langchainrb 0.3.6 → 0.3.8
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.env.example +12 -0
- data/CHANGELOG.md +19 -11
- data/Gemfile.lock +23 -1
- data/README.md +36 -14
- data/examples/pdf_store_and_query_with_chroma.rb +36 -0
- data/lib/agent/chain_of_thought_agent/chain_of_thought_agent.rb +2 -2
- data/lib/dependency_helper.rb +8 -0
- data/lib/langchain.rb +26 -1
- data/lib/llm/base.rb +15 -0
- data/lib/llm/cohere.rb +4 -2
- data/lib/llm/hugging_face.rb +1 -1
- data/lib/llm/openai.rb +21 -2
- data/lib/loader.rb +26 -0
- data/lib/loaders/base.rb +17 -0
- data/lib/loaders/pdf.rb +34 -0
- data/lib/loaders/text.rb +22 -0
- data/lib/tool/base.rb +1 -2
- data/lib/vectorsearch/base.rb +39 -8
- data/lib/vectorsearch/chroma.rb +105 -0
- data/lib/vectorsearch/milvus.rb +4 -8
- data/lib/vectorsearch/pinecone.rb +3 -3
- data/lib/vectorsearch/qdrant.rb +4 -4
- data/lib/vectorsearch/weaviate.rb +2 -2
- data/lib/version.rb +1 -1
- metadata +37 -4
- data/examples/.keep +0 -0
- data/lib/logging.rb +0 -13
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 6b208f5fc51ce342bd7ffcfb776487452a40fb0505e4fa6a6b371e0db1d2a278
|
4
|
+
data.tar.gz: 8551edf0406827f92026c8fde54b3b27f32727dec6381f5a33cd58c9c39d40a5
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 0d0d10e84dd47b768979e4f004e9026aac48c45ed5e15ffe499dc0fc9679e806408cc5688cdbd06931e7f63e8840dbb33b5ad7f58ca311eb05a4528757fc9581
|
7
|
+
data.tar.gz: 8723656cefc802cdd4464d24f452a858a1315e654d64d1c256cab9e1de5297c1de0950a4a625278fe33aa8f149db698878bfe608cd06051bc0f8eb8c5abb22f3
|
data/.env.example
ADDED
data/CHANGELOG.md
CHANGED
@@ -1,14 +1,26 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.3.8] - 2023-05-19
|
4
|
+
- 🔍 Vectorsearch
|
5
|
+
- Introduce support for Chroma DB
|
6
|
+
|
7
|
+
- 🚚 Loaders
|
8
|
+
- Bug fix `Loaders::Text` to only parse .txt files
|
9
|
+
|
10
|
+
## [0.3.7] - 2023-05-19
|
11
|
+
- 🚚 Loaders
|
12
|
+
- Introduce `Loaders::Text` to parse .txt files
|
13
|
+
- Introduce `Loaders::PDF` to parse .pdf files
|
14
|
+
|
3
15
|
## [0.3.6] - 2023-05-17
|
4
|
-
- LLMs
|
16
|
+
- 🗣️ LLMs
|
5
17
|
- Bump `hugging-face` gem version
|
6
18
|
|
7
19
|
## [0.3.5] - 2023-05-16
|
8
20
|
- Bug fixes
|
9
21
|
|
10
22
|
## [0.3.4] - 2023-05-16
|
11
|
-
- LLMs
|
23
|
+
- 🗣️ LLMs
|
12
24
|
- Introducing support for HuggingFace
|
13
25
|
|
14
26
|
## [0.3.3] - 2023-05-16
|
@@ -17,32 +29,28 @@
|
|
17
29
|
- Use the Ruby logger
|
18
30
|
|
19
31
|
## [0.3.2] - 2023-05-15
|
20
|
-
- Agents
|
32
|
+
- 🤖 Agents
|
21
33
|
- Fix Chain of Thought prompt loader
|
22
34
|
|
23
35
|
## [0.3.1] - 2023-05-12
|
24
|
-
- Tools
|
36
|
+
- 🛠️ Tools
|
25
37
|
- Introducing `Tool::Wikipedia`, a tool that looks up Wikipedia entries
|
26
38
|
|
27
39
|
## [0.3.0] - 2023-05-12
|
28
|
-
|
29
|
-
- Agents
|
40
|
+
- 🤖 Agents
|
30
41
|
- Introducing `Agent::ChainOfThoughtAgent`, a semi-autonomous bot that uses Tools to retrieve additional information in order to make best-effort informed replies to user's questions.
|
31
|
-
- Tools
|
42
|
+
- 🛠️ Tools
|
32
43
|
- Introducing `Tool::Calculator` tool that solves mathematical expressions.
|
33
44
|
- Introducing `Tool::Search` tool that executes Google Searches.
|
34
45
|
|
35
46
|
## [0.2.0] - 2023-05-09
|
36
|
-
|
37
|
-
- Prompt Templating
|
47
|
+
- 📋 Prompt Templating
|
38
48
|
- Ability to create prompt templates and save them to JSON files
|
39
49
|
- Default `Prompt::FewShotPromptTemplate`
|
40
50
|
- New examples added to `examples/`
|
41
51
|
|
42
52
|
## [0.1.4] - 2023-05-02
|
43
|
-
|
44
53
|
- Backfilling missing specs
|
45
54
|
|
46
55
|
## [0.1.3] - 2023-05-01
|
47
|
-
|
48
56
|
- Initial release
|
data/Gemfile.lock
CHANGED
@@ -1,11 +1,12 @@
|
|
1
1
|
PATH
|
2
2
|
remote: .
|
3
3
|
specs:
|
4
|
-
langchainrb (0.3.
|
4
|
+
langchainrb (0.3.8)
|
5
5
|
|
6
6
|
GEM
|
7
7
|
remote: https://rubygems.org/
|
8
8
|
specs:
|
9
|
+
Ascii85 (1.0.3)
|
9
10
|
actionpack (7.0.4.3)
|
10
11
|
actionview (= 7.0.4.3)
|
11
12
|
activesupport (= 7.0.4.3)
|
@@ -26,9 +27,13 @@ GEM
|
|
26
27
|
tzinfo (~> 2.0)
|
27
28
|
addressable (2.8.4)
|
28
29
|
public_suffix (>= 2.0.2, < 6.0)
|
30
|
+
afm (0.2.2)
|
29
31
|
ast (2.4.2)
|
30
32
|
builder (3.2.4)
|
31
33
|
byebug (11.1.3)
|
34
|
+
chroma-db (0.3.0)
|
35
|
+
dry-monads (~> 1.6)
|
36
|
+
ruby-next-core (>= 0.15.0)
|
32
37
|
coderay (1.1.3)
|
33
38
|
cohere-ruby (0.9.3)
|
34
39
|
faraday (~> 1)
|
@@ -52,6 +57,10 @@ GEM
|
|
52
57
|
concurrent-ruby (~> 1.0)
|
53
58
|
dry-core (~> 1.0, < 2)
|
54
59
|
zeitwerk (~> 2.6)
|
60
|
+
dry-monads (1.6.0)
|
61
|
+
concurrent-ruby (~> 1.0)
|
62
|
+
dry-core (~> 1.0, < 2)
|
63
|
+
zeitwerk (~> 2.6)
|
55
64
|
dry-schema (1.13.1)
|
56
65
|
concurrent-ruby (~> 1.0)
|
57
66
|
dry-configurable (~> 1.0, >= 1.0.1)
|
@@ -114,6 +123,7 @@ GEM
|
|
114
123
|
graphql-client (0.18.0)
|
115
124
|
activesupport (>= 3.0)
|
116
125
|
graphql
|
126
|
+
hashery (2.1.2)
|
117
127
|
httparty (0.21.0)
|
118
128
|
mini_mime (>= 1.0.0)
|
119
129
|
multi_xml (>= 0.5.2)
|
@@ -144,6 +154,12 @@ GEM
|
|
144
154
|
parallel (1.23.0)
|
145
155
|
parser (3.2.2.1)
|
146
156
|
ast (~> 2.4.1)
|
157
|
+
pdf-reader (1.4.1)
|
158
|
+
Ascii85 (~> 1.0.0)
|
159
|
+
afm (~> 0.2.1)
|
160
|
+
hashery (~> 2.0)
|
161
|
+
ruby-rc4
|
162
|
+
ttfunk
|
147
163
|
pinecone (0.1.71)
|
148
164
|
dry-struct (~> 1.6.0)
|
149
165
|
dry-validation (~> 1.10.0)
|
@@ -207,10 +223,12 @@ GEM
|
|
207
223
|
rubocop-performance (1.16.0)
|
208
224
|
rubocop (>= 1.7.0, < 2.0)
|
209
225
|
rubocop-ast (>= 0.4.0)
|
226
|
+
ruby-next-core (0.15.3)
|
210
227
|
ruby-openai (4.0.0)
|
211
228
|
faraday (>= 1)
|
212
229
|
faraday-multipart (>= 1)
|
213
230
|
ruby-progressbar (1.13.0)
|
231
|
+
ruby-rc4 (0.1.5)
|
214
232
|
ruby2_keywords (0.0.5)
|
215
233
|
standard (1.28.2)
|
216
234
|
language_server-protocol (~> 3.17.0.2)
|
@@ -228,6 +246,7 @@ GEM
|
|
228
246
|
thor (1.2.1)
|
229
247
|
treetop (1.6.12)
|
230
248
|
polyglot (~> 0.3)
|
249
|
+
ttfunk (1.7.0)
|
231
250
|
tzinfo (2.0.6)
|
232
251
|
concurrent-ruby (~> 1.0)
|
233
252
|
unicode-display_width (2.4.2)
|
@@ -242,9 +261,11 @@ GEM
|
|
242
261
|
PLATFORMS
|
243
262
|
arm64-darwin-22
|
244
263
|
x86_64-darwin-19
|
264
|
+
x86_64-darwin-22
|
245
265
|
x86_64-linux
|
246
266
|
|
247
267
|
DEPENDENCIES
|
268
|
+
chroma-db (~> 0.3.0)
|
248
269
|
cohere-ruby (~> 0.9.3)
|
249
270
|
dotenv-rails (~> 2.7.6)
|
250
271
|
eqn (~> 1.6.5)
|
@@ -252,6 +273,7 @@ DEPENDENCIES
|
|
252
273
|
hugging-face (~> 0.3.3)
|
253
274
|
langchainrb!
|
254
275
|
milvus (~> 0.9.0)
|
276
|
+
pdf-reader (~> 1.4)
|
255
277
|
pinecone (~> 0.1.6)
|
256
278
|
pry-byebug (~> 3.10.0)
|
257
279
|
qdrant-ruby (~> 0.9.0)
|
data/README.md
CHANGED
@@ -30,10 +30,11 @@ require "langchain"
|
|
30
30
|
|
31
31
|
| Database | Querying | Storage | Schema Management | Backups | Rails Integration | ??? |
|
32
32
|
| -------- |:------------------:| -------:| -----------------:| -------:| -----------------:| ---:|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
33
|
+
| Chroma | :white_check_mark: | WIP | WIP | WIP | WIP | |
|
34
|
+
| Milvus | :white_check_mark: | WIP | WIP | WIP | WIP | |
|
35
|
+
| Pinecone | :white_check_mark: | WIP | WIP | WIP | WIP | |
|
36
|
+
| Qdrant | :white_check_mark: | WIP | WIP | WIP | WIP | |
|
37
|
+
| Weaviate | :white_check_mark: | WIP | WIP | WIP | WIP | |
|
37
38
|
|
38
39
|
### Using Vector Search Databases 🔍
|
39
40
|
|
@@ -54,6 +55,7 @@ client = Vectorsearch::Weaviate.new(
|
|
54
55
|
client = Vectorsearch::Milvus.new(...) # `gem "milvus", "~> 0.9.0"`
|
55
56
|
client = Vectorsearch::Qdrant.new(...) # `gem"qdrant-ruby", "~> 0.9.0"`
|
56
57
|
client = Vectorsearch::Pinecone.new(...) # `gem "pinecone", "~> 0.1.6"`
|
58
|
+
client = Vectorsearch::Chroma.new(...) # `gem "chroma-db", "~> 0.3.0"`
|
57
59
|
```
|
58
60
|
|
59
61
|
```ruby
|
@@ -62,7 +64,7 @@ client.create_default_schema
|
|
62
64
|
```
|
63
65
|
|
64
66
|
```ruby
|
65
|
-
# Store
|
67
|
+
# Store plain texts in your vector search database
|
66
68
|
client.add_texts(
|
67
69
|
texts: [
|
68
70
|
"Begin by preheating your oven to 375°F (190°C). Prepare four boneless, skinless chicken breasts by cutting a pocket into the side of each breast, being careful not to cut all the way through. Season the chicken with salt and pepper to taste. In a large skillet, melt 2 tablespoons of unsalted butter over medium heat. Add 1 small diced onion and 2 minced garlic cloves, and cook until softened, about 3-4 minutes. Add 8 ounces of fresh spinach and cook until wilted, about 3 minutes. Remove the skillet from heat and let the mixture cool slightly.",
|
@@ -70,7 +72,13 @@ client.add_texts(
|
|
70
72
|
]
|
71
73
|
)
|
72
74
|
```
|
75
|
+
```ruby
|
76
|
+
# Store the contents of your files in your vector search database
|
77
|
+
my_pdf = Langchain.root.join("path/to/my.pdf")
|
78
|
+
my_text = Langchain.root.join("path/to/my.txt")
|
73
79
|
|
80
|
+
client.add_data(paths: [my_pdf, my_text])
|
81
|
+
```
|
74
82
|
```ruby
|
75
83
|
# Retrieve similar documents based on the query string passed in
|
76
84
|
client.similarity_search(
|
@@ -233,12 +241,24 @@ agent.run(question: "How many full soccer fields would be needed to cover the di
|
|
233
241
|
|
234
242
|
#### Available Tools 🛠️
|
235
243
|
|
236
|
-
| Name
|
237
|
-
|
|
238
|
-
| "calculator" | Useful for getting the result of a math expression | |
|
239
|
-
| "search"
|
240
|
-
| "wikipedia"
|
244
|
+
| Name | Description | ENV Requirements | Gem Requirements |
|
245
|
+
| ------------ | :------------------------------------------------: | :-----------------------------------------------------------: | :---------------------------------------: |
|
246
|
+
| "calculator" | Useful for getting the result of a math expression | | `gem "eqn", "~> 1.6.5"` |
|
247
|
+
| "search" | A wrapper around Google Search | `ENV["SERPAPI_API_KEY"]` (https://serpapi.com/manage-api-key) | `gem "google_search_results", "~> 2.0.0"` | |
|
248
|
+
| "wikipedia" | Calls Wikipedia API to retrieve the summary | | `gem "wikipedia-client", "~> 1.17.0"` |
|
249
|
+
|
250
|
+
|
251
|
+
#### Loaders 🚚
|
241
252
|
|
253
|
+
Need to read data from various sources? Load it up.
|
254
|
+
|
255
|
+
| Name | Class | Gem Requirements |
|
256
|
+
| ---- | ------------- | :--------------------------: |
|
257
|
+
| pdf | Loaders::PDF | `gem "pdf-reader", "~> 1.4"` |
|
258
|
+
| text | Loaders::Text | |
|
259
|
+
|
260
|
+
## Examples
|
261
|
+
Additional examples available: [/examples](https://github.com/andreibondarev/langchainrb/tree/main/examples)
|
242
262
|
|
243
263
|
## Logging
|
244
264
|
|
@@ -251,9 +271,10 @@ Langchain.logger.level = :info
|
|
251
271
|
|
252
272
|
## Development
|
253
273
|
|
254
|
-
|
255
|
-
|
256
|
-
|
274
|
+
1. `git clone https://github.com/andreibondarev/langchainrb.git`
|
275
|
+
2. `cp .env.example .env`, then fill out the environment variables in `.env`
|
276
|
+
3. `rspec spec/` to ensure that the tests pass
|
277
|
+
4. `bin/console` to load the gem in a REPL session. Feel free to add your own instances of LLMs, Tools, Agents, etc. and experiment with them.
|
257
278
|
|
258
279
|
## Core Contributors
|
259
280
|
[<img style="border-radius:50%" alt="Andrei Bondarev" src="https://avatars.githubusercontent.com/u/541665?v=4" width="80" height="80" class="avatar">](https://github.com/andreibondarev)
|
@@ -261,8 +282,9 @@ To install this gem onto your local machine, run `bundle exec rake install`. To
|
|
261
282
|
## Honorary Contributors
|
262
283
|
[<img style="border-radius:50%" alt="Andrei Bondarev" src="https://avatars.githubusercontent.com/u/541665?v=4" width="80" height="80" class="avatar">](https://github.com/andreibondarev)
|
263
284
|
[<img style="border-radius:50%" alt="Rafael Figueiredo" src="https://avatars.githubusercontent.com/u/35845775?v=4" width="80" height="80" class="avatar">](https://github.com/rafaelqfigueiredo)
|
285
|
+
[<img style="border-radius:50%" alt="Ricky Chilcott" src="https://avatars.githubusercontent.com/u/445759?v=4" width="80" height="80" class="avatar">](https://github.com/rickychilcott)
|
264
286
|
|
265
|
-
(Criteria
|
287
|
+
(Criteria for becoming an Honorary Contributor or Core Contributor is pending...)
|
266
288
|
|
267
289
|
## Contributing
|
268
290
|
|
@@ -0,0 +1,36 @@
|
|
1
|
+
require "langchain"
|
2
|
+
|
3
|
+
# gem install chroma-db
|
4
|
+
# or add `gem "chroma-db", "~> 0.3.0"` to your Gemfile
|
5
|
+
|
6
|
+
# Instantiate the Chroma client
|
7
|
+
chroma = Vectorsearch::Chroma.new(
|
8
|
+
url: ENV["CHROMA_URL"],
|
9
|
+
index_name: "documents",
|
10
|
+
llm: :openai,
|
11
|
+
llm_api_key: ENV["OPENAI_API_KEY"]
|
12
|
+
)
|
13
|
+
|
14
|
+
# Create the default schema.
|
15
|
+
chroma.create_default_schema
|
16
|
+
|
17
|
+
# Set up an array of PDF and TXT documents
|
18
|
+
docs = [
|
19
|
+
Langchain.root.join("/docs/document.pdf"),
|
20
|
+
Langchain.root.join("/docs/document.txt")
|
21
|
+
]
|
22
|
+
|
23
|
+
# Add data to the index. Weaviate will use OpenAI to generate embeddings behind the scene.
|
24
|
+
chroma.add_texts(
|
25
|
+
texts: docs
|
26
|
+
)
|
27
|
+
|
28
|
+
# Query your data
|
29
|
+
chroma.similarity_search(
|
30
|
+
query: "..."
|
31
|
+
)
|
32
|
+
|
33
|
+
# Interact with your index through Q&A
|
34
|
+
chroma.ask(
|
35
|
+
question: "..."
|
36
|
+
)
|
@@ -43,7 +43,7 @@ module Agent
|
|
43
43
|
|
44
44
|
loop do
|
45
45
|
Langchain.logger.info("Agent: Passing the prompt to the #{llm} LLM")
|
46
|
-
response = llm_client.
|
46
|
+
response = llm_client.complete(
|
47
47
|
prompt: prompt,
|
48
48
|
stop_sequences: ["Observation:"],
|
49
49
|
max_tokens: 500
|
@@ -100,7 +100,7 @@ module Agent
|
|
100
100
|
# @return [PromptTemplate] PromptTemplate instance
|
101
101
|
def prompt_template
|
102
102
|
@template ||= Prompt.load_from_path(
|
103
|
-
file_path:
|
103
|
+
file_path: Langchain.root.join("agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json")
|
104
104
|
)
|
105
105
|
end
|
106
106
|
end
|
data/lib/dependency_helper.rb
CHANGED
@@ -1,5 +1,13 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
# This method requires and loads the given gem, and then checks to see if the version of the gem meets the requirements listed in `langchain.gemspec`
|
4
|
+
# This solution was built to avoid auto-loading every single gem in the Gemfile when the developer will mostly likely be only using a few of them.
|
5
|
+
#
|
6
|
+
# @param gem_name [String] The name of the gem to load
|
7
|
+
# @return [Boolean] Whether or not the gem was loaded successfully
|
8
|
+
# @raise [LoadError] If the gem is not installed
|
9
|
+
# @raise [LoadError] If the gem is installed, but the version does not meet the requirements
|
10
|
+
#
|
3
11
|
def depends_on(gem_name)
|
4
12
|
gem(gem_name) # require the gem
|
5
13
|
|
data/lib/langchain.rb
CHANGED
@@ -1,8 +1,21 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
require "logger"
|
4
|
+
|
3
5
|
require_relative "./version"
|
4
6
|
require_relative "./dependency_helper"
|
5
|
-
|
7
|
+
module Langchain
|
8
|
+
class << self
|
9
|
+
attr_accessor :default_loaders
|
10
|
+
attr_accessor :logger
|
11
|
+
|
12
|
+
attr_reader :root
|
13
|
+
end
|
14
|
+
|
15
|
+
@logger ||= ::Logger.new($stdout, level: :warn, formatter: ->(severity, datetime, progname, msg) { "[LangChain.rb] #{msg}\n" })
|
16
|
+
|
17
|
+
@root = Pathname.new(__dir__)
|
18
|
+
end
|
6
19
|
|
7
20
|
module Agent
|
8
21
|
autoload :Base, "agent/base"
|
@@ -11,6 +24,7 @@ end
|
|
11
24
|
|
12
25
|
module Vectorsearch
|
13
26
|
autoload :Base, "vectorsearch/base"
|
27
|
+
autoload :Chroma, "vectorsearch/chroma"
|
14
28
|
autoload :Milvus, "vectorsearch/milvus"
|
15
29
|
autoload :Pinecone, "vectorsearch/pinecone"
|
16
30
|
autoload :Qdrant, "vectorsearch/qdrant"
|
@@ -38,3 +52,14 @@ module Tool
|
|
38
52
|
autoload :SerpApi, "tool/serp_api"
|
39
53
|
autoload :Wikipedia, "tool/wikipedia"
|
40
54
|
end
|
55
|
+
|
56
|
+
module Loaders
|
57
|
+
autoload :Base, "loaders/base"
|
58
|
+
autoload :PDF, "loaders/pdf"
|
59
|
+
autoload :Text, "loaders/text"
|
60
|
+
end
|
61
|
+
|
62
|
+
autoload :Loader, "loader"
|
63
|
+
|
64
|
+
# Load the default Loaders
|
65
|
+
Langchain.default_loaders ||= [::Loaders::Text, ::Loaders::PDF]
|
data/lib/llm/base.rb
CHANGED
@@ -16,6 +16,21 @@ module LLM
|
|
16
16
|
self.class.const_get(:DEFAULTS).dig(:dimension)
|
17
17
|
end
|
18
18
|
|
19
|
+
# Method supported by an LLM that generates a response for a given chat-style prompt
|
20
|
+
def chat(...)
|
21
|
+
raise NotImplementedError, "#{self.class.name} does not support chat"
|
22
|
+
end
|
23
|
+
|
24
|
+
# Method supported by an LLM that completes a given prompt
|
25
|
+
def complete(...)
|
26
|
+
raise NotImplementedError, "#{self.class.name} does not support completion"
|
27
|
+
end
|
28
|
+
|
29
|
+
# Method supported by an LLM that generates an embedding for a given text or array of texts
|
30
|
+
def embed(...)
|
31
|
+
raise NotImplementedError, "#{self.class.name} does not support generating embeddings"
|
32
|
+
end
|
33
|
+
|
19
34
|
# Ensure that the LLM value passed in is supported
|
20
35
|
# @param llm [Symbol] The LLM to use
|
21
36
|
def self.validate_llm!(llm:)
|
data/lib/llm/cohere.rb
CHANGED
@@ -47,7 +47,9 @@ module LLM
|
|
47
47
|
response.dig("generations").first.dig("text")
|
48
48
|
end
|
49
49
|
|
50
|
-
|
51
|
-
|
50
|
+
# Cohere does not have a dedicated chat endpoint, so instead we call `complete()`
|
51
|
+
def chat(...)
|
52
|
+
complete(...)
|
53
|
+
end
|
52
54
|
end
|
53
55
|
end
|
data/lib/llm/hugging_face.rb
CHANGED
data/lib/llm/openai.rb
CHANGED
@@ -5,6 +5,7 @@ module LLM
|
|
5
5
|
DEFAULTS = {
|
6
6
|
temperature: 0.0,
|
7
7
|
completion_model_name: "text-davinci-003",
|
8
|
+
chat_completion_model_name: "gpt-3.5-turbo",
|
8
9
|
embeddings_model_name: "text-embedding-ada-002",
|
9
10
|
dimension: 1536
|
10
11
|
}.freeze
|
@@ -50,7 +51,25 @@ module LLM
|
|
50
51
|
response.dig("choices", 0, "text")
|
51
52
|
end
|
52
53
|
|
53
|
-
|
54
|
-
|
54
|
+
# Generate a chat completion for a given prompt
|
55
|
+
# @param prompt [String] The prompt to generate a chat completion for
|
56
|
+
# @return [String] The chat completion
|
57
|
+
def chat(prompt:, **params)
|
58
|
+
default_params = {
|
59
|
+
model: DEFAULTS[:chat_completion_model_name],
|
60
|
+
temperature: DEFAULTS[:temperature],
|
61
|
+
# TODO: Figure out how to introduce persisted conversations
|
62
|
+
messages: [{role: "user", content: prompt}]
|
63
|
+
}
|
64
|
+
|
65
|
+
if params[:stop_sequences]
|
66
|
+
default_params[:stop] = params.delete(:stop_sequences)
|
67
|
+
end
|
68
|
+
|
69
|
+
default_params.merge!(params)
|
70
|
+
|
71
|
+
response = client.chat(parameters: default_params)
|
72
|
+
response.dig("choices", 0, "message", "content")
|
73
|
+
end
|
55
74
|
end
|
56
75
|
end
|
data/lib/loader.rb
ADDED
@@ -0,0 +1,26 @@
|
|
1
|
+
module Loader
|
2
|
+
def self.with(*loaders)
|
3
|
+
LoaderSet.new(loaders)
|
4
|
+
end
|
5
|
+
|
6
|
+
class LoaderSet
|
7
|
+
def initialize(loaders)
|
8
|
+
@loaders = Array(loaders)
|
9
|
+
end
|
10
|
+
|
11
|
+
def load(*paths)
|
12
|
+
Array(paths)
|
13
|
+
.flatten
|
14
|
+
.map { |path| first_loadable_loader(path)&.load }
|
15
|
+
.compact
|
16
|
+
end
|
17
|
+
|
18
|
+
def first_loadable_loader(path)
|
19
|
+
@loaders
|
20
|
+
.each do |loader_klass|
|
21
|
+
loader_instance = loader_klass.new(path)
|
22
|
+
return(loader_instance) if loader_instance.loadable?
|
23
|
+
end
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
data/lib/loaders/base.rb
ADDED
data/lib/loaders/pdf.rb
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
module Loaders
|
2
|
+
class PDF < Base
|
3
|
+
#
|
4
|
+
# This Loader parses PDF files into text.
|
5
|
+
# If you'd like to use it directly you can do so like this:
|
6
|
+
# Loaders::PDF.new("path/to/my.pdf").load
|
7
|
+
#
|
8
|
+
# This parser is also invoked when you're adding data to a Vectorsearch DB:
|
9
|
+
# qdrant = Vectorsearch::Qdrant.new(...)
|
10
|
+
# path = Langchain.root.join("path/to/my.pdf")
|
11
|
+
# qdrant.add_data(path: path)
|
12
|
+
#
|
13
|
+
|
14
|
+
def initialize(path)
|
15
|
+
depends_on "pdf-reader"
|
16
|
+
require "pdf-reader"
|
17
|
+
|
18
|
+
@path = path
|
19
|
+
end
|
20
|
+
|
21
|
+
# Check that the file is a PDF file
|
22
|
+
def loadable?
|
23
|
+
@path.to_s.end_with?(".pdf")
|
24
|
+
end
|
25
|
+
|
26
|
+
def load
|
27
|
+
::PDF::Reader
|
28
|
+
.new(@path)
|
29
|
+
.pages
|
30
|
+
.map(&:text)
|
31
|
+
.join("\n\n")
|
32
|
+
end
|
33
|
+
end
|
34
|
+
end
|
data/lib/loaders/text.rb
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
module Loaders
|
2
|
+
class Text < Base
|
3
|
+
#
|
4
|
+
# This Loader parses .txt files.
|
5
|
+
# If you'd like to use it directly you can do so like this:
|
6
|
+
# Loaders::Text.new("path/to/my.txt").load
|
7
|
+
#
|
8
|
+
# This parser is also invoked when you're adding data to a Vectorsearch DB:
|
9
|
+
# qdrant = Vectorsearch::Qdrant.new(...)
|
10
|
+
# path = Langchain.root.join("path/to/my.txt")
|
11
|
+
# qdrant.add_data(path: path)
|
12
|
+
#
|
13
|
+
|
14
|
+
def loadable?
|
15
|
+
@path.to_s.end_with?(".txt")
|
16
|
+
end
|
17
|
+
|
18
|
+
def load
|
19
|
+
@path.read
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
data/lib/tool/base.rb
CHANGED
data/lib/vectorsearch/base.rb
CHANGED
@@ -19,24 +19,37 @@ module Vectorsearch
|
|
19
19
|
@llm_api_key = llm_api_key
|
20
20
|
|
21
21
|
@llm_client = LLM.const_get(LLM::Base::LLMS.fetch(llm)).new(api_key: llm_api_key)
|
22
|
+
|
23
|
+
@loaders = Langchain.default_loaders
|
22
24
|
end
|
23
25
|
|
26
|
+
# Method supported by Vectorsearch DB to create a default schema
|
24
27
|
def create_default_schema
|
25
|
-
raise NotImplementedError
|
28
|
+
raise NotImplementedError, "#{self.class.name} does not support creating a default schema"
|
29
|
+
end
|
30
|
+
|
31
|
+
# Method supported by Vectorsearch DB to add a list of texts to the index
|
32
|
+
def add_texts(...)
|
33
|
+
raise NotImplementedError, "#{self.class.name} does not support adding texts"
|
26
34
|
end
|
27
35
|
|
28
|
-
|
29
|
-
|
36
|
+
# Method supported by Vectorsearch DB to search for similar texts in the index
|
37
|
+
def similarity_search(...)
|
38
|
+
raise NotImplementedError, "#{self.class.name} does not support similarity search"
|
30
39
|
end
|
31
40
|
|
32
|
-
#
|
33
|
-
|
34
|
-
|
41
|
+
# Method supported by Vectorsearch DB to search for similar texts in the index by the passed in vector.
|
42
|
+
# You must generate your own vector using the same LLM that generated the embeddings stored in the Vectorsearch DB.
|
43
|
+
def similarity_search_by_vector(...)
|
44
|
+
raise NotImplementedError, "#{self.class.name} does not support similarity search by vector"
|
45
|
+
end
|
46
|
+
|
47
|
+
# Method supported by Vectorsearch DB to answer a question given a context (data) pulled from your Vectorsearch DB.
|
48
|
+
def ask(...)
|
49
|
+
raise NotImplementedError, "#{self.class.name} does not support asking questions"
|
35
50
|
end
|
36
51
|
|
37
52
|
def_delegators :llm_client,
|
38
|
-
:generate_embedding,
|
39
|
-
:generate_completion,
|
40
53
|
:default_dimension
|
41
54
|
|
42
55
|
def generate_prompt(question:, context:)
|
@@ -56,5 +69,23 @@ module Vectorsearch
|
|
56
69
|
|
57
70
|
prompt_template.format(question: question)
|
58
71
|
end
|
72
|
+
|
73
|
+
def add_data(path: nil, paths: nil)
|
74
|
+
raise ArgumentError, "Either path or paths must be provided" if path.nil? && paths.nil?
|
75
|
+
raise ArgumentError, "Either path or paths must be provided, not both" if !path.nil? && !paths.nil?
|
76
|
+
|
77
|
+
texts =
|
78
|
+
Loader
|
79
|
+
.with(*loaders)
|
80
|
+
.load(path || paths)
|
81
|
+
|
82
|
+
add_texts(texts: texts)
|
83
|
+
end
|
84
|
+
|
85
|
+
attr_reader :loaders
|
86
|
+
|
87
|
+
def add_loader(*loaders)
|
88
|
+
loaders.each { |loader| @loaders << loader }
|
89
|
+
end
|
59
90
|
end
|
60
91
|
end
|
@@ -0,0 +1,105 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Vectorsearch
|
4
|
+
class Chroma < Base
|
5
|
+
# Initialize the Chroma client
|
6
|
+
# @param url [String] The URL of the Qdrant server
|
7
|
+
# @param api_key [String] The API key to use
|
8
|
+
# @param index_name [String] The name of the index to use
|
9
|
+
# @param llm [Symbol] The LLM to use
|
10
|
+
# @param llm_api_key [String] The API key for the LLM
|
11
|
+
def initialize(url:, index_name:, llm:, llm_api_key:, api_key: nil)
|
12
|
+
depends_on "chroma-db"
|
13
|
+
require "chroma-db"
|
14
|
+
|
15
|
+
::Chroma.connect_host = url
|
16
|
+
::Chroma.logger = Langchain.logger
|
17
|
+
::Chroma.log_level = Langchain.logger.level
|
18
|
+
|
19
|
+
@index_name = index_name
|
20
|
+
|
21
|
+
super(llm: llm, llm_api_key: llm_api_key)
|
22
|
+
end
|
23
|
+
|
24
|
+
# Add a list of texts to the index
|
25
|
+
# @param texts [Array] The list of texts to add
|
26
|
+
# @return [Hash] The response from the server
|
27
|
+
def add_texts(texts:)
|
28
|
+
embeddings = Array(texts).map do |text|
|
29
|
+
::Chroma::Resources::Embedding.new(
|
30
|
+
# TODO: Add support for passing your own IDs
|
31
|
+
id: SecureRandom.uuid,
|
32
|
+
embedding: llm_client.embed(text: text),
|
33
|
+
# TODO: Add support for passing metadata
|
34
|
+
metadata: [], # metadatas[index],
|
35
|
+
document: text # Do we actually need to store the whole original document?
|
36
|
+
)
|
37
|
+
end
|
38
|
+
|
39
|
+
collection = ::Chroma::Resources::Collection.get(index_name)
|
40
|
+
collection.add(embeddings)
|
41
|
+
end
|
42
|
+
|
43
|
+
# Create the collection with the default schema
|
44
|
+
# @return [Hash] The response from the server
|
45
|
+
def create_default_schema
|
46
|
+
::Chroma::Resources::Collection.create(index_name)
|
47
|
+
end
|
48
|
+
|
49
|
+
# Search for similar texts
|
50
|
+
# @param query [String] The text to search for
|
51
|
+
# @param k [Integer] The number of results to return
|
52
|
+
# @return [Chroma::Resources::Embedding] The response from the server
|
53
|
+
def similarity_search(
|
54
|
+
query:,
|
55
|
+
k: 4
|
56
|
+
)
|
57
|
+
embedding = llm_client.embed(text: query)
|
58
|
+
|
59
|
+
similarity_search_by_vector(
|
60
|
+
embedding: embedding,
|
61
|
+
k: k
|
62
|
+
)
|
63
|
+
end
|
64
|
+
|
65
|
+
# Search for similar texts by embedding
|
66
|
+
# @param embedding [Array] The embedding to search for
|
67
|
+
# @param k [Integer] The number of results to return
|
68
|
+
# @return [Chroma::Resources::Embedding] The response from the server
|
69
|
+
def similarity_search_by_vector(
|
70
|
+
embedding:,
|
71
|
+
k: 4
|
72
|
+
)
|
73
|
+
# Requesting more results than the number of documents in the collection currently throws an error in Chroma DB
|
74
|
+
# Temporary fix inspired by this comment: https://github.com/chroma-core/chroma/issues/301#issuecomment-1520494512
|
75
|
+
count = collection.count
|
76
|
+
n_results = [count, k].min
|
77
|
+
|
78
|
+
collection.query(query_embeddings: [embedding], results: n_results)
|
79
|
+
end
|
80
|
+
|
81
|
+
# Ask a question and return the answer
|
82
|
+
# @param question [String] The question to ask
|
83
|
+
# @return [String] The answer to the question
|
84
|
+
def ask(question:)
|
85
|
+
search_results = similarity_search(query: question)
|
86
|
+
|
87
|
+
context = search_results.map do |result|
|
88
|
+
result.document
|
89
|
+
end
|
90
|
+
|
91
|
+
context = context.join("\n---\n")
|
92
|
+
|
93
|
+
prompt = generate_prompt(question: question, context: context)
|
94
|
+
|
95
|
+
llm_client.chat(prompt: prompt)
|
96
|
+
end
|
97
|
+
|
98
|
+
private
|
99
|
+
|
100
|
+
# @return [Chroma::Resources::Collection] The collection
|
101
|
+
def collection
|
102
|
+
@collection ||= ::Chroma::Resources::Collection.get(index_name)
|
103
|
+
end
|
104
|
+
end
|
105
|
+
end
|
data/lib/vectorsearch/milvus.rb
CHANGED
@@ -15,16 +15,16 @@ module Vectorsearch
|
|
15
15
|
def add_texts(texts:)
|
16
16
|
client.entities.insert(
|
17
17
|
collection_name: index_name,
|
18
|
-
num_rows: texts.
|
18
|
+
num_rows: Array(texts).size,
|
19
19
|
fields_data: [
|
20
20
|
{
|
21
21
|
field_name: "content",
|
22
22
|
type: ::Milvus::DATA_TYPES["varchar"],
|
23
|
-
field: texts
|
23
|
+
field: Array(texts)
|
24
24
|
}, {
|
25
25
|
field_name: "vectors",
|
26
26
|
type: ::Milvus::DATA_TYPES["binary_vector"],
|
27
|
-
field: texts.map { |text|
|
27
|
+
field: Array(texts).map { |text| llm_client.embed(text: text) }
|
28
28
|
}
|
29
29
|
]
|
30
30
|
)
|
@@ -69,7 +69,7 @@ module Vectorsearch
|
|
69
69
|
end
|
70
70
|
|
71
71
|
def similarity_search(query:, k: 4)
|
72
|
-
embedding =
|
72
|
+
embedding = llm_client.embed(text: query)
|
73
73
|
|
74
74
|
similarity_search_by_vector(
|
75
75
|
embedding: embedding,
|
@@ -88,9 +88,5 @@ module Vectorsearch
|
|
88
88
|
metric_type: "L2"
|
89
89
|
)
|
90
90
|
end
|
91
|
-
|
92
|
-
def ask(question:)
|
93
|
-
raise NotImplementedError
|
94
|
-
end
|
95
91
|
end
|
96
92
|
end
|
@@ -32,7 +32,7 @@ module Vectorsearch
|
|
32
32
|
# TODO: Allows passing in your own IDs
|
33
33
|
id: SecureRandom.uuid,
|
34
34
|
metadata: {content: text},
|
35
|
-
values:
|
35
|
+
values: llm_client.embed(text: text)
|
36
36
|
}
|
37
37
|
end
|
38
38
|
|
@@ -59,7 +59,7 @@ module Vectorsearch
|
|
59
59
|
query:,
|
60
60
|
k: 4
|
61
61
|
)
|
62
|
-
embedding =
|
62
|
+
embedding = llm_client.embed(text: query)
|
63
63
|
|
64
64
|
similarity_search_by_vector(
|
65
65
|
embedding: embedding,
|
@@ -96,7 +96,7 @@ module Vectorsearch
|
|
96
96
|
|
97
97
|
prompt = generate_prompt(question: question, context: context)
|
98
98
|
|
99
|
-
|
99
|
+
llm_client.chat(prompt: prompt)
|
100
100
|
end
|
101
101
|
end
|
102
102
|
end
|
data/lib/vectorsearch/qdrant.rb
CHANGED
@@ -27,9 +27,9 @@ module Vectorsearch
|
|
27
27
|
def add_texts(texts:)
|
28
28
|
batch = {ids: [], vectors: [], payloads: []}
|
29
29
|
|
30
|
-
texts.each do |text|
|
30
|
+
Array(texts).each do |text|
|
31
31
|
batch[:ids].push(SecureRandom.uuid)
|
32
|
-
batch[:vectors].push(
|
32
|
+
batch[:vectors].push(llm_client.embed(text: text))
|
33
33
|
batch[:payloads].push({content: text})
|
34
34
|
end
|
35
35
|
|
@@ -59,7 +59,7 @@ module Vectorsearch
|
|
59
59
|
query:,
|
60
60
|
k: 4
|
61
61
|
)
|
62
|
-
embedding =
|
62
|
+
embedding = llm_client.embed(text: query)
|
63
63
|
|
64
64
|
similarity_search_by_vector(
|
65
65
|
embedding: embedding,
|
@@ -96,7 +96,7 @@ module Vectorsearch
|
|
96
96
|
|
97
97
|
prompt = generate_prompt(question: question, context: context)
|
98
98
|
|
99
|
-
|
99
|
+
llm_client.chat(prompt: prompt)
|
100
100
|
end
|
101
101
|
end
|
102
102
|
end
|
@@ -27,7 +27,7 @@ module Vectorsearch
|
|
27
27
|
# @param texts [Array] The list of texts to add
|
28
28
|
# @return [Hash] The response from the server
|
29
29
|
def add_texts(texts:)
|
30
|
-
objects = texts.map do |text|
|
30
|
+
objects = Array(texts).map do |text|
|
31
31
|
{
|
32
32
|
class: index_name,
|
33
33
|
properties: {content: text}
|
@@ -113,7 +113,7 @@ module Vectorsearch
|
|
113
113
|
|
114
114
|
prompt = generate_prompt(question: question, context: context)
|
115
115
|
|
116
|
-
|
116
|
+
llm_client.chat(prompt: prompt)
|
117
117
|
end
|
118
118
|
end
|
119
119
|
end
|
data/lib/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.3.
|
4
|
+
version: 0.3.8
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-05-
|
11
|
+
date: 2023-05-20 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: dotenv-rails
|
@@ -52,6 +52,20 @@ dependencies:
|
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
54
|
version: 0.9.3
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: chroma-db
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: 0.3.0
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: 0.3.0
|
55
69
|
- !ruby/object:Gem::Dependency
|
56
70
|
name: eqn
|
57
71
|
requirement: !ruby/object:Gem::Requirement
|
@@ -108,6 +122,20 @@ dependencies:
|
|
108
122
|
- - "~>"
|
109
123
|
- !ruby/object:Gem::Version
|
110
124
|
version: 0.9.0
|
125
|
+
- !ruby/object:Gem::Dependency
|
126
|
+
name: pdf-reader
|
127
|
+
requirement: !ruby/object:Gem::Requirement
|
128
|
+
requirements:
|
129
|
+
- - "~>"
|
130
|
+
- !ruby/object:Gem::Version
|
131
|
+
version: '1.4'
|
132
|
+
type: :development
|
133
|
+
prerelease: false
|
134
|
+
version_requirements: !ruby/object:Gem::Requirement
|
135
|
+
requirements:
|
136
|
+
- - "~>"
|
137
|
+
- !ruby/object:Gem::Version
|
138
|
+
version: '1.4'
|
111
139
|
- !ruby/object:Gem::Dependency
|
112
140
|
name: pinecone
|
113
141
|
requirement: !ruby/object:Gem::Requirement
|
@@ -185,6 +213,7 @@ executables: []
|
|
185
213
|
extensions: []
|
186
214
|
extra_rdoc_files: []
|
187
215
|
files:
|
216
|
+
- ".env.example"
|
188
217
|
- ".rspec"
|
189
218
|
- CHANGELOG.md
|
190
219
|
- Gemfile
|
@@ -192,9 +221,9 @@ files:
|
|
192
221
|
- LICENSE.txt
|
193
222
|
- README.md
|
194
223
|
- Rakefile
|
195
|
-
- examples/.keep
|
196
224
|
- examples/create_and_manage_few_shot_prompt_templates.rb
|
197
225
|
- examples/create_and_manage_prompt_templates.rb
|
226
|
+
- examples/pdf_store_and_query_with_chroma.rb
|
198
227
|
- examples/store_and_query_with_pinecone.rb
|
199
228
|
- examples/store_and_query_with_qdrant.rb
|
200
229
|
- examples/store_and_query_with_weaviate.rb
|
@@ -207,7 +236,10 @@ files:
|
|
207
236
|
- lib/llm/cohere.rb
|
208
237
|
- lib/llm/hugging_face.rb
|
209
238
|
- lib/llm/openai.rb
|
210
|
-
- lib/
|
239
|
+
- lib/loader.rb
|
240
|
+
- lib/loaders/base.rb
|
241
|
+
- lib/loaders/pdf.rb
|
242
|
+
- lib/loaders/text.rb
|
211
243
|
- lib/prompt/base.rb
|
212
244
|
- lib/prompt/few_shot_prompt_template.rb
|
213
245
|
- lib/prompt/loading.rb
|
@@ -217,6 +249,7 @@ files:
|
|
217
249
|
- lib/tool/serp_api.rb
|
218
250
|
- lib/tool/wikipedia.rb
|
219
251
|
- lib/vectorsearch/base.rb
|
252
|
+
- lib/vectorsearch/chroma.rb
|
220
253
|
- lib/vectorsearch/milvus.rb
|
221
254
|
- lib/vectorsearch/pinecone.rb
|
222
255
|
- lib/vectorsearch/qdrant.rb
|
data/examples/.keep
DELETED
File without changes
|
data/lib/logging.rb
DELETED
@@ -1,13 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require "logger"
|
4
|
-
|
5
|
-
module Langchain
|
6
|
-
def self.logger
|
7
|
-
@@logger ||= Logger.new($stdout, level: :warn, formatter: ->(severity, datetime, progname, msg) { "[LangChain.rb] #{msg}\n" })
|
8
|
-
end
|
9
|
-
|
10
|
-
def self.logger=(instance)
|
11
|
-
@@logger = instance
|
12
|
-
end
|
13
|
-
end
|