langchainrb 0.3.15 → 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/Gemfile.lock +8 -1
- data/README.md +20 -20
- data/lib/{agent → langchain/agent}/base.rb +1 -1
- data/lib/{agent → langchain/agent}/chain_of_thought_agent/chain_of_thought_agent.rb +10 -10
- data/lib/{llm → langchain/llm}/base.rb +3 -3
- data/lib/{llm → langchain/llm}/cohere.rb +1 -1
- data/lib/{llm → langchain/llm}/google_palm.rb +3 -3
- data/lib/{llm → langchain/llm}/hugging_face.rb +1 -1
- data/lib/{llm → langchain/llm}/openai.rb +18 -6
- data/lib/{llm → langchain/llm}/replicate.rb +3 -3
- data/lib/{prompt → langchain/prompt}/base.rb +2 -2
- data/lib/{prompt → langchain/prompt}/few_shot_prompt_template.rb +1 -1
- data/lib/{prompt → langchain/prompt}/loading.rb +3 -3
- data/lib/{prompt → langchain/prompt}/prompt_template.rb +1 -1
- data/lib/{tool → langchain/tool}/base.rb +5 -5
- data/lib/{tool → langchain/tool}/calculator.rb +2 -2
- data/lib/{tool → langchain/tool}/serp_api.rb +1 -1
- data/lib/{tool → langchain/tool}/wikipedia.rb +1 -1
- data/lib/langchain/utils/token_length_validator.rb +57 -0
- data/lib/{vectorsearch → langchain/vectorsearch}/base.rb +5 -5
- data/lib/{vectorsearch → langchain/vectorsearch}/chroma.rb +1 -1
- data/lib/{vectorsearch → langchain/vectorsearch}/milvus.rb +1 -1
- data/lib/{vectorsearch → langchain/vectorsearch}/pgvector.rb +15 -4
- data/lib/{vectorsearch → langchain/vectorsearch}/pinecone.rb +1 -1
- data/lib/{vectorsearch → langchain/vectorsearch}/qdrant.rb +1 -1
- data/lib/{vectorsearch → langchain/vectorsearch}/weaviate.rb +1 -1
- data/lib/langchain.rb +39 -34
- data/lib/version.rb +1 -1
- metadata +43 -28
- /data/lib/{agent → langchain/agent}/chain_of_thought_agent/chain_of_thought_agent_prompt.json +0 -0
- /data/lib/{llm → langchain/llm}/prompts/summarize_template.json +0 -0
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ce8728ec2208577809174e154642db161121cb9dd49e0ec5d190d080e68b1d78
|
4
|
+
data.tar.gz: bb0e0ccc4558ca849549f495a4adfacc5f7851c786869974afdaef29f0cde3ca
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: b2b4c27e31d730563aeca70a0aa3c4cf129e69773e34f397ba057faa8298a4368c1b9f66f925188f867f1feb47b4e07f77df702fa7c6cb76ad1e1a8464b895f6
|
7
|
+
data.tar.gz: 55dd3fbc21e2cdf9bd84afcd6bb4de0f72c960dec0c6b1d2efff1f9492b3d5c7399f2d14c323597045e64eafb6f2f20992348d640317c64721fb0556f8a64126
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,10 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.4.0] - 2023-06-01
|
4
|
+
- [BREAKING] Everything is namespaced under `Langchain::` now
|
5
|
+
- Pgvector similarity search uses the cosine distance by default now
|
6
|
+
- OpenAI token length validation using tiktoken_ruby
|
7
|
+
|
3
8
|
## [0.3.15] - 2023-05-30
|
4
9
|
- Drop Ruby 2.7 support. It had reached EOD.
|
5
10
|
- Bump pgvector-ruby to 0.2
|
data/Gemfile.lock
CHANGED
@@ -1,7 +1,8 @@
|
|
1
1
|
PATH
|
2
2
|
remote: .
|
3
3
|
specs:
|
4
|
-
langchainrb (0.
|
4
|
+
langchainrb (0.4.0)
|
5
|
+
tiktoken_ruby (~> 0.0.5)
|
5
6
|
|
6
7
|
GEM
|
7
8
|
remote: https://rubygems.org/
|
@@ -205,6 +206,7 @@ GEM
|
|
205
206
|
zeitwerk (~> 2.5)
|
206
207
|
rainbow (3.1.1)
|
207
208
|
rake (13.0.6)
|
209
|
+
rb_sys (0.9.78)
|
208
210
|
regexp_parser (2.8.0)
|
209
211
|
replicate-ruby (0.2.2)
|
210
212
|
addressable
|
@@ -262,6 +264,11 @@ GEM
|
|
262
264
|
standardrb (1.0.1)
|
263
265
|
standard
|
264
266
|
thor (1.2.1)
|
267
|
+
tiktoken_ruby (0.0.5)
|
268
|
+
rb_sys (~> 0.9.68)
|
269
|
+
tiktoken_ruby (0.0.5-arm64-darwin)
|
270
|
+
tiktoken_ruby (0.0.5-x86_64-darwin)
|
271
|
+
tiktoken_ruby (0.0.5-x86_64-linux)
|
265
272
|
treetop (1.6.12)
|
266
273
|
polyglot (~> 0.3)
|
267
274
|
ttfunk (1.7.0)
|
data/README.md
CHANGED
@@ -44,7 +44,7 @@ Add `gem "weaviate-ruby", "~> 0.8.0"` to your Gemfile.
|
|
44
44
|
|
45
45
|
Pick the vector search database you'll be using and instantiate the client:
|
46
46
|
```ruby
|
47
|
-
client = Vectorsearch::Weaviate.new(
|
47
|
+
client = Langchain::Vectorsearch::Weaviate.new(
|
48
48
|
url: ENV["WEAVIATE_URL"],
|
49
49
|
api_key: ENV["WEAVIATE_API_KEY"],
|
50
50
|
llm: :openai, # or :cohere
|
@@ -52,10 +52,10 @@ client = Vectorsearch::Weaviate.new(
|
|
52
52
|
)
|
53
53
|
|
54
54
|
# You can instantiate any other supported vector search database:
|
55
|
-
client = Vectorsearch::Milvus.new(...) # `gem "milvus", "~> 0.9.0"`
|
56
|
-
client = Vectorsearch::Qdrant.new(...) # `gem"qdrant-ruby", "~> 0.9.0"`
|
57
|
-
client = Vectorsearch::Pinecone.new(...) # `gem "pinecone", "~> 0.1.6"`
|
58
|
-
client = Vectorsearch::Chroma.new(...) # `gem "chroma-db", "~> 0.3.0"`
|
55
|
+
client = Langchain::Vectorsearch::Milvus.new(...) # `gem "milvus", "~> 0.9.0"`
|
56
|
+
client = Langchain::Vectorsearch::Qdrant.new(...) # `gem"qdrant-ruby", "~> 0.9.0"`
|
57
|
+
client = Langchain::Vectorsearch::Pinecone.new(...) # `gem "pinecone", "~> 0.1.6"`
|
58
|
+
client = Langchain::Vectorsearch::Chroma.new(...) # `gem "chroma-db", "~> 0.3.0"`
|
59
59
|
```
|
60
60
|
|
61
61
|
```ruby
|
@@ -107,7 +107,7 @@ Add `gem "ruby-openai", "~> 4.0.0"` to your Gemfile.
|
|
107
107
|
|
108
108
|
#### OpenAI
|
109
109
|
```ruby
|
110
|
-
openai = LLM::OpenAI.new(api_key: ENV["OPENAI_API_KEY"])
|
110
|
+
openai = Langchain::LLM::OpenAI.new(api_key: ENV["OPENAI_API_KEY"])
|
111
111
|
```
|
112
112
|
```ruby
|
113
113
|
openai.embed(text: "foo bar")
|
@@ -120,7 +120,7 @@ openai.complete(prompt: "What is the meaning of life?")
|
|
120
120
|
Add `gem "cohere-ruby", "~> 0.9.3"` to your Gemfile.
|
121
121
|
|
122
122
|
```ruby
|
123
|
-
cohere = LLM::Cohere.new(api_key: ENV["COHERE_API_KEY"])
|
123
|
+
cohere = Langchain::LLM::Cohere.new(api_key: ENV["COHERE_API_KEY"])
|
124
124
|
```
|
125
125
|
```ruby
|
126
126
|
cohere.embed(text: "foo bar")
|
@@ -132,19 +132,19 @@ cohere.complete(prompt: "What is the meaning of life?")
|
|
132
132
|
#### HuggingFace
|
133
133
|
Add `gem "hugging-face", "~> 0.3.2"` to your Gemfile.
|
134
134
|
```ruby
|
135
|
-
cohere = LLM::HuggingFace.new(api_key: ENV["HUGGING_FACE_API_KEY"])
|
135
|
+
cohere = Langchain::LLM::HuggingFace.new(api_key: ENV["HUGGING_FACE_API_KEY"])
|
136
136
|
```
|
137
137
|
|
138
138
|
#### Replicate
|
139
139
|
Add `gem "replicate-ruby", "~> 0.2.2"` to your Gemfile.
|
140
140
|
```ruby
|
141
|
-
cohere = LLM::Replicate.new(api_key: ENV["REPLICATE_API_KEY"])
|
141
|
+
cohere = Langchain::LLM::Replicate.new(api_key: ENV["REPLICATE_API_KEY"])
|
142
142
|
```
|
143
143
|
|
144
144
|
#### Google PaLM (Pathways Language Model)
|
145
145
|
Add `"google_palm_api", "~> 0.1.0"` to your Gemfile.
|
146
146
|
```ruby
|
147
|
-
google_palm = LLM::GooglePalm.new(api_key: ENV["GOOGLE_PALM_API_KEY"])
|
147
|
+
google_palm = Langchain::LLM::GooglePalm.new(api_key: ENV["GOOGLE_PALM_API_KEY"])
|
148
148
|
```
|
149
149
|
|
150
150
|
### Using Prompts 📋
|
@@ -154,21 +154,21 @@ google_palm = LLM::GooglePalm.new(api_key: ENV["GOOGLE_PALM_API_KEY"])
|
|
154
154
|
Create a prompt with one input variable:
|
155
155
|
|
156
156
|
```ruby
|
157
|
-
prompt = Prompt::PromptTemplate.new(template: "Tell me a {adjective} joke.", input_variables: ["adjective"])
|
157
|
+
prompt = Langchain::Prompt::PromptTemplate.new(template: "Tell me a {adjective} joke.", input_variables: ["adjective"])
|
158
158
|
prompt.format(adjective: "funny") # "Tell me a funny joke."
|
159
159
|
```
|
160
160
|
|
161
161
|
Create a prompt with multiple input variables:
|
162
162
|
|
163
163
|
```ruby
|
164
|
-
prompt = Prompt::PromptTemplate.new(template: "Tell me a {adjective} joke about {content}.", input_variables: ["adjective", "content"])
|
164
|
+
prompt = Langchain::Prompt::PromptTemplate.new(template: "Tell me a {adjective} joke about {content}.", input_variables: ["adjective", "content"])
|
165
165
|
prompt.format(adjective: "funny", content: "chickens") # "Tell me a funny joke about chickens."
|
166
166
|
```
|
167
167
|
|
168
168
|
Creating a PromptTemplate using just a prompt and no input_variables:
|
169
169
|
|
170
170
|
```ruby
|
171
|
-
prompt = Prompt::PromptTemplate.from_template("Tell me a {adjective} joke about {content}.")
|
171
|
+
prompt = Langchain::Prompt::PromptTemplate.from_template("Tell me a {adjective} joke about {content}.")
|
172
172
|
prompt.input_variables # ["adjective", "content"]
|
173
173
|
prompt.format(adjective: "funny", content: "chickens") # "Tell me a funny joke about chickens."
|
174
174
|
```
|
@@ -182,7 +182,7 @@ prompt.save(file_path: "spec/fixtures/prompt/prompt_template.json")
|
|
182
182
|
Loading a new prompt template using a JSON file:
|
183
183
|
|
184
184
|
```ruby
|
185
|
-
prompt = Prompt.load_from_path(file_path: "spec/fixtures/prompt/prompt_template.json")
|
185
|
+
prompt = Langchain::Prompt.load_from_path(file_path: "spec/fixtures/prompt/prompt_template.json")
|
186
186
|
prompt.input_variables # ["adjective", "content"]
|
187
187
|
```
|
188
188
|
|
@@ -191,10 +191,10 @@ prompt.input_variables # ["adjective", "content"]
|
|
191
191
|
Create a prompt with a few shot examples:
|
192
192
|
|
193
193
|
```ruby
|
194
|
-
prompt = Prompt::FewShotPromptTemplate.new(
|
194
|
+
prompt = Langchain::Prompt::FewShotPromptTemplate.new(
|
195
195
|
prefix: "Write antonyms for the following words.",
|
196
196
|
suffix: "Input: {adjective}\nOutput:",
|
197
|
-
example_prompt: Prompt::PromptTemplate.new(
|
197
|
+
example_prompt: Langchain::Prompt::PromptTemplate.new(
|
198
198
|
input_variables: ["input", "output"],
|
199
199
|
template: "Input: {input}\nOutput: {output}"
|
200
200
|
),
|
@@ -228,7 +228,7 @@ prompt.save(file_path: "spec/fixtures/prompt/few_shot_prompt_template.json")
|
|
228
228
|
Loading a new prompt template using a JSON file:
|
229
229
|
|
230
230
|
```ruby
|
231
|
-
prompt = Prompt.load_from_path(file_path: "spec/fixtures/prompt/few_shot_prompt_template.json")
|
231
|
+
prompt = Langchain::Prompt.load_from_path(file_path: "spec/fixtures/prompt/few_shot_prompt_template.json")
|
232
232
|
prompt.prefix # "Write antonyms for the following words."
|
233
233
|
```
|
234
234
|
|
@@ -237,10 +237,10 @@ Agents are semi-autonomous bots that can respond to user questions and use avail
|
|
237
237
|
|
238
238
|
#### Chain-of-Thought Agent
|
239
239
|
|
240
|
-
Add `gem "openai
|
240
|
+
Add `gem "ruby-openai"`, `gem "eqn"`, and `gem "google_search_results"` to your Gemfile
|
241
241
|
|
242
242
|
```ruby
|
243
|
-
agent = Agent::ChainOfThoughtAgent.new(llm: :openai, llm_api_key: ENV["OPENAI_API_KEY"], tools: ['search', 'calculator'])
|
243
|
+
agent = Langchain::Agent::ChainOfThoughtAgent.new(llm: :openai, llm_api_key: ENV["OPENAI_API_KEY"], tools: ['search', 'calculator'])
|
244
244
|
|
245
245
|
agent.tools
|
246
246
|
# => ["search", "calculator"]
|
@@ -273,7 +273,7 @@ Need to read data from various sources? Load it up.
|
|
273
273
|
Just call `Langchan::Loader.load` with the path to the file or a URL you want to load.
|
274
274
|
|
275
275
|
```ruby
|
276
|
-
|
276
|
+
Langchain::Loader.load('/path/to/file.pdf')
|
277
277
|
```
|
278
278
|
|
279
279
|
or
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module Agent
|
3
|
+
module Langchain::Agent
|
4
4
|
class ChainOfThoughtAgent < Base
|
5
5
|
attr_reader :llm, :llm_api_key, :llm_client, :tools
|
6
6
|
|
@@ -11,14 +11,14 @@ module Agent
|
|
11
11
|
# @param tools [Array] The tools to use
|
12
12
|
# @return [ChainOfThoughtAgent] The Agent::ChainOfThoughtAgent instance
|
13
13
|
def initialize(llm:, llm_api_key:, tools: [])
|
14
|
-
LLM::Base.validate_llm!(llm: llm)
|
15
|
-
Tool::Base.validate_tools!(tools: tools)
|
14
|
+
Langchain::LLM::Base.validate_llm!(llm: llm)
|
15
|
+
Langchain::Tool::Base.validate_tools!(tools: tools)
|
16
16
|
|
17
17
|
@llm = llm
|
18
18
|
@llm_api_key = llm_api_key
|
19
19
|
@tools = tools
|
20
20
|
|
21
|
-
@llm_client = LLM.const_get(LLM::Base::LLMS.fetch(llm)).new(api_key: llm_api_key)
|
21
|
+
@llm_client = Langchain::LLM.const_get(Langchain::LLM::Base::LLMS.fetch(llm)).new(api_key: llm_api_key)
|
22
22
|
end
|
23
23
|
|
24
24
|
# Validate tools when they're re-assigned
|
@@ -26,7 +26,7 @@ module Agent
|
|
26
26
|
# @param value [Array] The tools to use
|
27
27
|
# @return [Array] The tools that will be used
|
28
28
|
def tools=(value)
|
29
|
-
Tool::Base.validate_tools!(tools: value)
|
29
|
+
Langchain::Tool::Base.validate_tools!(tools: value)
|
30
30
|
@tools = value
|
31
31
|
end
|
32
32
|
|
@@ -62,8 +62,8 @@ module Agent
|
|
62
62
|
Langchain.logger.info("Agent: Using the \"#{action}\" Tool with \"#{action_input}\"")
|
63
63
|
|
64
64
|
# Retrieve the Tool::[ToolName] class and call `execute`` with action_input as the input
|
65
|
-
result = Tool
|
66
|
-
.const_get(Tool::Base::TOOLS[action.strip])
|
65
|
+
result = Langchain::Tool
|
66
|
+
.const_get(Langchain::Tool::Base::TOOLS[action.strip])
|
67
67
|
.execute(input: action_input)
|
68
68
|
|
69
69
|
# Append the Observation to the prompt
|
@@ -91,7 +91,7 @@ module Agent
|
|
91
91
|
question: question,
|
92
92
|
tool_names: "[#{tools.join(", ")}]",
|
93
93
|
tools: tools.map do |tool|
|
94
|
-
"#{tool}: #{Tool.const_get(Tool::Base::TOOLS[tool]).const_get(:DESCRIPTION)}"
|
94
|
+
"#{tool}: #{Langchain::Tool.const_get(Langchain::Tool::Base::TOOLS[tool]).const_get(:DESCRIPTION)}"
|
95
95
|
end.join("\n")
|
96
96
|
)
|
97
97
|
end
|
@@ -99,8 +99,8 @@ module Agent
|
|
99
99
|
# Load the PromptTemplate from the JSON file
|
100
100
|
# @return [PromptTemplate] PromptTemplate instance
|
101
101
|
def prompt_template
|
102
|
-
@template ||= Prompt.load_from_path(
|
103
|
-
file_path: Langchain.root.join("agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json")
|
102
|
+
@template ||= Langchain::Prompt.load_from_path(
|
103
|
+
file_path: Langchain.root.join("langchain/agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json")
|
104
104
|
)
|
105
105
|
end
|
106
106
|
end
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module LLM
|
3
|
+
module Langchain::LLM
|
4
4
|
class Base
|
5
5
|
attr_reader :client
|
6
6
|
|
@@ -42,8 +42,8 @@ module LLM
|
|
42
42
|
# @param llm [Symbol] The LLM to use
|
43
43
|
def self.validate_llm!(llm:)
|
44
44
|
# TODO: Fix so this works when `llm` value is a string instead of a symbol
|
45
|
-
unless LLM::Base::LLMS.key?(llm)
|
46
|
-
raise ArgumentError, "LLM must be one of #{LLM::Base::LLMS.keys}"
|
45
|
+
unless Langchain::LLM::Base::LLMS.key?(llm)
|
46
|
+
raise ArgumentError, "LLM must be one of #{Langchain::LLM::Base::LLMS.keys}"
|
47
47
|
end
|
48
48
|
end
|
49
49
|
end
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module LLM
|
3
|
+
module Langchain::LLM
|
4
4
|
class GooglePalm < Base
|
5
5
|
# Wrapper around the Google PaLM (Pathways Language Model) APIs.
|
6
6
|
|
@@ -89,8 +89,8 @@ module LLM
|
|
89
89
|
# @return [String] The summarization
|
90
90
|
#
|
91
91
|
def summarize(text:)
|
92
|
-
prompt_template = Prompt.load_from_path(
|
93
|
-
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
92
|
+
prompt_template = Langchain::Prompt.load_from_path(
|
93
|
+
file_path: Langchain.root.join("langchain/llm/prompts/summarize_template.json")
|
94
94
|
)
|
95
95
|
prompt = prompt_template.format(text: text)
|
96
96
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module LLM
|
3
|
+
module Langchain::LLM
|
4
4
|
class OpenAI < Base
|
5
5
|
DEFAULTS = {
|
6
6
|
temperature: 0.0,
|
@@ -25,9 +25,13 @@ module LLM
|
|
25
25
|
# @return [Array] The embedding
|
26
26
|
#
|
27
27
|
def embed(text:)
|
28
|
+
model = DEFAULTS[:embeddings_model_name]
|
29
|
+
|
30
|
+
Langchain::Utils::TokenLengthValidator.validate!(text, model)
|
31
|
+
|
28
32
|
response = client.embeddings(
|
29
33
|
parameters: {
|
30
|
-
model:
|
34
|
+
model: model,
|
31
35
|
input: text
|
32
36
|
}
|
33
37
|
)
|
@@ -41,8 +45,12 @@ module LLM
|
|
41
45
|
# @return [String] The completion
|
42
46
|
#
|
43
47
|
def complete(prompt:, **params)
|
48
|
+
model = DEFAULTS[:completion_model_name]
|
49
|
+
|
50
|
+
Langchain::Utils::TokenLengthValidator.validate!(prompt, model)
|
51
|
+
|
44
52
|
default_params = {
|
45
|
-
model:
|
53
|
+
model: model,
|
46
54
|
temperature: DEFAULTS[:temperature],
|
47
55
|
prompt: prompt
|
48
56
|
}
|
@@ -64,8 +72,12 @@ module LLM
|
|
64
72
|
# @return [String] The chat completion
|
65
73
|
#
|
66
74
|
def chat(prompt:, **params)
|
75
|
+
model = DEFAULTS[:chat_completion_model_name]
|
76
|
+
|
77
|
+
Langchain::Utils::TokenLengthValidator.validate!(prompt, model)
|
78
|
+
|
67
79
|
default_params = {
|
68
|
-
model:
|
80
|
+
model: model,
|
69
81
|
temperature: DEFAULTS[:temperature],
|
70
82
|
# TODO: Figure out how to introduce persisted conversations
|
71
83
|
messages: [{role: "user", content: prompt}]
|
@@ -88,8 +100,8 @@ module LLM
|
|
88
100
|
# @return [String] The summary
|
89
101
|
#
|
90
102
|
def summarize(text:)
|
91
|
-
prompt_template = Prompt.load_from_path(
|
92
|
-
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
103
|
+
prompt_template = Langchain::Prompt.load_from_path(
|
104
|
+
file_path: Langchain.root.join("langchain/llm/prompts/summarize_template.json")
|
93
105
|
)
|
94
106
|
prompt = prompt_template.format(text: text)
|
95
107
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module LLM
|
3
|
+
module Langchain::LLM
|
4
4
|
class Replicate < Base
|
5
5
|
# Wrapper around Replicate.com LLM provider
|
6
6
|
# Use it directly:
|
@@ -89,8 +89,8 @@ module LLM
|
|
89
89
|
# @return [String] The summary
|
90
90
|
#
|
91
91
|
def summarize(text:)
|
92
|
-
prompt_template = Prompt.load_from_path(
|
93
|
-
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
92
|
+
prompt_template = Langchain::Prompt.load_from_path(
|
93
|
+
file_path: Langchain.root.join("langchain/llm/prompts/summarize_template.json")
|
94
94
|
)
|
95
95
|
prompt = prompt_template.format(text: text)
|
96
96
|
|
@@ -3,7 +3,7 @@
|
|
3
3
|
require "strscan"
|
4
4
|
require "json"
|
5
5
|
|
6
|
-
module Prompt
|
6
|
+
module Langchain::Prompt
|
7
7
|
class Base
|
8
8
|
def format(**kwargs)
|
9
9
|
raise NotImplementedError
|
@@ -29,7 +29,7 @@ module Prompt
|
|
29
29
|
#
|
30
30
|
def validate(template:, input_variables:)
|
31
31
|
input_variables_set = @input_variables.uniq
|
32
|
-
variables_from_template = Prompt::Base.extract_variables_from_template(template)
|
32
|
+
variables_from_template = Langchain::Prompt::Base.extract_variables_from_template(template)
|
33
33
|
|
34
34
|
missing_variables = variables_from_template - input_variables_set
|
35
35
|
extra_variables = input_variables_set - variables_from_template
|
@@ -3,10 +3,10 @@
|
|
3
3
|
require "strscan"
|
4
4
|
require "pathname"
|
5
5
|
|
6
|
-
module Prompt
|
6
|
+
module Langchain::Prompt
|
7
7
|
TYPE_TO_LOADER = {
|
8
|
-
"prompt" => ->(config) {
|
9
|
-
"few_shot" => ->(config) {
|
8
|
+
"prompt" => ->(config) { load_prompt(config) },
|
9
|
+
"few_shot" => ->(config) { load_few_shot_prompt(config) }
|
10
10
|
}
|
11
11
|
|
12
12
|
class << self
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module Tool
|
3
|
+
module Langchain::Tool
|
4
4
|
class Base
|
5
5
|
# How to add additional Tools?
|
6
6
|
# 1. Create a new file in lib/tool/your_tool_name.rb
|
@@ -10,9 +10,9 @@ module Tool
|
|
10
10
|
# 4. Add your tool to the README.md
|
11
11
|
|
12
12
|
TOOLS = {
|
13
|
-
"calculator" => "Tool::Calculator",
|
14
|
-
"search" => "Tool::SerpApi",
|
15
|
-
"wikipedia" => "Tool::Wikipedia"
|
13
|
+
"calculator" => "Langchain::Tool::Calculator",
|
14
|
+
"search" => "Langchain::Tool::SerpApi",
|
15
|
+
"wikipedia" => "Langchain::Tool::Wikipedia"
|
16
16
|
}
|
17
17
|
|
18
18
|
def self.description(value)
|
@@ -40,7 +40,7 @@ module Tool
|
|
40
40
|
# @raise [ArgumentError] If any of the tools are not supported
|
41
41
|
#
|
42
42
|
def self.validate_tools!(tools:)
|
43
|
-
unrecognized_tools = tools - Tool::Base::TOOLS.keys
|
43
|
+
unrecognized_tools = tools - Langchain::Tool::Base::TOOLS.keys
|
44
44
|
|
45
45
|
if unrecognized_tools.any?
|
46
46
|
raise ArgumentError, "Unrecognized Tools: #{unrecognized_tools}"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module Tool
|
3
|
+
module Langchain::Tool
|
4
4
|
class Calculator < Base
|
5
5
|
description <<~DESC
|
6
6
|
Useful for getting the result of a math expression.
|
@@ -22,7 +22,7 @@ module Tool
|
|
22
22
|
rescue Eqn::ParseError, Eqn::NoVariableValueError
|
23
23
|
# Sometimes the input is not a pure math expression, e.g: "12F in Celsius"
|
24
24
|
# We can use the google answer box to evaluate this expression
|
25
|
-
hash_results = Tool::SerpApi.execute_search(input: input)
|
25
|
+
hash_results = Langchain::Tool::SerpApi.execute_search(input: input)
|
26
26
|
hash_results.dig(:answer_box, :to)
|
27
27
|
end
|
28
28
|
end
|
@@ -0,0 +1,57 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "tiktoken_ruby"
|
4
|
+
|
5
|
+
module Langchain
|
6
|
+
module Utils
|
7
|
+
class TokenLimitExceeded < StandardError; end
|
8
|
+
|
9
|
+
class TokenLengthValidator
|
10
|
+
#
|
11
|
+
# This class is meant to validate the length of the text passed in to OpenAI's API.
|
12
|
+
# It is used to validate the token length before the API call is made
|
13
|
+
#
|
14
|
+
TOKEN_LIMITS = {
|
15
|
+
# Source:
|
16
|
+
# https://platform.openai.com/docs/api-reference/embeddings
|
17
|
+
# https://platform.openai.com/docs/models/gpt-4
|
18
|
+
"text-embedding-ada-002" => 8191,
|
19
|
+
"gpt-3.5-turbo" => 4096,
|
20
|
+
"gpt-3.5-turbo-0301" => 4096,
|
21
|
+
"text-davinci-003" => 4097,
|
22
|
+
"text-davinci-002" => 4097,
|
23
|
+
"code-davinci-002" => 8001,
|
24
|
+
"gpt-4" => 8192,
|
25
|
+
"gpt-4-0314" => 8192,
|
26
|
+
"gpt-4-32k" => 32768,
|
27
|
+
"gpt-4-32k-0314" => 32768,
|
28
|
+
"text-curie-001" => 2049,
|
29
|
+
"text-babbage-001" => 2049,
|
30
|
+
"text-ada-001" => 2049,
|
31
|
+
"davinci" => 2049,
|
32
|
+
"curie" => 2049,
|
33
|
+
"babbage" => 2049,
|
34
|
+
"ada" => 2049
|
35
|
+
}.freeze
|
36
|
+
|
37
|
+
#
|
38
|
+
# Validate the length of the text passed in to OpenAI's API
|
39
|
+
#
|
40
|
+
# @param text [String] The text to validate
|
41
|
+
# @param model_name [String] The model name to validate against
|
42
|
+
# @return [Boolean] Whether the text is valid or not
|
43
|
+
# @raise [TokenLimitExceeded] If the text is too long
|
44
|
+
#
|
45
|
+
def self.validate!(text, model_name)
|
46
|
+
encoder = Tiktoken.encoding_for_model(model_name)
|
47
|
+
token_length = encoder.encode(text).length
|
48
|
+
|
49
|
+
if token_length > TOKEN_LIMITS[model_name]
|
50
|
+
raise TokenLimitExceeded, "This model's maximum context length is #{TOKEN_LIMITS[model_name]} tokens, but the given text is #{token_length} tokens long."
|
51
|
+
end
|
52
|
+
|
53
|
+
true
|
54
|
+
end
|
55
|
+
end
|
56
|
+
end
|
57
|
+
end
|
@@ -2,7 +2,7 @@
|
|
2
2
|
|
3
3
|
require "forwardable"
|
4
4
|
|
5
|
-
module Vectorsearch
|
5
|
+
module Langchain::Vectorsearch
|
6
6
|
class Base
|
7
7
|
extend Forwardable
|
8
8
|
|
@@ -13,12 +13,12 @@ module Vectorsearch
|
|
13
13
|
# @param llm [Symbol] The LLM to use
|
14
14
|
# @param llm_api_key [String] The API key for the LLM
|
15
15
|
def initialize(llm:, llm_api_key:)
|
16
|
-
LLM::Base.validate_llm!(llm: llm)
|
16
|
+
Langchain::LLM::Base.validate_llm!(llm: llm)
|
17
17
|
|
18
18
|
@llm = llm
|
19
19
|
@llm_api_key = llm_api_key
|
20
20
|
|
21
|
-
@llm_client = LLM.const_get(LLM::Base::LLMS.fetch(llm)).new(api_key: llm_api_key)
|
21
|
+
@llm_client = Langchain::LLM.const_get(Langchain::LLM::Base::LLMS.fetch(llm)).new(api_key: llm_api_key)
|
22
22
|
end
|
23
23
|
|
24
24
|
# Method supported by Vectorsearch DB to create a default schema
|
@@ -51,10 +51,10 @@ module Vectorsearch
|
|
51
51
|
:default_dimension
|
52
52
|
|
53
53
|
def generate_prompt(question:, context:)
|
54
|
-
prompt_template = Prompt::FewShotPromptTemplate.new(
|
54
|
+
prompt_template = Langchain::Prompt::FewShotPromptTemplate.new(
|
55
55
|
prefix: "Context:",
|
56
56
|
suffix: "---\nQuestion: {question}\n---\nAnswer:",
|
57
|
-
example_prompt: Prompt::PromptTemplate.new(
|
57
|
+
example_prompt: Langchain::Prompt::PromptTemplate.new(
|
58
58
|
template: "{context}",
|
59
59
|
input_variables: ["context"]
|
60
60
|
),
|
@@ -1,8 +1,17 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
module Vectorsearch
|
3
|
+
module Langchain::Vectorsearch
|
4
4
|
# The PostgreSQL vector search adapter
|
5
5
|
class Pgvector < Base
|
6
|
+
# The operators supported by the PostgreSQL vector search adapter
|
7
|
+
OPERATORS = {
|
8
|
+
"cosine_distance" => "<=>",
|
9
|
+
"euclidean_distance" => "<->"
|
10
|
+
}
|
11
|
+
DEFAULT_OPERATOR = "cosine_distance"
|
12
|
+
|
13
|
+
attr_reader :operator, :quoted_table_name
|
14
|
+
|
6
15
|
# @param url [String] The URL of the PostgreSQL database
|
7
16
|
# @param index_name [String] The name of the table to use for the index
|
8
17
|
# @param llm [String] The URL of the Language Layer API
|
@@ -18,6 +27,8 @@ module Vectorsearch
|
|
18
27
|
@client.type_map_for_results = PG::BasicTypeMapForResults.new(@client, registry: registry)
|
19
28
|
|
20
29
|
@index_name = index_name
|
30
|
+
@quoted_table_name = @client.quote_ident(index_name)
|
31
|
+
@operator = OPERATORS[DEFAULT_OPERATOR]
|
21
32
|
|
22
33
|
super(llm: llm, llm_api_key: llm_api_key)
|
23
34
|
end
|
@@ -31,7 +42,7 @@ module Vectorsearch
|
|
31
42
|
end
|
32
43
|
values = texts.length.times.map { |i| "($#{2 * i + 1}, $#{2 * i + 2})" }.join(",")
|
33
44
|
client.exec_params(
|
34
|
-
"INSERT INTO #{
|
45
|
+
"INSERT INTO #{quoted_table_name} (content, vectors) VALUES #{values};",
|
35
46
|
data
|
36
47
|
)
|
37
48
|
end
|
@@ -42,7 +53,7 @@ module Vectorsearch
|
|
42
53
|
client.exec("CREATE EXTENSION IF NOT EXISTS vector;")
|
43
54
|
client.exec(
|
44
55
|
<<~SQL
|
45
|
-
CREATE TABLE IF NOT EXISTS #{
|
56
|
+
CREATE TABLE IF NOT EXISTS #{quoted_table_name} (
|
46
57
|
id serial PRIMARY KEY,
|
47
58
|
content TEXT,
|
48
59
|
vectors VECTOR(#{default_dimension})
|
@@ -73,7 +84,7 @@ module Vectorsearch
|
|
73
84
|
result = client.transaction do |conn|
|
74
85
|
conn.exec("SET LOCAL ivfflat.probes = 10;")
|
75
86
|
query = <<~SQL
|
76
|
-
SELECT id, content FROM #{
|
87
|
+
SELECT id, content FROM #{quoted_table_name} ORDER BY vectors #{operator} $1 ASC LIMIT $2;
|
77
88
|
SQL
|
78
89
|
conn.exec_params(query, [embedding, k])
|
79
90
|
end
|
data/lib/langchain.rb
CHANGED
@@ -5,6 +5,7 @@ require "pathname"
|
|
5
5
|
|
6
6
|
require_relative "./version"
|
7
7
|
require_relative "./dependency_helper"
|
8
|
+
|
8
9
|
module Langchain
|
9
10
|
class << self
|
10
11
|
attr_accessor :logger
|
@@ -19,6 +20,18 @@ module Langchain
|
|
19
20
|
autoload :Loader, "langchain/loader"
|
20
21
|
autoload :Data, "langchain/data"
|
21
22
|
|
23
|
+
module Agent
|
24
|
+
autoload :Base, "langchain/agent/base"
|
25
|
+
autoload :ChainOfThoughtAgent, "langchain/agent/chain_of_thought_agent/chain_of_thought_agent.rb"
|
26
|
+
end
|
27
|
+
|
28
|
+
module Tool
|
29
|
+
autoload :Base, "langchain/tool/base"
|
30
|
+
autoload :Calculator, "langchain/tool/calculator"
|
31
|
+
autoload :SerpApi, "langchain/tool/serp_api"
|
32
|
+
autoload :Wikipedia, "langchain/tool/wikipedia"
|
33
|
+
end
|
34
|
+
|
22
35
|
module Processors
|
23
36
|
autoload :Base, "langchain/processors/base"
|
24
37
|
autoload :CSV, "langchain/processors/csv"
|
@@ -29,43 +42,35 @@ module Langchain
|
|
29
42
|
autoload :PDF, "langchain/processors/pdf"
|
30
43
|
autoload :Text, "langchain/processors/text"
|
31
44
|
end
|
32
|
-
end
|
33
|
-
|
34
|
-
module Agent
|
35
|
-
autoload :Base, "agent/base"
|
36
|
-
autoload :ChainOfThoughtAgent, "agent/chain_of_thought_agent/chain_of_thought_agent.rb"
|
37
|
-
end
|
38
45
|
|
39
|
-
module
|
40
|
-
|
41
|
-
|
42
|
-
autoload :Milvus, "vectorsearch/milvus"
|
43
|
-
autoload :Pinecone, "vectorsearch/pinecone"
|
44
|
-
autoload :Pgvector, "vectorsearch/pgvector"
|
45
|
-
autoload :Qdrant, "vectorsearch/qdrant"
|
46
|
-
autoload :Weaviate, "vectorsearch/weaviate"
|
47
|
-
end
|
46
|
+
module Utils
|
47
|
+
autoload :TokenLengthValidator, "langchain/utils/token_length_validator"
|
48
|
+
end
|
48
49
|
|
49
|
-
module
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
50
|
+
module Vectorsearch
|
51
|
+
autoload :Base, "langchain/vectorsearch/base"
|
52
|
+
autoload :Chroma, "langchain/vectorsearch/chroma"
|
53
|
+
autoload :Milvus, "langchain/vectorsearch/milvus"
|
54
|
+
autoload :Pinecone, "langchain/vectorsearch/pinecone"
|
55
|
+
autoload :Pgvector, "langchain/vectorsearch/pgvector"
|
56
|
+
autoload :Qdrant, "langchain/vectorsearch/qdrant"
|
57
|
+
autoload :Weaviate, "langchain/vectorsearch/weaviate"
|
58
|
+
end
|
57
59
|
|
58
|
-
module
|
59
|
-
|
60
|
+
module LLM
|
61
|
+
autoload :Base, "langchain/llm/base"
|
62
|
+
autoload :Cohere, "langchain/llm/cohere"
|
63
|
+
autoload :GooglePalm, "langchain/llm/google_palm"
|
64
|
+
autoload :HuggingFace, "langchain/llm/hugging_face"
|
65
|
+
autoload :OpenAI, "langchain/llm/openai"
|
66
|
+
autoload :Replicate, "langchain/llm/replicate"
|
67
|
+
end
|
60
68
|
|
61
|
-
|
62
|
-
|
63
|
-
autoload :FewShotPromptTemplate, "prompt/few_shot_prompt_template"
|
64
|
-
end
|
69
|
+
module Prompt
|
70
|
+
require_relative "langchain/prompt/loading"
|
65
71
|
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
autoload :Wikipedia, "tool/wikipedia"
|
72
|
+
autoload :Base, "langchain/prompt/base"
|
73
|
+
autoload :PromptTemplate, "langchain/prompt/prompt_template"
|
74
|
+
autoload :FewShotPromptTemplate, "langchain/prompt/few_shot_prompt_template"
|
75
|
+
end
|
71
76
|
end
|
data/lib/version.rb
CHANGED
metadata
CHANGED
@@ -1,15 +1,29 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.4.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-06-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: tiktoken_ruby
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.0.5
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.0.5
|
13
27
|
- !ruby/object:Gem::Dependency
|
14
28
|
name: dotenv-rails
|
15
29
|
requirement: !ruby/object:Gem::Requirement
|
@@ -311,12 +325,19 @@ files:
|
|
311
325
|
- examples/store_and_query_with_pinecone.rb
|
312
326
|
- examples/store_and_query_with_qdrant.rb
|
313
327
|
- examples/store_and_query_with_weaviate.rb
|
314
|
-
- lib/agent/base.rb
|
315
|
-
- lib/agent/chain_of_thought_agent/chain_of_thought_agent.rb
|
316
|
-
- lib/agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json
|
317
328
|
- lib/dependency_helper.rb
|
318
329
|
- lib/langchain.rb
|
330
|
+
- lib/langchain/agent/base.rb
|
331
|
+
- lib/langchain/agent/chain_of_thought_agent/chain_of_thought_agent.rb
|
332
|
+
- lib/langchain/agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json
|
319
333
|
- lib/langchain/data.rb
|
334
|
+
- lib/langchain/llm/base.rb
|
335
|
+
- lib/langchain/llm/cohere.rb
|
336
|
+
- lib/langchain/llm/google_palm.rb
|
337
|
+
- lib/langchain/llm/hugging_face.rb
|
338
|
+
- lib/langchain/llm/openai.rb
|
339
|
+
- lib/langchain/llm/prompts/summarize_template.json
|
340
|
+
- lib/langchain/llm/replicate.rb
|
320
341
|
- lib/langchain/loader.rb
|
321
342
|
- lib/langchain/processors/base.rb
|
322
343
|
- lib/langchain/processors/csv.rb
|
@@ -326,29 +347,23 @@ files:
|
|
326
347
|
- lib/langchain/processors/jsonl.rb
|
327
348
|
- lib/langchain/processors/pdf.rb
|
328
349
|
- lib/langchain/processors/text.rb
|
350
|
+
- lib/langchain/prompt/base.rb
|
351
|
+
- lib/langchain/prompt/few_shot_prompt_template.rb
|
352
|
+
- lib/langchain/prompt/loading.rb
|
353
|
+
- lib/langchain/prompt/prompt_template.rb
|
354
|
+
- lib/langchain/tool/base.rb
|
355
|
+
- lib/langchain/tool/calculator.rb
|
356
|
+
- lib/langchain/tool/serp_api.rb
|
357
|
+
- lib/langchain/tool/wikipedia.rb
|
358
|
+
- lib/langchain/utils/token_length_validator.rb
|
359
|
+
- lib/langchain/vectorsearch/base.rb
|
360
|
+
- lib/langchain/vectorsearch/chroma.rb
|
361
|
+
- lib/langchain/vectorsearch/milvus.rb
|
362
|
+
- lib/langchain/vectorsearch/pgvector.rb
|
363
|
+
- lib/langchain/vectorsearch/pinecone.rb
|
364
|
+
- lib/langchain/vectorsearch/qdrant.rb
|
365
|
+
- lib/langchain/vectorsearch/weaviate.rb
|
329
366
|
- lib/langchainrb.rb
|
330
|
-
- lib/llm/base.rb
|
331
|
-
- lib/llm/cohere.rb
|
332
|
-
- lib/llm/google_palm.rb
|
333
|
-
- lib/llm/hugging_face.rb
|
334
|
-
- lib/llm/openai.rb
|
335
|
-
- lib/llm/prompts/summarize_template.json
|
336
|
-
- lib/llm/replicate.rb
|
337
|
-
- lib/prompt/base.rb
|
338
|
-
- lib/prompt/few_shot_prompt_template.rb
|
339
|
-
- lib/prompt/loading.rb
|
340
|
-
- lib/prompt/prompt_template.rb
|
341
|
-
- lib/tool/base.rb
|
342
|
-
- lib/tool/calculator.rb
|
343
|
-
- lib/tool/serp_api.rb
|
344
|
-
- lib/tool/wikipedia.rb
|
345
|
-
- lib/vectorsearch/base.rb
|
346
|
-
- lib/vectorsearch/chroma.rb
|
347
|
-
- lib/vectorsearch/milvus.rb
|
348
|
-
- lib/vectorsearch/pgvector.rb
|
349
|
-
- lib/vectorsearch/pinecone.rb
|
350
|
-
- lib/vectorsearch/qdrant.rb
|
351
|
-
- lib/vectorsearch/weaviate.rb
|
352
367
|
- lib/version.rb
|
353
368
|
- sig/langchain.rbs
|
354
369
|
homepage: https://rubygems.org/gems/langchainrb
|
@@ -373,7 +388,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
373
388
|
- !ruby/object:Gem::Version
|
374
389
|
version: '0'
|
375
390
|
requirements: []
|
376
|
-
rubygems_version: 3.3
|
391
|
+
rubygems_version: 3.2.3
|
377
392
|
signing_key:
|
378
393
|
specification_version: 4
|
379
394
|
summary: Build LLM-backed Ruby applications with Ruby's LangChain
|
/data/lib/{agent → langchain/agent}/chain_of_thought_agent/chain_of_thought_agent_prompt.json
RENAMED
File without changes
|
File without changes
|