langchainrb 0.19.0 → 0.19.2

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 89fdd6c82d689f6e7057133eab08ef8367e72e211d3a59df423ce26cd3b2c04d
4
- data.tar.gz: e77493aec62198a014b0296490779b18016407c1808de45020e25b63a8d42d17
3
+ metadata.gz: 86b8bd9a7b846fb7be528116984e3e6353ea36ee75f06ddae8872c9b70c8deee
4
+ data.tar.gz: 3cc860f9d448d5e7df4eef2ea7e136e2381f3aecee4ffd245ebd41df7b9bd650
5
5
  SHA512:
6
- metadata.gz: 9040755869f6cbf666f8ec1225b976d095a809915c533e8102b281bc8c66d4751e93abbef19a4c27d806e5abd9555690a4d89401e7d06c29d8e4e9b6252bff4f
7
- data.tar.gz: 23287eb713d76ed824e13e4b2e07e66f342a08177b39b7fa2d6fb85af25f3f0ed2bc898d6b1316c2859963526f7cf1e635c413a8786ae671399ff50b87697f82
6
+ metadata.gz: 55128bb86766b2fb3e852764603df1786df971f736328f115581666eb7779249b0236058edf31a53a8197929496b2d1d5f667c26e04ff759a6763028d892735a
7
+ data.tar.gz: '028c8049dd2d2642d4652dfe1df94d7f94a4acfadb5cf61e46b2ac82a392022eafde5e5be8820f3919c1ffe1c73693d56b09bf60fbcdb1e207ae3abcec5abaaa'
data/CHANGELOG.md CHANGED
@@ -4,13 +4,25 @@
4
4
  - [BREAKING]: A breaking change. After an upgrade, your app may need modifications to keep working correctly.
5
5
  - [FEATURE]: A non-breaking improvement to the app. Either introduces new functionality, or improves on an existing feature.
6
6
  - [BUGFIX]: Fixes a bug with a non-breaking change.
7
- - [COMPAT]: Compatibility improvements - changes to make Administrate more compatible with different dependency versions.
7
+ - [COMPAT]: Compatibility improvements - changes to make Langchain.rb more compatible with different dependency versions.
8
8
  - [OPTIM]: Optimization or performance increase.
9
9
  - [DOCS]: Documentation changes. No changes to the library's behavior.
10
10
  - [SECURITY]: A change which fixes a security vulnerability.
11
11
 
12
12
  ## [Unreleased]
13
13
 
14
+ ## [0.19.2] - 2024-11-26
15
+ - [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/884] Add `tool_execution_callback` to `Langchain::Assistant`, a callback function (proc, lambda) that is called right before a tool is executed
16
+
17
+ ## [0.19.1] - 2024-11-21
18
+ - [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/858] Assistant, when using Anthropic, now also accepts image_url in the message.
19
+ - [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/861] Clean up passing `max_tokens` to Anthropic constructor and chat method
20
+ - [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/849] Langchain::Assistant now works with AWS Bedrock-hosted Anthropic models
21
+ - [OPTIM] [https://github.com/patterns-ai-core/langchainrb/pull/867] Refactor `GoogleGeminiMessage#to_hash` and `OpenAIMessage#to_hash` methods.
22
+ - [OPTIM] [https://github.com/patterns-ai-core/langchainrb/pull/849] Simplify Langchain::LLM::AwsBedrock class
23
+ - [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/869] AnthropicMessage now correctly handles tool calls with content.
24
+ - [OPTIM] [https://github.com/patterns-ai-core/langchainrb/pull/870] Assistant, when using Ollama (e.g.: llava model), now also accepts image_url in the message.
25
+
14
26
  ## [0.19.0] - 2024-10-23
15
27
  - [BREAKING] [https://github.com/patterns-ai-core/langchainrb/pull/840] Rename `chat_completion_model_name` parameter to `chat_model` in Langchain::LLM parameters.
16
28
  - [BREAKING] [https://github.com/patterns-ai-core/langchainrb/pull/840] Rename `completion_model_name` parameter to `completion_model` in Langchain::LLM parameters.
@@ -19,6 +31,7 @@
19
31
  - [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/837] Fix bug when tool functions with no input variables are used with Langchain::LLM::Anthropic
20
32
  - [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/836] Fix bug when assistant.instructions = nil did not remove the system message
21
33
  - [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/838] Allow setting safety_settings: [] in default_options for Langchain::LLM::GoogleGemini and Langchain::LLM::GoogleVertexAI constructors
34
+ - [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/871] Allow passing in options hash to Ollama
22
35
 
23
36
  ## [0.18.0] - 2024-10-12
24
37
  - [BREAKING] Remove `Langchain::Assistant#clear_thread!` method
data/README.md CHANGED
@@ -133,7 +133,7 @@ messages = [
133
133
  { role: "system", content: "You are a helpful assistant." },
134
134
  { role: "user", content: "What's the weather like today?" }
135
135
  # Google Gemini and Google VertexAI expect messages in a different format:
136
- # { role: "user", parts: [{ text: "why is the sky blue?" }]
136
+ # { role: "user", parts: [{ text: "why is the sky blue?" }]}
137
137
  ]
138
138
  response = llm.chat(messages: messages)
139
139
  chat_completion = response.chat_completion
@@ -536,6 +536,13 @@ Note that streaming is not currently supported for all LLMs.
536
536
  * `tool_choice`: Specifies how tools should be selected. Default: "auto". A specific tool function name can be passed. This will force the Assistant to **always** use this function.
537
537
  * `parallel_tool_calls`: Whether to make multiple parallel tool calls. Default: true
538
538
  * `add_message_callback`: A callback function (proc, lambda) that is called when any message is added to the conversation (optional)
539
+ ```ruby
540
+ assistant.add_message_callback = -> (message) { puts "New message: #{message}" }
541
+ ```
542
+ * `tool_execution_callback`: A callback function (proc, lambda) that is called right before a tool is executed (optional)
543
+ ```ruby
544
+ assistant.tool_execution_callback = -> (tool_call_id, tool_name, method_name, tool_arguments) { puts "Executing tool_call_id: #{tool_call_id}, tool_name: #{tool_name}, method_name: #{method_name}, tool_arguments: #{tool_arguments}" }
545
+ ```
539
546
 
540
547
  ### Key Methods
541
548
  * `add_message`: Adds a user message to the messages array
@@ -558,7 +565,7 @@ Note that streaming is not currently supported for all LLMs.
558
565
  The Langchain::Assistant can be easily extended with custom tools by creating classes that `extend Langchain::ToolDefinition` module and implement required methods.
559
566
  ```ruby
560
567
  class MovieInfoTool
561
- include Langchain::ToolDefinition
568
+ extend Langchain::ToolDefinition
562
569
 
563
570
  define_function :search_movie, description: "MovieInfoTool: Search for a movie by title" do
564
571
  property :query, type: "string", description: "The movie title to search for", required: true
@@ -6,16 +6,17 @@ module Langchain
6
6
  # TODO: Fix the message truncation when context window is exceeded
7
7
  class Adapter
8
8
  def self.build(llm)
9
- case llm
10
- when Langchain::LLM::Anthropic
9
+ if llm.is_a?(Langchain::LLM::Anthropic)
11
10
  LLM::Adapters::Anthropic.new
12
- when Langchain::LLM::GoogleGemini, Langchain::LLM::GoogleVertexAI
11
+ elsif llm.is_a?(Langchain::LLM::AwsBedrock) && llm.defaults[:chat_model].include?("anthropic")
12
+ LLM::Adapters::AwsBedrockAnthropic.new
13
+ elsif llm.is_a?(Langchain::LLM::GoogleGemini) || llm.is_a?(Langchain::LLM::GoogleVertexAI)
13
14
  LLM::Adapters::GoogleGemini.new
14
- when Langchain::LLM::MistralAI
15
+ elsif llm.is_a?(Langchain::LLM::MistralAI)
15
16
  LLM::Adapters::MistralAI.new
16
- when Langchain::LLM::Ollama
17
+ elsif llm.is_a?(Langchain::LLM::Ollama)
17
18
  LLM::Adapters::Ollama.new
18
- when Langchain::LLM::OpenAI
19
+ elsif llm.is_a?(Langchain::LLM::OpenAI)
19
20
  LLM::Adapters::OpenAI.new
20
21
  else
21
22
  raise ArgumentError, "Unsupported LLM type: #{llm.class}"
@@ -38,9 +38,7 @@ module Langchain
38
38
  # @param tool_call_id [String] The tool call ID
39
39
  # @return [Messages::AnthropicMessage] The Anthropic message
40
40
  def build_message(role:, content: nil, image_url: nil, tool_calls: [], tool_call_id: nil)
41
- Langchain.logger.warn "WARNING: Image URL is not supported by Anthropic currently" if image_url
42
-
43
- Messages::AnthropicMessage.new(role: role, content: content, tool_calls: tool_calls, tool_call_id: tool_call_id)
41
+ Messages::AnthropicMessage.new(role: role, content: content, image_url: image_url, tool_calls: tool_calls, tool_call_id: tool_call_id)
44
42
  end
45
43
 
46
44
  # Extract the tool call information from the Anthropic tool call hash
@@ -0,0 +1,35 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Langchain
4
+ class Assistant
5
+ module LLM
6
+ module Adapters
7
+ class AwsBedrockAnthropic < Anthropic
8
+ private
9
+
10
+ # @param [String] choice
11
+ # @param [Boolean] _parallel_tool_calls
12
+ # @return [Hash]
13
+ def build_tool_choice(choice, _parallel_tool_calls)
14
+ # Aws Bedrock hosted Anthropic does not support parallel tool calls
15
+ Langchain.logger.warn "WARNING: parallel_tool_calls is not supported by AWS Bedrock Anthropic currently"
16
+
17
+ tool_choice_object = {}
18
+
19
+ case choice
20
+ when "auto"
21
+ tool_choice_object[:type] = "auto"
22
+ when "any"
23
+ tool_choice_object[:type] = "any"
24
+ else
25
+ tool_choice_object[:type] = "tool"
26
+ tool_choice_object[:name] = choice
27
+ end
28
+
29
+ tool_choice_object
30
+ end
31
+ end
32
+ end
33
+ end
34
+ end
35
+ end
@@ -39,9 +39,7 @@ module Langchain
39
39
  # @param tool_call_id [String] The tool call ID
40
40
  # @return [Messages::OllamaMessage] The Ollama message
41
41
  def build_message(role:, content: nil, image_url: nil, tool_calls: [], tool_call_id: nil)
42
- Langchain.logger.warn "WARNING: Image URL is not supported by Ollama currently" if image_url
43
-
44
- Messages::OllamaMessage.new(role: role, content: content, tool_calls: tool_calls, tool_call_id: tool_call_id)
42
+ Messages::OllamaMessage.new(role: role, content: content, image_url: image_url, tool_calls: tool_calls, tool_call_id: tool_call_id)
45
43
  end
46
44
 
47
45
  # Extract the tool call information from the OpenAI tool call hash
@@ -18,13 +18,20 @@ module Langchain
18
18
  # @param content [String] The content of the message
19
19
  # @param tool_calls [Array<Hash>] The tool calls made in the message
20
20
  # @param tool_call_id [String] The ID of the tool call
21
- def initialize(role:, content: nil, tool_calls: [], tool_call_id: nil)
21
+ def initialize(
22
+ role:,
23
+ content: nil,
24
+ image_url: nil,
25
+ tool_calls: [],
26
+ tool_call_id: nil
27
+ )
22
28
  raise ArgumentError, "Role must be one of #{ROLES.join(", ")}" unless ROLES.include?(role)
23
29
  raise ArgumentError, "Tool calls must be an array of hashes" unless tool_calls.is_a?(Array) && tool_calls.all? { |tool_call| tool_call.is_a?(Hash) }
24
30
 
25
31
  @role = role
26
32
  # Some Tools return content as a JSON hence `.to_s`
27
33
  @content = content.to_s
34
+ @image_url = image_url
28
35
  @tool_calls = tool_calls
29
36
  @tool_call_id = tool_call_id
30
37
  end
@@ -33,25 +40,84 @@ module Langchain
33
40
  #
34
41
  # @return [Hash] The message as an Anthropic API-compatible hash
35
42
  def to_hash
36
- {}.tap do |h|
37
- h[:role] = tool? ? "user" : role
38
-
39
- h[:content] = if tool?
40
- [
41
- {
42
- type: "tool_result",
43
- tool_use_id: tool_call_id,
44
- content: content
45
- }
46
- ]
47
- elsif tool_calls.any?
48
- tool_calls
49
- else
50
- content
51
- end
43
+ if assistant?
44
+ assistant_hash
45
+ elsif tool?
46
+ tool_hash
47
+ elsif user?
48
+ user_hash
52
49
  end
53
50
  end
54
51
 
52
+ # Convert the message to an Anthropic API-compatible hash
53
+ #
54
+ # @return [Hash] The message as an Anthropic API-compatible hash, with the role as "assistant"
55
+ def assistant_hash
56
+ {
57
+ role: "assistant",
58
+ content: [
59
+ {
60
+ type: "text",
61
+ text: content
62
+ }
63
+ ].concat(tool_calls)
64
+ }
65
+ end
66
+
67
+ # Convert the message to an Anthropic API-compatible hash
68
+ #
69
+ # @return [Hash] The message as an Anthropic API-compatible hash, with the role as "user"
70
+ def tool_hash
71
+ {
72
+ role: "user",
73
+ # TODO: Tool can also return images
74
+ # https://docs.anthropic.com/en/docs/build-with-claude/tool-use#handling-tool-use-and-tool-result-content-blocks
75
+ content: [
76
+ {
77
+ type: "tool_result",
78
+ tool_use_id: tool_call_id,
79
+ content: content
80
+ }
81
+ ]
82
+ }
83
+ end
84
+
85
+ # Convert the message to an Anthropic API-compatible hash
86
+ #
87
+ # @return [Hash] The message as an Anthropic API-compatible hash, with the role as "user"
88
+ def user_hash
89
+ {
90
+ role: "user",
91
+ content: build_content_array
92
+ }
93
+ end
94
+
95
+ # Builds the content value for the message hash
96
+ # @return [Array<Hash>] An array of content hashes
97
+ def build_content_array
98
+ content_details = []
99
+
100
+ if content && !content.empty?
101
+ content_details << {
102
+ type: "text",
103
+ text: content
104
+ }
105
+ end
106
+
107
+ if image
108
+ content_details << {
109
+ type: "image",
110
+ source: {
111
+ type: "base64",
112
+ data: image.base64,
113
+ media_type: image.mime_type
114
+ }
115
+ }
116
+ end
117
+
118
+ content_details
119
+ end
120
+
55
121
  # Check if the message is a tool call
56
122
  #
57
123
  # @return [Boolean] true/false whether this message is a tool call
@@ -50,6 +50,10 @@ module Langchain
50
50
  # TODO: Should we return :unknown or raise an error?
51
51
  :unknown
52
52
  end
53
+
54
+ def image
55
+ image_url ? Utils::ImageWrapper.new(image_url) : nil
56
+ end
53
57
  end
54
58
  end
55
59
  end
@@ -41,23 +41,12 @@ module Langchain
41
41
  #
42
42
  # @return [Hash] The message as a Google Gemini API-compatible hash
43
43
  def to_hash
44
- {}.tap do |h|
45
- h[:role] = role
46
- h[:parts] = if function?
47
- [{
48
- functionResponse: {
49
- name: tool_call_id,
50
- response: {
51
- name: tool_call_id,
52
- content: content
53
- }
54
- }
55
- }]
56
- elsif tool_calls.any?
57
- tool_calls
58
- else
59
- [{text: content}]
60
- end
44
+ if tool?
45
+ tool_hash
46
+ elsif model?
47
+ model_hash
48
+ elsif user?
49
+ user_hash
61
50
  end
62
51
  end
63
52
 
@@ -73,6 +62,13 @@ module Langchain
73
62
  function?
74
63
  end
75
64
 
65
+ # Check if the message is a user call
66
+ #
67
+ # @return [Boolean] true/false whether this message is a user call
68
+ def user?
69
+ role == "user"
70
+ end
71
+
76
72
  # Check if the message is a tool call
77
73
  #
78
74
  # @return [Boolean] true/false whether this message is a tool call
@@ -80,6 +76,51 @@ module Langchain
80
76
  role == "function"
81
77
  end
82
78
 
79
+ # Convert the message to an GoogleGemini API-compatible hash
80
+ # @return [Hash] The message as an GoogleGemini API-compatible hash, with the role as "model"
81
+ def model_hash
82
+ {
83
+ role: role,
84
+ parts: build_parts
85
+ }
86
+ end
87
+
88
+ # Convert the message to an GoogleGemini API-compatible hash
89
+ # @return [Hash] The message as an GoogleGemini API-compatible hash, with the role as "function"
90
+ def tool_hash
91
+ {
92
+ role: role,
93
+ parts: [{
94
+ functionResponse: {
95
+ name: tool_call_id,
96
+ response: {
97
+ name: tool_call_id,
98
+ content: content
99
+ }
100
+ }
101
+ }]
102
+ }
103
+ end
104
+
105
+ # Convert the message to an GoogleGemini API-compatible hash
106
+ # @return [Hash] The message as an GoogleGemini API-compatible hash, with the role as "user"
107
+ def user_hash
108
+ {
109
+ role: role,
110
+ parts: build_parts
111
+ }
112
+ end
113
+
114
+ # Builds the part value for the message hash
115
+ # @return [Array<Hash>] An array of content hashes of the text or of the tool calls if present
116
+ def build_parts
117
+ if tool_calls.any?
118
+ tool_calls
119
+ else
120
+ [{text: content}]
121
+ end
122
+ end
123
+
83
124
  # Check if the message came from an LLM
84
125
  #
85
126
  # @return [Boolean] true/false whether this message was produced by an LLM
@@ -18,15 +18,18 @@ module Langchain
18
18
  #
19
19
  # @param role [String] The role of the message
20
20
  # @param content [String] The content of the message
21
+ # @param image_url [String] The URL of the image to include in the message
21
22
  # @param tool_calls [Array<Hash>] The tool calls made in the message
22
23
  # @param tool_call_id [String] The ID of the tool call
23
- def initialize(role:, content: nil, tool_calls: [], tool_call_id: nil)
24
+ def initialize(role:, content: nil, image_url: nil, tool_calls: [], tool_call_id: nil)
24
25
  raise ArgumentError, "Role must be one of #{ROLES.join(", ")}" unless ROLES.include?(role)
25
26
  raise ArgumentError, "Tool calls must be an array of hashes" unless tool_calls.is_a?(Array) && tool_calls.all? { |tool_call| tool_call.is_a?(Hash) }
27
+ raise ArgumentError, "image_url must be a valid url" if image_url && !URI::DEFAULT_PARSER.make_regexp.match?(image_url)
26
28
 
27
29
  @role = role
28
30
  # Some Tools return content as a JSON hence `.to_s`
29
31
  @content = content.to_s
32
+ @image_url = image_url
30
33
  @tool_calls = tool_calls
31
34
  @tool_call_id = tool_call_id
32
35
  end
@@ -38,6 +41,7 @@ module Langchain
38
41
  {}.tap do |h|
39
42
  h[:role] = role
40
43
  h[:content] = content if content # Content is nil for tool calls
44
+ h[:images] = [image.base64] if image
41
45
  h[:tool_calls] = tool_calls if tool_calls.any?
42
46
  h[:tool_call_id] = tool_call_id if tool_call_id
43
47
  end
@@ -50,32 +50,14 @@ module Langchain
50
50
  #
51
51
  # @return [Hash] The message as an OpenAI API-compatible hash
52
52
  def to_hash
53
- {}.tap do |h|
54
- h[:role] = role
55
-
56
- if tool_calls.any?
57
- h[:tool_calls] = tool_calls
58
- else
59
- h[:tool_call_id] = tool_call_id if tool_call_id
60
-
61
- h[:content] = []
62
-
63
- if content && !content.empty?
64
- h[:content] << {
65
- type: "text",
66
- text: content
67
- }
68
- end
69
-
70
- if image_url
71
- h[:content] << {
72
- type: "image_url",
73
- image_url: {
74
- url: image_url
75
- }
76
- }
77
- end
78
- end
53
+ if assistant?
54
+ assistant_hash
55
+ elsif system?
56
+ system_hash
57
+ elsif tool?
58
+ tool_hash
59
+ elsif user?
60
+ user_hash
79
61
  end
80
62
  end
81
63
 
@@ -99,6 +81,76 @@ module Langchain
99
81
  def tool?
100
82
  role == "tool"
101
83
  end
84
+
85
+ def user?
86
+ role == "user"
87
+ end
88
+
89
+ # Convert the message to an OpenAI API-compatible hash
90
+ # @return [Hash] The message as an OpenAI API-compatible hash, with the role as "assistant"
91
+ def assistant_hash
92
+ if tool_calls.any?
93
+ {
94
+ role: "assistant",
95
+ tool_calls: tool_calls
96
+ }
97
+ else
98
+ {
99
+ role: "assistant",
100
+ content: build_content_array
101
+ }
102
+ end
103
+ end
104
+
105
+ # Convert the message to an OpenAI API-compatible hash
106
+ # @return [Hash] The message as an OpenAI API-compatible hash, with the role as "system"
107
+ def system_hash
108
+ {
109
+ role: "system",
110
+ content: build_content_array
111
+ }
112
+ end
113
+
114
+ # Convert the message to an OpenAI API-compatible hash
115
+ # @return [Hash] The message as an OpenAI API-compatible hash, with the role as "tool"
116
+ def tool_hash
117
+ {
118
+ role: "tool",
119
+ tool_call_id: tool_call_id,
120
+ content: build_content_array
121
+ }
122
+ end
123
+
124
+ # Convert the message to an OpenAI API-compatible hash
125
+ # @return [Hash] The message as an OpenAI API-compatible hash, with the role as "user"
126
+ def user_hash
127
+ {
128
+ role: "user",
129
+ content: build_content_array
130
+ }
131
+ end
132
+
133
+ # Builds the content value for the message hash
134
+ # @return [Array<Hash>] An array of content hashes, with keys :type and :text or :image_url.
135
+ def build_content_array
136
+ content_details = []
137
+ if content && !content.empty?
138
+ content_details << {
139
+ type: "text",
140
+ text: content
141
+ }
142
+ end
143
+
144
+ if image_url
145
+ content_details << {
146
+ type: "image_url",
147
+ image_url: {
148
+ url: image_url
149
+ }
150
+ }
151
+ end
152
+ content_details
153
+ end
102
154
  end
103
155
  end
104
156
  end
@@ -24,6 +24,7 @@ module Langchain
24
24
 
25
25
  attr_accessor :tools,
26
26
  :add_message_callback,
27
+ :tool_execution_callback,
27
28
  :parallel_tool_calls
28
29
 
29
30
  # Create a new assistant
@@ -35,6 +36,7 @@ module Langchain
35
36
  # @param parallel_tool_calls [Boolean] Whether or not to run tools in parallel
36
37
  # @param messages [Array<Langchain::Assistant::Messages::Base>] The messages
37
38
  # @param add_message_callback [Proc] A callback function (Proc or lambda) that is called when any message is added to the conversation
39
+ # @param tool_execution_callback [Proc] A callback function (Proc or lambda) that is called right before a tool function is executed
38
40
  def initialize(
39
41
  llm:,
40
42
  tools: [],
@@ -42,7 +44,9 @@ module Langchain
42
44
  tool_choice: "auto",
43
45
  parallel_tool_calls: true,
44
46
  messages: [],
47
+ # Callbacks
45
48
  add_message_callback: nil,
49
+ tool_execution_callback: nil,
46
50
  &block
47
51
  )
48
52
  unless tools.is_a?(Array) && tools.all? { |tool| tool.class.singleton_class.included_modules.include?(Langchain::ToolDefinition) }
@@ -52,11 +56,8 @@ module Langchain
52
56
  @llm = llm
53
57
  @llm_adapter = LLM::Adapter.build(llm)
54
58
 
55
- # TODO: Validate that it is, indeed, a Proc or lambda
56
- if !add_message_callback.nil? && !add_message_callback.respond_to?(:call)
57
- raise ArgumentError, "add_message_callback must be a callable object, like Proc or lambda"
58
- end
59
- @add_message_callback = add_message_callback
59
+ @add_message_callback = add_message_callback if validate_callback!("add_message_callback", add_message_callback)
60
+ @tool_execution_callback = tool_execution_callback if validate_callback!("tool_execution_callback", tool_execution_callback)
60
61
 
61
62
  self.messages = messages
62
63
  @tools = tools
@@ -353,16 +354,26 @@ module Langchain
353
354
  def run_tools(tool_calls)
354
355
  # Iterate over each function invocation and submit tool output
355
356
  tool_calls.each do |tool_call|
356
- tool_call_id, tool_name, method_name, tool_arguments = @llm_adapter.extract_tool_call_args(tool_call: tool_call)
357
+ run_tool(tool_call)
358
+ end
359
+ end
357
360
 
358
- tool_instance = tools.find do |t|
359
- t.class.tool_name == tool_name
360
- end or raise ArgumentError, "Tool: #{tool_name} not found in assistant.tools"
361
+ # Run the tool call
362
+ #
363
+ # @param tool_call [Hash] The tool call to run
364
+ # @return [Object] The result of the tool call
365
+ def run_tool(tool_call)
366
+ tool_call_id, tool_name, method_name, tool_arguments = @llm_adapter.extract_tool_call_args(tool_call: tool_call)
361
367
 
362
- output = tool_instance.send(method_name, **tool_arguments)
368
+ tool_instance = tools.find do |t|
369
+ t.class.tool_name == tool_name
370
+ end or raise ArgumentError, "Tool: #{tool_name} not found in assistant.tools"
363
371
 
364
- submit_tool_output(tool_call_id: tool_call_id, output: output)
365
- end
372
+ # Call the callback if set
373
+ tool_execution_callback.call(tool_call_id, tool_name, method_name, tool_arguments) if tool_execution_callback # rubocop:disable Style/SafeNavigation
374
+ output = tool_instance.send(method_name, **tool_arguments)
375
+
376
+ submit_tool_output(tool_call_id: tool_call_id, output: output)
366
377
  end
367
378
 
368
379
  # Build a message
@@ -392,5 +403,13 @@ module Langchain
392
403
  def available_tool_names
393
404
  llm_adapter.available_tool_names(tools)
394
405
  end
406
+
407
+ def validate_callback!(attr_name, callback)
408
+ if !callback.nil? && !callback.respond_to?(:call)
409
+ raise ArgumentError, "#{attr_name} must be a callable object, like Proc or lambda"
410
+ end
411
+
412
+ true
413
+ end
395
414
  end
396
415
  end
@@ -15,14 +15,14 @@ module Langchain::LLM
15
15
  temperature: 0.0,
16
16
  completion_model: "claude-2.1",
17
17
  chat_model: "claude-3-5-sonnet-20240620",
18
- max_tokens_to_sample: 256
18
+ max_tokens: 256
19
19
  }.freeze
20
20
 
21
21
  # Initialize an Anthropic LLM instance
22
22
  #
23
23
  # @param api_key [String] The API key to use
24
24
  # @param llm_options [Hash] Options to pass to the Anthropic client
25
- # @param default_options [Hash] Default options to use on every call to LLM, e.g.: { temperature:, completion_model:, chat_model:, max_tokens_to_sample: }
25
+ # @param default_options [Hash] Default options to use on every call to LLM, e.g.: { temperature:, completion_model:, chat_model:, max_tokens: }
26
26
  # @return [Langchain::LLM::Anthropic] Langchain::LLM::Anthropic instance
27
27
  def initialize(api_key:, llm_options: {}, default_options: {})
28
28
  depends_on "anthropic"
@@ -32,7 +32,7 @@ module Langchain::LLM
32
32
  chat_parameters.update(
33
33
  model: {default: @defaults[:chat_model]},
34
34
  temperature: {default: @defaults[:temperature]},
35
- max_tokens: {default: @defaults[:max_tokens_to_sample]},
35
+ max_tokens: {default: @defaults[:max_tokens]},
36
36
  metadata: {},
37
37
  system: {}
38
38
  )
@@ -55,7 +55,7 @@ module Langchain::LLM
55
55
  def complete(
56
56
  prompt:,
57
57
  model: @defaults[:completion_model],
58
- max_tokens_to_sample: @defaults[:max_tokens_to_sample],
58
+ max_tokens: @defaults[:max_tokens],
59
59
  stop_sequences: nil,
60
60
  temperature: @defaults[:temperature],
61
61
  top_p: nil,
@@ -64,12 +64,12 @@ module Langchain::LLM
64
64
  stream: nil
65
65
  )
66
66
  raise ArgumentError.new("model argument is required") if model.empty?
67
- raise ArgumentError.new("max_tokens_to_sample argument is required") if max_tokens_to_sample.nil?
67
+ raise ArgumentError.new("max_tokens argument is required") if max_tokens.nil?
68
68
 
69
69
  parameters = {
70
70
  model: model,
71
71
  prompt: prompt,
72
- max_tokens_to_sample: max_tokens_to_sample,
72
+ max_tokens_to_sample: max_tokens,
73
73
  temperature: temperature
74
74
  }
75
75
  parameters[:stop_sequences] = stop_sequences if stop_sequences
@@ -7,51 +7,40 @@ module Langchain::LLM
7
7
  # gem 'aws-sdk-bedrockruntime', '~> 1.1'
8
8
  #
9
9
  # Usage:
10
- # llm = Langchain::LLM::AwsBedrock.new(llm_options: {})
10
+ # llm = Langchain::LLM::AwsBedrock.new(default_options: {})
11
11
  #
12
12
  class AwsBedrock < Base
13
13
  DEFAULTS = {
14
- chat_model: "anthropic.claude-v2",
15
- completion_model: "anthropic.claude-v2",
14
+ chat_model: "anthropic.claude-3-5-sonnet-20240620-v1:0",
15
+ completion_model: "anthropic.claude-v2:1",
16
16
  embedding_model: "amazon.titan-embed-text-v1",
17
17
  max_tokens_to_sample: 300,
18
18
  temperature: 1,
19
19
  top_k: 250,
20
20
  top_p: 0.999,
21
21
  stop_sequences: ["\n\nHuman:"],
22
- anthropic_version: "bedrock-2023-05-31",
23
- return_likelihoods: "NONE",
24
- count_penalty: {
25
- scale: 0,
26
- apply_to_whitespaces: false,
27
- apply_to_punctuations: false,
28
- apply_to_numbers: false,
29
- apply_to_stopwords: false,
30
- apply_to_emojis: false
31
- },
32
- presence_penalty: {
33
- scale: 0,
34
- apply_to_whitespaces: false,
35
- apply_to_punctuations: false,
36
- apply_to_numbers: false,
37
- apply_to_stopwords: false,
38
- apply_to_emojis: false
39
- },
40
- frequency_penalty: {
41
- scale: 0,
42
- apply_to_whitespaces: false,
43
- apply_to_punctuations: false,
44
- apply_to_numbers: false,
45
- apply_to_stopwords: false,
46
- apply_to_emojis: false
47
- }
22
+ return_likelihoods: "NONE"
48
23
  }.freeze
49
24
 
50
25
  attr_reader :client, :defaults
51
26
 
52
- SUPPORTED_COMPLETION_PROVIDERS = %i[anthropic ai21 cohere meta].freeze
53
- SUPPORTED_CHAT_COMPLETION_PROVIDERS = %i[anthropic].freeze
54
- SUPPORTED_EMBEDDING_PROVIDERS = %i[amazon cohere].freeze
27
+ SUPPORTED_COMPLETION_PROVIDERS = %i[
28
+ anthropic
29
+ ai21
30
+ cohere
31
+ meta
32
+ ].freeze
33
+
34
+ SUPPORTED_CHAT_COMPLETION_PROVIDERS = %i[
35
+ anthropic
36
+ ai21
37
+ mistral
38
+ ].freeze
39
+
40
+ SUPPORTED_EMBEDDING_PROVIDERS = %i[
41
+ amazon
42
+ cohere
43
+ ].freeze
55
44
 
56
45
  def initialize(aws_client_options: {}, default_options: {})
57
46
  depends_on "aws-sdk-bedrockruntime", req: "aws-sdk-bedrockruntime"
@@ -64,8 +53,7 @@ module Langchain::LLM
64
53
  temperature: {},
65
54
  max_tokens: {default: @defaults[:max_tokens_to_sample]},
66
55
  metadata: {},
67
- system: {},
68
- anthropic_version: {default: "bedrock-2023-05-31"}
56
+ system: {}
69
57
  )
70
58
  chat_parameters.ignore(:n, :user)
71
59
  chat_parameters.remap(stop: :stop_sequences)
@@ -100,23 +88,25 @@ module Langchain::LLM
100
88
  # @param params extra parameters passed to Aws::BedrockRuntime::Client#invoke_model
101
89
  # @return [Langchain::LLM::AnthropicResponse], [Langchain::LLM::CohereResponse] or [Langchain::LLM::AI21Response] Response object
102
90
  #
103
- def complete(prompt:, **params)
104
- raise "Completion provider #{completion_provider} is not supported." unless SUPPORTED_COMPLETION_PROVIDERS.include?(completion_provider)
91
+ def complete(
92
+ prompt:,
93
+ model: @defaults[:completion_model],
94
+ **params
95
+ )
96
+ raise "Completion provider #{model} is not supported." unless SUPPORTED_COMPLETION_PROVIDERS.include?(provider_name(model))
105
97
 
106
- raise "Model #{@defaults[:completion_model]} only supports #chat." if @defaults[:completion_model].include?("claude-3")
107
-
108
- parameters = compose_parameters params
98
+ parameters = compose_parameters(params, model)
109
99
 
110
100
  parameters[:prompt] = wrap_prompt prompt
111
101
 
112
102
  response = client.invoke_model({
113
- model_id: @defaults[:completion_model],
103
+ model_id: model,
114
104
  body: parameters.to_json,
115
105
  content_type: "application/json",
116
106
  accept: "application/json"
117
107
  })
118
108
 
119
- parse_response response
109
+ parse_response(response, model)
120
110
  end
121
111
 
122
112
  # Generate a chat completion for a given prompt
@@ -137,10 +127,11 @@ module Langchain::LLM
137
127
  # @return [Langchain::LLM::AnthropicResponse] Response object
138
128
  def chat(params = {}, &block)
139
129
  parameters = chat_parameters.to_params(params)
130
+ parameters = compose_parameters(parameters, parameters[:model])
140
131
 
141
- raise ArgumentError.new("messages argument is required") if Array(parameters[:messages]).empty?
142
-
143
- raise "Model #{parameters[:model]} does not support chat completions." unless Langchain::LLM::AwsBedrock::SUPPORTED_CHAT_COMPLETION_PROVIDERS.include?(completion_provider)
132
+ unless SUPPORTED_CHAT_COMPLETION_PROVIDERS.include?(provider_name(parameters[:model]))
133
+ raise "Chat provider #{parameters[:model]} is not supported."
134
+ end
144
135
 
145
136
  if block
146
137
  response_chunks = []
@@ -168,12 +159,26 @@ module Langchain::LLM
168
159
  accept: "application/json"
169
160
  })
170
161
 
171
- parse_response response
162
+ parse_response(response, parameters[:model])
172
163
  end
173
164
  end
174
165
 
175
166
  private
176
167
 
168
+ def parse_model_id(model_id)
169
+ model_id
170
+ .gsub("us.", "") # Meta append "us." to their model ids
171
+ .split(".")
172
+ end
173
+
174
+ def provider_name(model_id)
175
+ parse_model_id(model_id).first.to_sym
176
+ end
177
+
178
+ def model_name(model_id)
179
+ parse_model_id(model_id).last
180
+ end
181
+
177
182
  def completion_provider
178
183
  @defaults[:completion_model].split(".").first.to_sym
179
184
  end
@@ -200,15 +205,17 @@ module Langchain::LLM
200
205
  end
201
206
  end
202
207
 
203
- def compose_parameters(params)
204
- if completion_provider == :anthropic
205
- compose_parameters_anthropic params
206
- elsif completion_provider == :cohere
207
- compose_parameters_cohere params
208
- elsif completion_provider == :ai21
209
- compose_parameters_ai21 params
210
- elsif completion_provider == :meta
211
- compose_parameters_meta params
208
+ def compose_parameters(params, model_id)
209
+ if provider_name(model_id) == :anthropic
210
+ compose_parameters_anthropic(params)
211
+ elsif provider_name(model_id) == :cohere
212
+ compose_parameters_cohere(params)
213
+ elsif provider_name(model_id) == :ai21
214
+ params
215
+ elsif provider_name(model_id) == :meta
216
+ params
217
+ elsif provider_name(model_id) == :mistral
218
+ params
212
219
  end
213
220
  end
214
221
 
@@ -220,15 +227,17 @@ module Langchain::LLM
220
227
  end
221
228
  end
222
229
 
223
- def parse_response(response)
224
- if completion_provider == :anthropic
230
+ def parse_response(response, model_id)
231
+ if provider_name(model_id) == :anthropic
225
232
  Langchain::LLM::AnthropicResponse.new(JSON.parse(response.body.string))
226
- elsif completion_provider == :cohere
233
+ elsif provider_name(model_id) == :cohere
227
234
  Langchain::LLM::CohereResponse.new(JSON.parse(response.body.string))
228
- elsif completion_provider == :ai21
235
+ elsif provider_name(model_id) == :ai21
229
236
  Langchain::LLM::AI21Response.new(JSON.parse(response.body.string, symbolize_names: true))
230
- elsif completion_provider == :meta
237
+ elsif provider_name(model_id) == :meta
231
238
  Langchain::LLM::AwsBedrockMetaResponse.new(JSON.parse(response.body.string))
239
+ elsif provider_name(model_id) == :mistral
240
+ Langchain::LLM::MistralAIResponse.new(JSON.parse(response.body.string))
232
241
  end
233
242
  end
234
243
 
@@ -276,61 +285,7 @@ module Langchain::LLM
276
285
  end
277
286
 
278
287
  def compose_parameters_anthropic(params)
279
- default_params = @defaults.merge(params)
280
-
281
- {
282
- max_tokens_to_sample: default_params[:max_tokens_to_sample],
283
- temperature: default_params[:temperature],
284
- top_k: default_params[:top_k],
285
- top_p: default_params[:top_p],
286
- stop_sequences: default_params[:stop_sequences],
287
- anthropic_version: default_params[:anthropic_version]
288
- }
289
- end
290
-
291
- def compose_parameters_ai21(params)
292
- default_params = @defaults.merge(params)
293
-
294
- {
295
- maxTokens: default_params[:max_tokens_to_sample],
296
- temperature: default_params[:temperature],
297
- topP: default_params[:top_p],
298
- stopSequences: default_params[:stop_sequences],
299
- countPenalty: {
300
- scale: default_params[:count_penalty][:scale],
301
- applyToWhitespaces: default_params[:count_penalty][:apply_to_whitespaces],
302
- applyToPunctuations: default_params[:count_penalty][:apply_to_punctuations],
303
- applyToNumbers: default_params[:count_penalty][:apply_to_numbers],
304
- applyToStopwords: default_params[:count_penalty][:apply_to_stopwords],
305
- applyToEmojis: default_params[:count_penalty][:apply_to_emojis]
306
- },
307
- presencePenalty: {
308
- scale: default_params[:presence_penalty][:scale],
309
- applyToWhitespaces: default_params[:presence_penalty][:apply_to_whitespaces],
310
- applyToPunctuations: default_params[:presence_penalty][:apply_to_punctuations],
311
- applyToNumbers: default_params[:presence_penalty][:apply_to_numbers],
312
- applyToStopwords: default_params[:presence_penalty][:apply_to_stopwords],
313
- applyToEmojis: default_params[:presence_penalty][:apply_to_emojis]
314
- },
315
- frequencyPenalty: {
316
- scale: default_params[:frequency_penalty][:scale],
317
- applyToWhitespaces: default_params[:frequency_penalty][:apply_to_whitespaces],
318
- applyToPunctuations: default_params[:frequency_penalty][:apply_to_punctuations],
319
- applyToNumbers: default_params[:frequency_penalty][:apply_to_numbers],
320
- applyToStopwords: default_params[:frequency_penalty][:apply_to_stopwords],
321
- applyToEmojis: default_params[:frequency_penalty][:apply_to_emojis]
322
- }
323
- }
324
- end
325
-
326
- def compose_parameters_meta(params)
327
- default_params = @defaults.merge(params)
328
-
329
- {
330
- temperature: default_params[:temperature],
331
- top_p: default_params[:top_p],
332
- max_gen_len: default_params[:max_tokens_to_sample]
333
- }
288
+ params.merge(anthropic_version: "bedrock-2023-05-31")
334
289
  end
335
290
 
336
291
  def response_from_chunks(chunks)
@@ -14,7 +14,8 @@ module Langchain::LLM
14
14
  temperature: 0.0,
15
15
  completion_model: "llama3.1",
16
16
  embedding_model: "llama3.1",
17
- chat_model: "llama3.1"
17
+ chat_model: "llama3.1",
18
+ options: {}
18
19
  }.freeze
19
20
 
20
21
  EMBEDDING_SIZES = {
@@ -45,7 +46,8 @@ module Langchain::LLM
45
46
  temperature: {default: @defaults[:temperature]},
46
47
  template: {},
47
48
  stream: {default: false},
48
- response_format: {default: @defaults[:response_format]}
49
+ response_format: {default: @defaults[:response_format]},
50
+ options: {default: @defaults[:options]}
49
51
  )
50
52
  chat_parameters.remap(response_format: :format)
51
53
  end
@@ -37,7 +37,10 @@ module Langchain::LLM::Parameters
37
37
  parallel_tool_calls: {},
38
38
 
39
39
  # Additional optional parameters
40
- logit_bias: {}
40
+ logit_bias: {},
41
+
42
+ # Additional llm options. Ollama only.
43
+ options: {}
41
44
  }
42
45
 
43
46
  def initialize(parameters: {})
@@ -9,5 +9,25 @@ module Langchain::LLM
9
9
  def completion
10
10
  completions.dig(0, :data, :text)
11
11
  end
12
+
13
+ def chat_completion
14
+ raw_response.dig(:choices, 0, :message, :content)
15
+ end
16
+
17
+ def prompt_tokens
18
+ raw_response.dig(:usage, :prompt_tokens).to_i
19
+ end
20
+
21
+ def completion_tokens
22
+ raw_response.dig(:usage, :completion_tokens).to_i
23
+ end
24
+
25
+ def total_tokens
26
+ raw_response.dig(:usage, :total_tokens).to_i
27
+ end
28
+
29
+ def role
30
+ raw_response.dig(:choices, 0, :message, :role)
31
+ end
12
32
  end
13
33
  end
@@ -0,0 +1,37 @@
1
+ # frozen_string_literal: true
2
+
3
+ require "open-uri"
4
+ require "base64"
5
+
6
+ module Langchain
7
+ module Utils
8
+ class ImageWrapper
9
+ attr_reader :image_url
10
+
11
+ def initialize(image_url)
12
+ @image_url = image_url
13
+ end
14
+
15
+ def base64
16
+ @base64 ||= begin
17
+ image_data = open_image.read
18
+ Base64.strict_encode64(image_data)
19
+ end
20
+ end
21
+
22
+ def mime_type
23
+ # TODO: Make it work with local files
24
+ open_image.meta["content-type"]
25
+ end
26
+
27
+ private
28
+
29
+ def open_image
30
+ # TODO: Make it work with local files
31
+ uri = URI.parse(image_url)
32
+ raise URI::InvalidURIError, "Invalid URL scheme" unless %w[http https].include?(uri.scheme)
33
+ @open_image ||= URI.open(image_url) # rubocop:disable Security/Open
34
+ end
35
+ end
36
+ end
37
+ end
@@ -1,5 +1,5 @@
1
1
  # frozen_string_literal: true
2
2
 
3
3
  module Langchain
4
- VERSION = "0.19.0"
4
+ VERSION = "0.19.2"
5
5
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: langchainrb
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.19.0
4
+ version: 0.19.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrei Bondarev
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2024-10-23 00:00:00.000000000 Z
11
+ date: 2024-11-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: baran
@@ -640,6 +640,7 @@ files:
640
640
  - lib/langchain/assistant.rb
641
641
  - lib/langchain/assistant/llm/adapter.rb
642
642
  - lib/langchain/assistant/llm/adapters/anthropic.rb
643
+ - lib/langchain/assistant/llm/adapters/aws_bedrock_anthropic.rb
643
644
  - lib/langchain/assistant/llm/adapters/base.rb
644
645
  - lib/langchain/assistant/llm/adapters/google_gemini.rb
645
646
  - lib/langchain/assistant/llm/adapters/mistral_ai.rb
@@ -736,6 +737,7 @@ files:
736
737
  - lib/langchain/tool_definition.rb
737
738
  - lib/langchain/utils/cosine_similarity.rb
738
739
  - lib/langchain/utils/hash_transformer.rb
740
+ - lib/langchain/utils/image_wrapper.rb
739
741
  - lib/langchain/utils/to_boolean.rb
740
742
  - lib/langchain/vectorsearch/base.rb
741
743
  - lib/langchain/vectorsearch/chroma.rb