list of texts to add
|
35
|
+
# @param texts [Array<String>] The list of texts to add
|
36
36
|
# @return [Hash] The response from the server
|
37
37
|
def add_texts(texts:, ids: [])
|
38
38
|
client.objects.batch_create(
|
@@ -41,7 +41,7 @@ module Langchain::Vectorsearch
|
|
41
41
|
end
|
42
42
|
|
43
43
|
# Update a list of texts in the index
|
44
|
-
# @param texts [Array] The list of texts to update
|
44
|
+
# @param texts [Array<String>] The list of texts to update
|
45
45
|
# @return [Hash] The response from the server
|
46
46
|
def update_texts(texts:, ids:)
|
47
47
|
uuids = []
|
@@ -65,7 +65,7 @@ module Langchain::Vectorsearch
|
|
65
65
|
__id: ids[i].to_s,
|
66
66
|
content: text
|
67
67
|
},
|
68
|
-
vector: llm.embed(text: text)
|
68
|
+
vector: llm.embed(text: text).embedding
|
69
69
|
)
|
70
70
|
end
|
71
71
|
end
|
@@ -101,13 +101,13 @@ module Langchain::Vectorsearch
|
|
101
101
|
# @param k [Integer|String] The number of results to return
|
102
102
|
# @return [Hash] The search results
|
103
103
|
def similarity_search(query:, k: 4)
|
104
|
-
embedding = llm.embed(text: query)
|
104
|
+
embedding = llm.embed(text: query).embedding
|
105
105
|
|
106
106
|
similarity_search_by_vector(embedding: embedding, k: k)
|
107
107
|
end
|
108
108
|
|
109
109
|
# Return documents similar to the vector
|
110
|
-
# @param embedding [Array] The vector to search for
|
110
|
+
# @param embedding [Array<Float>] The vector to search for
|
111
111
|
# @param k [Integer|String] The number of results to return
|
112
112
|
# @return [Hash] The search results
|
113
113
|
def similarity_search_by_vector(embedding:, k: 4)
|
@@ -154,7 +154,7 @@ module Langchain::Vectorsearch
|
|
154
154
|
__id: id.to_s,
|
155
155
|
content: text
|
156
156
|
},
|
157
|
-
vector: llm.embed(text: text)
|
157
|
+
vector: llm.embed(text: text).embedding
|
158
158
|
}
|
159
159
|
end
|
160
160
|
end
|
data/lib/langchain/version.rb
CHANGED
data/lib/langchain.rb
CHANGED
@@ -8,6 +8,7 @@ loader = Zeitwerk::Loader.for_gem
|
|
8
8
|
loader.ignore("#{__dir__}/langchainrb.rb")
|
9
9
|
loader.inflector.inflect(
|
10
10
|
"ai21" => "AI21",
|
11
|
+
"ai21_response" => "AI21Response",
|
11
12
|
"ai21_validator" => "AI21Validator",
|
12
13
|
"csv" => "CSV",
|
13
14
|
"html" => "HTML",
|
@@ -16,10 +17,12 @@ loader.inflector.inflect(
|
|
16
17
|
"llm" => "LLM",
|
17
18
|
"openai" => "OpenAI",
|
18
19
|
"openai_validator" => "OpenAIValidator",
|
20
|
+
"openai_response" => "OpenAIResponse",
|
19
21
|
"pdf" => "PDF",
|
20
22
|
"react_agent" => "ReActAgent",
|
21
23
|
"sql_query_agent" => "SQLQueryAgent"
|
22
24
|
)
|
25
|
+
loader.collapse("#{__dir__}/langchain/llm/response")
|
23
26
|
loader.setup
|
24
27
|
|
25
28
|
# Langchain.rb a is library for building LLM-backed Ruby applications. It is an abstraction layer that sits on top of the emerging AI-related tools that makes it easy for developers to consume and string those services together.
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.6.
|
4
|
+
version: 0.6.18
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-10-
|
11
|
+
date: 2023-10-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: baran
|
@@ -532,6 +532,7 @@ files:
|
|
532
532
|
- lib/langchain/agent/sql_query_agent.rb
|
533
533
|
- lib/langchain/agent/sql_query_agent/sql_query_agent_answer_prompt.yaml
|
534
534
|
- lib/langchain/agent/sql_query_agent/sql_query_agent_sql_prompt.yaml
|
535
|
+
- lib/langchain/chunk.rb
|
535
536
|
- lib/langchain/chunker/base.rb
|
536
537
|
- lib/langchain/chunker/prompts/semantic_prompt_template.yml
|
537
538
|
- lib/langchain/chunker/recursive_text.rb
|
@@ -558,6 +559,15 @@ files:
|
|
558
559
|
- lib/langchain/llm/openai.rb
|
559
560
|
- lib/langchain/llm/prompts/summarize_template.yaml
|
560
561
|
- lib/langchain/llm/replicate.rb
|
562
|
+
- lib/langchain/llm/response/ai21_response.rb
|
563
|
+
- lib/langchain/llm/response/anthropic_response.rb
|
564
|
+
- lib/langchain/llm/response/base_response.rb
|
565
|
+
- lib/langchain/llm/response/cohere_response.rb
|
566
|
+
- lib/langchain/llm/response/google_palm_response.rb
|
567
|
+
- lib/langchain/llm/response/hugging_face_response.rb
|
568
|
+
- lib/langchain/llm/response/ollama_response.rb
|
569
|
+
- lib/langchain/llm/response/openai_response.rb
|
570
|
+
- lib/langchain/llm/response/replicate_response.rb
|
561
571
|
- lib/langchain/loader.rb
|
562
572
|
- lib/langchain/output_parsers/base.rb
|
563
573
|
- lib/langchain/output_parsers/output_fixing_parser.rb
|