langchainrb 0.18.0 → 0.19.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +20 -0
- data/README.md +2 -2
- data/lib/langchain/assistant/messages/anthropic_message.rb +6 -0
- data/lib/langchain/assistant/messages/google_gemini_message.rb +4 -4
- data/lib/langchain/assistant/messages/mistral_ai_message.rb +69 -24
- data/lib/langchain/assistant/messages/ollama_message.rb +4 -4
- data/lib/langchain/assistant.rb +2 -1
- data/lib/langchain/llm/anthropic.rb +5 -5
- data/lib/langchain/llm/aws_bedrock.rb +10 -10
- data/lib/langchain/llm/azure.rb +1 -1
- data/lib/langchain/llm/base.rb +1 -1
- data/lib/langchain/llm/cohere.rb +8 -8
- data/lib/langchain/llm/google_gemini.rb +5 -6
- data/lib/langchain/llm/google_vertex_ai.rb +6 -5
- data/lib/langchain/llm/hugging_face.rb +4 -4
- data/lib/langchain/llm/mistral_ai.rb +4 -4
- data/lib/langchain/llm/ollama.rb +7 -7
- data/lib/langchain/llm/openai.rb +6 -5
- data/lib/langchain/llm/replicate.rb +6 -6
- data/lib/langchain/tool_definition.rb +7 -0
- data/lib/langchain/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 89fdd6c82d689f6e7057133eab08ef8367e72e211d3a59df423ce26cd3b2c04d
|
4
|
+
data.tar.gz: e77493aec62198a014b0296490779b18016407c1808de45020e25b63a8d42d17
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9040755869f6cbf666f8ec1225b976d095a809915c533e8102b281bc8c66d4751e93abbef19a4c27d806e5abd9555690a4d89401e7d06c29d8e4e9b6252bff4f
|
7
|
+
data.tar.gz: 23287eb713d76ed824e13e4b2e07e66f342a08177b39b7fa2d6fb85af25f3f0ed2bc898d6b1316c2859963526f7cf1e635c413a8786ae671399ff50b87697f82
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,25 @@
|
|
1
|
+
# CHANGELOG
|
2
|
+
|
3
|
+
## Key
|
4
|
+
- [BREAKING]: A breaking change. After an upgrade, your app may need modifications to keep working correctly.
|
5
|
+
- [FEATURE]: A non-breaking improvement to the app. Either introduces new functionality, or improves on an existing feature.
|
6
|
+
- [BUGFIX]: Fixes a bug with a non-breaking change.
|
7
|
+
- [COMPAT]: Compatibility improvements - changes to make Administrate more compatible with different dependency versions.
|
8
|
+
- [OPTIM]: Optimization or performance increase.
|
9
|
+
- [DOCS]: Documentation changes. No changes to the library's behavior.
|
10
|
+
- [SECURITY]: A change which fixes a security vulnerability.
|
11
|
+
|
1
12
|
## [Unreleased]
|
2
13
|
|
14
|
+
## [0.19.0] - 2024-10-23
|
15
|
+
- [BREAKING] [https://github.com/patterns-ai-core/langchainrb/pull/840] Rename `chat_completion_model_name` parameter to `chat_model` in Langchain::LLM parameters.
|
16
|
+
- [BREAKING] [https://github.com/patterns-ai-core/langchainrb/pull/840] Rename `completion_model_name` parameter to `completion_model` in Langchain::LLM parameters.
|
17
|
+
- [BREAKING] [https://github.com/patterns-ai-core/langchainrb/pull/840] Rename `embeddings_model_name` parameter to `embedding_model` in Langchain::LLM parameters.
|
18
|
+
- [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/850/] Fix MistralAIMessage to handle "Tool" Output
|
19
|
+
- [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/837] Fix bug when tool functions with no input variables are used with Langchain::LLM::Anthropic
|
20
|
+
- [BUGFIX] [https://github.com/patterns-ai-core/langchainrb/pull/836] Fix bug when assistant.instructions = nil did not remove the system message
|
21
|
+
- [FEATURE] [https://github.com/patterns-ai-core/langchainrb/pull/838] Allow setting safety_settings: [] in default_options for Langchain::LLM::GoogleGemini and Langchain::LLM::GoogleVertexAI constructors
|
22
|
+
|
3
23
|
## [0.18.0] - 2024-10-12
|
4
24
|
- [BREAKING] Remove `Langchain::Assistant#clear_thread!` method
|
5
25
|
- [BREAKING] `Langchain::Messages::*` namespace had migrated to `Langchain::Assistant::Messages::*`
|
data/README.md
CHANGED
@@ -86,7 +86,7 @@ Most LLM classes can be initialized with an API key and optional default options
|
|
86
86
|
```ruby
|
87
87
|
llm = Langchain::LLM::OpenAI.new(
|
88
88
|
api_key: ENV["OPENAI_API_KEY"],
|
89
|
-
default_options: { temperature: 0.7,
|
89
|
+
default_options: { temperature: 0.7, chat_model: "gpt-4o" }
|
90
90
|
)
|
91
91
|
```
|
92
92
|
|
@@ -505,7 +505,7 @@ assistant.add_message_and_run!(content: "What's the latest news about AI?")
|
|
505
505
|
# Supply an image to the assistant
|
506
506
|
assistant.add_message_and_run!(
|
507
507
|
content: "Show me a picture of a cat",
|
508
|
-
|
508
|
+
image_url: "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
509
509
|
)
|
510
510
|
|
511
511
|
# Access the conversation thread
|
@@ -12,6 +12,12 @@ module Langchain
|
|
12
12
|
|
13
13
|
TOOL_ROLE = "tool_result"
|
14
14
|
|
15
|
+
# Initialize a new Anthropic message
|
16
|
+
#
|
17
|
+
# @param role [String] The role of the message
|
18
|
+
# @param content [String] The content of the message
|
19
|
+
# @param tool_calls [Array<Hash>] The tool calls made in the message
|
20
|
+
# @param tool_call_id [String] The ID of the tool call
|
15
21
|
def initialize(role:, content: nil, tool_calls: [], tool_call_id: nil)
|
16
22
|
raise ArgumentError, "Role must be one of #{ROLES.join(", ")}" unless ROLES.include?(role)
|
17
23
|
raise ArgumentError, "Tool calls must be an array of hashes" unless tool_calls.is_a?(Array) && tool_calls.all? { |tool_call| tool_call.is_a?(Hash) }
|
@@ -15,10 +15,10 @@ module Langchain
|
|
15
15
|
|
16
16
|
# Initialize a new Google Gemini message
|
17
17
|
#
|
18
|
-
# @param [String] The role of the message
|
19
|
-
# @param [String] The content of the message
|
20
|
-
# @param [Array<Hash>] The tool calls made in the message
|
21
|
-
# @param [String] The ID of the tool call
|
18
|
+
# @param role [String] The role of the message
|
19
|
+
# @param content [String] The content of the message
|
20
|
+
# @param tool_calls [Array<Hash>] The tool calls made in the message
|
21
|
+
# @param tool_call_id [String] The ID of the tool call
|
22
22
|
def initialize(role:, content: nil, tool_calls: [], tool_call_id: nil)
|
23
23
|
raise ArgumentError, "Role must be one of #{ROLES.join(", ")}" unless ROLES.include?(role)
|
24
24
|
raise ArgumentError, "Tool calls must be an array of hashes" unless tool_calls.is_a?(Array) && tool_calls.all? { |tool_call| tool_call.is_a?(Hash) }
|
@@ -45,30 +45,14 @@ module Langchain
|
|
45
45
|
#
|
46
46
|
# @return [Hash] The message as an MistralAI API-compatible hash
|
47
47
|
def to_hash
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
h[:content] = []
|
57
|
-
|
58
|
-
if content && !content.empty?
|
59
|
-
h[:content] << {
|
60
|
-
type: "text",
|
61
|
-
text: content
|
62
|
-
}
|
63
|
-
end
|
64
|
-
|
65
|
-
if image_url
|
66
|
-
h[:content] << {
|
67
|
-
type: "image_url",
|
68
|
-
image_url: image_url
|
69
|
-
}
|
70
|
-
end
|
71
|
-
end
|
48
|
+
if assistant?
|
49
|
+
assistant_hash
|
50
|
+
elsif system?
|
51
|
+
system_hash
|
52
|
+
elsif tool?
|
53
|
+
tool_hash
|
54
|
+
elsif user?
|
55
|
+
user_hash
|
72
56
|
end
|
73
57
|
end
|
74
58
|
|
@@ -92,6 +76,67 @@ module Langchain
|
|
92
76
|
def tool?
|
93
77
|
role == "tool"
|
94
78
|
end
|
79
|
+
|
80
|
+
# Convert the message to an MistralAI API-compatible hash
|
81
|
+
# @return [Hash] The message as an MistralAI API-compatible hash, with the role as "assistant"
|
82
|
+
def assistant_hash
|
83
|
+
{
|
84
|
+
role: "assistant",
|
85
|
+
content: content,
|
86
|
+
tool_calls: tool_calls,
|
87
|
+
prefix: false
|
88
|
+
}
|
89
|
+
end
|
90
|
+
|
91
|
+
# Convert the message to an MistralAI API-compatible hash
|
92
|
+
# @return [Hash] The message as an MistralAI API-compatible hash, with the role as "system"
|
93
|
+
def system_hash
|
94
|
+
{
|
95
|
+
role: "system",
|
96
|
+
content: build_content_array
|
97
|
+
}
|
98
|
+
end
|
99
|
+
|
100
|
+
# Convert the message to an MistralAI API-compatible hash
|
101
|
+
# @return [Hash] The message as an MistralAI API-compatible hash, with the role as "tool"
|
102
|
+
def tool_hash
|
103
|
+
{
|
104
|
+
role: "tool",
|
105
|
+
content: content,
|
106
|
+
tool_call_id: tool_call_id
|
107
|
+
}
|
108
|
+
end
|
109
|
+
|
110
|
+
# Convert the message to an MistralAI API-compatible hash
|
111
|
+
# @return [Hash] The message as an MistralAI API-compatible hash, with the role as "user"
|
112
|
+
def user_hash
|
113
|
+
{
|
114
|
+
role: "user",
|
115
|
+
content: build_content_array
|
116
|
+
}
|
117
|
+
end
|
118
|
+
|
119
|
+
# Builds the content value for the message hash
|
120
|
+
# @return [Array<Hash>] An array of content hashes, with keys :type and :text or :image_url.
|
121
|
+
def build_content_array
|
122
|
+
content_details = []
|
123
|
+
|
124
|
+
if content && !content.empty?
|
125
|
+
content_details << {
|
126
|
+
type: "text",
|
127
|
+
text: content
|
128
|
+
}
|
129
|
+
end
|
130
|
+
|
131
|
+
if image_url
|
132
|
+
content_details << {
|
133
|
+
type: "image_url",
|
134
|
+
image_url: image_url
|
135
|
+
}
|
136
|
+
end
|
137
|
+
|
138
|
+
content_details
|
139
|
+
end
|
95
140
|
end
|
96
141
|
end
|
97
142
|
end
|
@@ -16,10 +16,10 @@ module Langchain
|
|
16
16
|
|
17
17
|
# Initialize a new OpenAI message
|
18
18
|
#
|
19
|
-
# @param [String] The role of the message
|
20
|
-
# @param [String] The content of the message
|
21
|
-
# @param [Array<Hash>] The tool calls made in the message
|
22
|
-
# @param [String] The ID of the tool call
|
19
|
+
# @param role [String] The role of the message
|
20
|
+
# @param content [String] The content of the message
|
21
|
+
# @param tool_calls [Array<Hash>] The tool calls made in the message
|
22
|
+
# @param tool_call_id [String] The ID of the tool call
|
23
23
|
def initialize(role:, content: nil, tool_calls: [], tool_call_id: nil)
|
24
24
|
raise ArgumentError, "Role must be one of #{ROLES.join(", ")}" unless ROLES.include?(role)
|
25
25
|
raise ArgumentError, "Tool calls must be an array of hashes" unless tool_calls.is_a?(Array) && tool_calls.all? { |tool_call| tool_call.is_a?(Hash) }
|
data/lib/langchain/assistant.rb
CHANGED
@@ -196,7 +196,7 @@ module Langchain
|
|
196
196
|
|
197
197
|
if @llm_adapter.support_system_message?
|
198
198
|
# TODO: Should we still set a system message even if @instructions is "" or nil?
|
199
|
-
replace_system_message!(content: new_instructions)
|
199
|
+
replace_system_message!(content: new_instructions)
|
200
200
|
end
|
201
201
|
end
|
202
202
|
|
@@ -217,6 +217,7 @@ module Langchain
|
|
217
217
|
# @return [Array<Langchain::Message>] The messages
|
218
218
|
def replace_system_message!(content:)
|
219
219
|
messages.delete_if(&:system?)
|
220
|
+
return if content.nil?
|
220
221
|
|
221
222
|
message = build_message(role: "system", content: content)
|
222
223
|
messages.unshift(message)
|
@@ -13,8 +13,8 @@ module Langchain::LLM
|
|
13
13
|
class Anthropic < Base
|
14
14
|
DEFAULTS = {
|
15
15
|
temperature: 0.0,
|
16
|
-
|
17
|
-
|
16
|
+
completion_model: "claude-2.1",
|
17
|
+
chat_model: "claude-3-5-sonnet-20240620",
|
18
18
|
max_tokens_to_sample: 256
|
19
19
|
}.freeze
|
20
20
|
|
@@ -22,7 +22,7 @@ module Langchain::LLM
|
|
22
22
|
#
|
23
23
|
# @param api_key [String] The API key to use
|
24
24
|
# @param llm_options [Hash] Options to pass to the Anthropic client
|
25
|
-
# @param default_options [Hash] Default options to use on every call to LLM, e.g.: { temperature:,
|
25
|
+
# @param default_options [Hash] Default options to use on every call to LLM, e.g.: { temperature:, completion_model:, chat_model:, max_tokens_to_sample: }
|
26
26
|
# @return [Langchain::LLM::Anthropic] Langchain::LLM::Anthropic instance
|
27
27
|
def initialize(api_key:, llm_options: {}, default_options: {})
|
28
28
|
depends_on "anthropic"
|
@@ -30,7 +30,7 @@ module Langchain::LLM
|
|
30
30
|
@client = ::Anthropic::Client.new(access_token: api_key, **llm_options)
|
31
31
|
@defaults = DEFAULTS.merge(default_options)
|
32
32
|
chat_parameters.update(
|
33
|
-
model: {default: @defaults[:
|
33
|
+
model: {default: @defaults[:chat_model]},
|
34
34
|
temperature: {default: @defaults[:temperature]},
|
35
35
|
max_tokens: {default: @defaults[:max_tokens_to_sample]},
|
36
36
|
metadata: {},
|
@@ -54,7 +54,7 @@ module Langchain::LLM
|
|
54
54
|
# @return [Langchain::LLM::AnthropicResponse] The completion
|
55
55
|
def complete(
|
56
56
|
prompt:,
|
57
|
-
model: @defaults[:
|
57
|
+
model: @defaults[:completion_model],
|
58
58
|
max_tokens_to_sample: @defaults[:max_tokens_to_sample],
|
59
59
|
stop_sequences: nil,
|
60
60
|
temperature: @defaults[:temperature],
|
@@ -11,9 +11,9 @@ module Langchain::LLM
|
|
11
11
|
#
|
12
12
|
class AwsBedrock < Base
|
13
13
|
DEFAULTS = {
|
14
|
-
|
15
|
-
|
16
|
-
|
14
|
+
chat_model: "anthropic.claude-v2",
|
15
|
+
completion_model: "anthropic.claude-v2",
|
16
|
+
embedding_model: "amazon.titan-embed-text-v1",
|
17
17
|
max_tokens_to_sample: 300,
|
18
18
|
temperature: 1,
|
19
19
|
top_k: 250,
|
@@ -60,7 +60,7 @@ module Langchain::LLM
|
|
60
60
|
@defaults = DEFAULTS.merge(default_options)
|
61
61
|
|
62
62
|
chat_parameters.update(
|
63
|
-
model: {default: @defaults[:
|
63
|
+
model: {default: @defaults[:chat_model]},
|
64
64
|
temperature: {},
|
65
65
|
max_tokens: {default: @defaults[:max_tokens_to_sample]},
|
66
66
|
metadata: {},
|
@@ -84,7 +84,7 @@ module Langchain::LLM
|
|
84
84
|
parameters = compose_embedding_parameters params.merge(text:)
|
85
85
|
|
86
86
|
response = client.invoke_model({
|
87
|
-
model_id: @defaults[:
|
87
|
+
model_id: @defaults[:embedding_model],
|
88
88
|
body: parameters.to_json,
|
89
89
|
content_type: "application/json",
|
90
90
|
accept: "application/json"
|
@@ -103,14 +103,14 @@ module Langchain::LLM
|
|
103
103
|
def complete(prompt:, **params)
|
104
104
|
raise "Completion provider #{completion_provider} is not supported." unless SUPPORTED_COMPLETION_PROVIDERS.include?(completion_provider)
|
105
105
|
|
106
|
-
raise "Model #{@defaults[:
|
106
|
+
raise "Model #{@defaults[:completion_model]} only supports #chat." if @defaults[:completion_model].include?("claude-3")
|
107
107
|
|
108
108
|
parameters = compose_parameters params
|
109
109
|
|
110
110
|
parameters[:prompt] = wrap_prompt prompt
|
111
111
|
|
112
112
|
response = client.invoke_model({
|
113
|
-
model_id: @defaults[:
|
113
|
+
model_id: @defaults[:completion_model],
|
114
114
|
body: parameters.to_json,
|
115
115
|
content_type: "application/json",
|
116
116
|
accept: "application/json"
|
@@ -126,7 +126,7 @@ module Langchain::LLM
|
|
126
126
|
# @param [Hash] params unified chat parmeters from [Langchain::LLM::Parameters::Chat::SCHEMA]
|
127
127
|
# @option params [Array<String>] :messages The messages to generate a completion for
|
128
128
|
# @option params [String] :system The system prompt to provide instructions
|
129
|
-
# @option params [String] :model The model to use for completion defaults to @defaults[:
|
129
|
+
# @option params [String] :model The model to use for completion defaults to @defaults[:chat_model]
|
130
130
|
# @option params [Integer] :max_tokens The maximum number of tokens to generate defaults to @defaults[:max_tokens_to_sample]
|
131
131
|
# @option params [Array<String>] :stop The stop sequences to use for completion
|
132
132
|
# @option params [Array<String>] :stop_sequences The stop sequences to use for completion
|
@@ -175,11 +175,11 @@ module Langchain::LLM
|
|
175
175
|
private
|
176
176
|
|
177
177
|
def completion_provider
|
178
|
-
@defaults[:
|
178
|
+
@defaults[:completion_model].split(".").first.to_sym
|
179
179
|
end
|
180
180
|
|
181
181
|
def embedding_provider
|
182
|
-
@defaults[:
|
182
|
+
@defaults[:embedding_model].split(".").first.to_sym
|
183
183
|
end
|
184
184
|
|
185
185
|
def wrap_prompt(prompt)
|
data/lib/langchain/llm/azure.rb
CHANGED
@@ -33,7 +33,7 @@ module Langchain::LLM
|
|
33
33
|
)
|
34
34
|
@defaults = DEFAULTS.merge(default_options)
|
35
35
|
chat_parameters.update(
|
36
|
-
model: {default: @defaults[:
|
36
|
+
model: {default: @defaults[:chat_model]},
|
37
37
|
logprobs: {},
|
38
38
|
top_logprobs: {},
|
39
39
|
n: {default: @defaults[:n]},
|
data/lib/langchain/llm/base.rb
CHANGED
@@ -34,7 +34,7 @@ module Langchain::LLM
|
|
34
34
|
default_dimensions
|
35
35
|
end
|
36
36
|
|
37
|
-
# Returns the number of vector dimensions used by DEFAULTS[:
|
37
|
+
# Returns the number of vector dimensions used by DEFAULTS[:chat_model]
|
38
38
|
#
|
39
39
|
# @return [Integer] Vector dimensions
|
40
40
|
def default_dimensions
|
data/lib/langchain/llm/cohere.rb
CHANGED
@@ -13,9 +13,9 @@ module Langchain::LLM
|
|
13
13
|
class Cohere < Base
|
14
14
|
DEFAULTS = {
|
15
15
|
temperature: 0.0,
|
16
|
-
|
17
|
-
|
18
|
-
|
16
|
+
completion_model: "command",
|
17
|
+
chat_model: "command-r-plus",
|
18
|
+
embedding_model: "small",
|
19
19
|
dimensions: 1024,
|
20
20
|
truncate: "START"
|
21
21
|
}.freeze
|
@@ -26,7 +26,7 @@ module Langchain::LLM
|
|
26
26
|
@client = ::Cohere::Client.new(api_key: api_key)
|
27
27
|
@defaults = DEFAULTS.merge(default_options)
|
28
28
|
chat_parameters.update(
|
29
|
-
model: {default: @defaults[:
|
29
|
+
model: {default: @defaults[:chat_model]},
|
30
30
|
temperature: {default: @defaults[:temperature]},
|
31
31
|
response_format: {default: @defaults[:response_format]}
|
32
32
|
)
|
@@ -48,10 +48,10 @@ module Langchain::LLM
|
|
48
48
|
def embed(text:)
|
49
49
|
response = client.embed(
|
50
50
|
texts: [text],
|
51
|
-
model: @defaults[:
|
51
|
+
model: @defaults[:embedding_model]
|
52
52
|
)
|
53
53
|
|
54
|
-
Langchain::LLM::CohereResponse.new response, model: @defaults[:
|
54
|
+
Langchain::LLM::CohereResponse.new response, model: @defaults[:embedding_model]
|
55
55
|
end
|
56
56
|
|
57
57
|
#
|
@@ -65,7 +65,7 @@ module Langchain::LLM
|
|
65
65
|
default_params = {
|
66
66
|
prompt: prompt,
|
67
67
|
temperature: @defaults[:temperature],
|
68
|
-
model: @defaults[:
|
68
|
+
model: @defaults[:completion_model],
|
69
69
|
truncate: @defaults[:truncate]
|
70
70
|
}
|
71
71
|
|
@@ -76,7 +76,7 @@ module Langchain::LLM
|
|
76
76
|
default_params.merge!(params)
|
77
77
|
|
78
78
|
response = client.generate(**default_params)
|
79
|
-
Langchain::LLM::CohereResponse.new response, model: @defaults[:
|
79
|
+
Langchain::LLM::CohereResponse.new response, model: @defaults[:completion_model]
|
80
80
|
end
|
81
81
|
|
82
82
|
# Generate a chat completion for given messages
|
@@ -5,8 +5,8 @@ module Langchain::LLM
|
|
5
5
|
# llm = Langchain::LLM::GoogleGemini.new(api_key: ENV['GOOGLE_GEMINI_API_KEY'])
|
6
6
|
class GoogleGemini < Base
|
7
7
|
DEFAULTS = {
|
8
|
-
|
9
|
-
|
8
|
+
chat_model: "gemini-1.5-pro-latest",
|
9
|
+
embedding_model: "text-embedding-004",
|
10
10
|
temperature: 0.0
|
11
11
|
}
|
12
12
|
|
@@ -17,10 +17,10 @@ module Langchain::LLM
|
|
17
17
|
@defaults = DEFAULTS.merge(default_options)
|
18
18
|
|
19
19
|
chat_parameters.update(
|
20
|
-
model: {default: @defaults[:
|
20
|
+
model: {default: @defaults[:chat_model]},
|
21
21
|
temperature: {default: @defaults[:temperature]},
|
22
22
|
generation_config: {default: nil},
|
23
|
-
safety_settings: {default:
|
23
|
+
safety_settings: {default: @defaults[:safety_settings]}
|
24
24
|
)
|
25
25
|
chat_parameters.remap(
|
26
26
|
messages: :contents,
|
@@ -72,9 +72,8 @@ module Langchain::LLM
|
|
72
72
|
|
73
73
|
def embed(
|
74
74
|
text:,
|
75
|
-
model: @defaults[:
|
75
|
+
model: @defaults[:embedding_model]
|
76
76
|
)
|
77
|
-
|
78
77
|
params = {
|
79
78
|
content: {
|
80
79
|
parts: [
|
@@ -17,8 +17,8 @@ module Langchain::LLM
|
|
17
17
|
top_p: 0.8,
|
18
18
|
top_k: 40,
|
19
19
|
dimensions: 768,
|
20
|
-
|
21
|
-
|
20
|
+
embedding_model: "textembedding-gecko",
|
21
|
+
chat_model: "gemini-1.0-pro"
|
22
22
|
}.freeze
|
23
23
|
|
24
24
|
# Google Cloud has a project id and a specific region of deployment.
|
@@ -38,8 +38,9 @@ module Langchain::LLM
|
|
38
38
|
@defaults = DEFAULTS.merge(default_options)
|
39
39
|
|
40
40
|
chat_parameters.update(
|
41
|
-
model: {default: @defaults[:
|
42
|
-
temperature: {default: @defaults[:temperature]}
|
41
|
+
model: {default: @defaults[:chat_model]},
|
42
|
+
temperature: {default: @defaults[:temperature]},
|
43
|
+
safety_settings: {default: @defaults[:safety_settings]}
|
43
44
|
)
|
44
45
|
chat_parameters.remap(
|
45
46
|
messages: :contents,
|
@@ -57,7 +58,7 @@ module Langchain::LLM
|
|
57
58
|
#
|
58
59
|
def embed(
|
59
60
|
text:,
|
60
|
-
model: @defaults[:
|
61
|
+
model: @defaults[:embedding_model]
|
61
62
|
)
|
62
63
|
params = {instances: [{content: text}]}
|
63
64
|
|
@@ -12,7 +12,7 @@ module Langchain::LLM
|
|
12
12
|
#
|
13
13
|
class HuggingFace < Base
|
14
14
|
DEFAULTS = {
|
15
|
-
|
15
|
+
embedding_model: "sentence-transformers/all-MiniLM-L6-v2"
|
16
16
|
}.freeze
|
17
17
|
|
18
18
|
EMBEDDING_SIZES = {
|
@@ -36,7 +36,7 @@ module Langchain::LLM
|
|
36
36
|
def default_dimensions
|
37
37
|
# since Huggin Face can run multiple models, look it up or generate an embedding and return the size
|
38
38
|
@default_dimensions ||= @defaults[:dimensions] ||
|
39
|
-
EMBEDDING_SIZES.fetch(@defaults[:
|
39
|
+
EMBEDDING_SIZES.fetch(@defaults[:embedding_model].to_sym) do
|
40
40
|
embed(text: "test").embedding.size
|
41
41
|
end
|
42
42
|
end
|
@@ -50,9 +50,9 @@ module Langchain::LLM
|
|
50
50
|
def embed(text:)
|
51
51
|
response = client.embedding(
|
52
52
|
input: text,
|
53
|
-
model: @defaults[:
|
53
|
+
model: @defaults[:embedding_model]
|
54
54
|
)
|
55
|
-
Langchain::LLM::HuggingFaceResponse.new(response, model: @defaults[:
|
55
|
+
Langchain::LLM::HuggingFaceResponse.new(response, model: @defaults[:embedding_model])
|
56
56
|
end
|
57
57
|
end
|
58
58
|
end
|
@@ -8,8 +8,8 @@ module Langchain::LLM
|
|
8
8
|
# llm = Langchain::LLM::MistralAI.new(api_key: ENV["MISTRAL_AI_API_KEY"])
|
9
9
|
class MistralAI < Base
|
10
10
|
DEFAULTS = {
|
11
|
-
|
12
|
-
|
11
|
+
chat_model: "mistral-large-latest",
|
12
|
+
embedding_model: "mistral-embed"
|
13
13
|
}.freeze
|
14
14
|
|
15
15
|
attr_reader :defaults
|
@@ -24,7 +24,7 @@ module Langchain::LLM
|
|
24
24
|
|
25
25
|
@defaults = DEFAULTS.merge(default_options)
|
26
26
|
chat_parameters.update(
|
27
|
-
model: {default: @defaults[:
|
27
|
+
model: {default: @defaults[:chat_model]},
|
28
28
|
n: {default: @defaults[:n]},
|
29
29
|
safe_prompt: {},
|
30
30
|
temperature: {default: @defaults[:temperature]},
|
@@ -44,7 +44,7 @@ module Langchain::LLM
|
|
44
44
|
|
45
45
|
def embed(
|
46
46
|
text:,
|
47
|
-
model: defaults[:
|
47
|
+
model: defaults[:embedding_model],
|
48
48
|
encoding_format: nil
|
49
49
|
)
|
50
50
|
params = {
|
data/lib/langchain/llm/ollama.rb
CHANGED
@@ -12,9 +12,9 @@ module Langchain::LLM
|
|
12
12
|
|
13
13
|
DEFAULTS = {
|
14
14
|
temperature: 0.0,
|
15
|
-
|
16
|
-
|
17
|
-
|
15
|
+
completion_model: "llama3.1",
|
16
|
+
embedding_model: "llama3.1",
|
17
|
+
chat_model: "llama3.1"
|
18
18
|
}.freeze
|
19
19
|
|
20
20
|
EMBEDDING_SIZES = {
|
@@ -41,7 +41,7 @@ module Langchain::LLM
|
|
41
41
|
@api_key = api_key
|
42
42
|
@defaults = DEFAULTS.merge(default_options)
|
43
43
|
chat_parameters.update(
|
44
|
-
model: {default: @defaults[:
|
44
|
+
model: {default: @defaults[:chat_model]},
|
45
45
|
temperature: {default: @defaults[:temperature]},
|
46
46
|
template: {},
|
47
47
|
stream: {default: false},
|
@@ -55,7 +55,7 @@ module Langchain::LLM
|
|
55
55
|
def default_dimensions
|
56
56
|
# since Ollama can run multiple models, look it up or generate an embedding and return the size
|
57
57
|
@default_dimensions ||=
|
58
|
-
EMBEDDING_SIZES.fetch(defaults[:
|
58
|
+
EMBEDDING_SIZES.fetch(defaults[:embedding_model].to_sym) do
|
59
59
|
embed(text: "test").embedding.size
|
60
60
|
end
|
61
61
|
end
|
@@ -77,7 +77,7 @@ module Langchain::LLM
|
|
77
77
|
#
|
78
78
|
def complete(
|
79
79
|
prompt:,
|
80
|
-
model: defaults[:
|
80
|
+
model: defaults[:completion_model],
|
81
81
|
images: nil,
|
82
82
|
format: nil,
|
83
83
|
system: nil,
|
@@ -199,7 +199,7 @@ module Langchain::LLM
|
|
199
199
|
#
|
200
200
|
def embed(
|
201
201
|
text:,
|
202
|
-
model: defaults[:
|
202
|
+
model: defaults[:embedding_model],
|
203
203
|
mirostat: nil,
|
204
204
|
mirostat_eta: nil,
|
205
205
|
mirostat_tau: nil,
|
data/lib/langchain/llm/openai.rb
CHANGED
@@ -16,8 +16,8 @@ module Langchain::LLM
|
|
16
16
|
DEFAULTS = {
|
17
17
|
n: 1,
|
18
18
|
temperature: 0.0,
|
19
|
-
|
20
|
-
|
19
|
+
chat_model: "gpt-4o-mini",
|
20
|
+
embedding_model: "text-embedding-3-small"
|
21
21
|
}.freeze
|
22
22
|
|
23
23
|
EMBEDDING_SIZES = {
|
@@ -41,7 +41,7 @@ module Langchain::LLM
|
|
41
41
|
|
42
42
|
@defaults = DEFAULTS.merge(default_options)
|
43
43
|
chat_parameters.update(
|
44
|
-
model: {default: @defaults[:
|
44
|
+
model: {default: @defaults[:chat_model]},
|
45
45
|
logprobs: {},
|
46
46
|
top_logprobs: {},
|
47
47
|
n: {default: @defaults[:n]},
|
@@ -61,7 +61,7 @@ module Langchain::LLM
|
|
61
61
|
# @return [Langchain::LLM::OpenAIResponse] Response object
|
62
62
|
def embed(
|
63
63
|
text:,
|
64
|
-
model: defaults[:
|
64
|
+
model: defaults[:embedding_model],
|
65
65
|
encoding_format: nil,
|
66
66
|
user: nil,
|
67
67
|
dimensions: @defaults[:dimensions]
|
@@ -109,6 +109,7 @@ module Langchain::LLM
|
|
109
109
|
messages = [{role: "user", content: prompt}]
|
110
110
|
chat(messages: messages, **params)
|
111
111
|
end
|
112
|
+
|
112
113
|
# rubocop:enable Style/ArgumentsForwarding
|
113
114
|
|
114
115
|
# Generate a chat completion for given messages.
|
@@ -159,7 +160,7 @@ module Langchain::LLM
|
|
159
160
|
end
|
160
161
|
|
161
162
|
def default_dimensions
|
162
|
-
@defaults[:dimensions] || EMBEDDING_SIZES.fetch(defaults[:
|
163
|
+
@defaults[:dimensions] || EMBEDDING_SIZES.fetch(defaults[:embedding_model])
|
163
164
|
end
|
164
165
|
|
165
166
|
private
|
@@ -14,8 +14,8 @@ module Langchain::LLM
|
|
14
14
|
# TODO: Figure out how to send the temperature to the API
|
15
15
|
temperature: 0.01, # Minimum accepted value
|
16
16
|
# TODO: Design the interface to pass and use different models
|
17
|
-
|
18
|
-
|
17
|
+
completion_model: "replicate/vicuna-13b",
|
18
|
+
embedding_model: "creatorrr/all-mpnet-base-v2",
|
19
19
|
dimensions: 384
|
20
20
|
}.freeze
|
21
21
|
|
@@ -49,7 +49,7 @@ module Langchain::LLM
|
|
49
49
|
sleep(0.1)
|
50
50
|
end
|
51
51
|
|
52
|
-
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:
|
52
|
+
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:embedding_model])
|
53
53
|
end
|
54
54
|
|
55
55
|
#
|
@@ -66,7 +66,7 @@ module Langchain::LLM
|
|
66
66
|
sleep(0.1)
|
67
67
|
end
|
68
68
|
|
69
|
-
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:
|
69
|
+
Langchain::LLM::ReplicateResponse.new(response, model: @defaults[:completion_model])
|
70
70
|
end
|
71
71
|
|
72
72
|
#
|
@@ -94,11 +94,11 @@ module Langchain::LLM
|
|
94
94
|
private
|
95
95
|
|
96
96
|
def completion_model
|
97
|
-
@completion_model ||= client.retrieve_model(@defaults[:
|
97
|
+
@completion_model ||= client.retrieve_model(@defaults[:completion_model]).latest_version
|
98
98
|
end
|
99
99
|
|
100
100
|
def embeddings_model
|
101
|
-
@embeddings_model ||= client.retrieve_model(@defaults[:
|
101
|
+
@embeddings_model ||= client.retrieve_model(@defaults[:embedding_model]).latest_version
|
102
102
|
end
|
103
103
|
end
|
104
104
|
end
|
@@ -103,6 +103,13 @@ module Langchain::ToolDefinition
|
|
103
103
|
# @return [String] JSON string of schemas in Anthropic format
|
104
104
|
def to_anthropic_format
|
105
105
|
@schemas.values.map do |schema|
|
106
|
+
# Adds a default input_schema if no parameters are present
|
107
|
+
schema[:function][:parameters] ||= {
|
108
|
+
type: "object",
|
109
|
+
properties: {},
|
110
|
+
required: []
|
111
|
+
}
|
112
|
+
|
106
113
|
schema[:function].transform_keys(parameters: :input_schema)
|
107
114
|
end
|
108
115
|
end
|
data/lib/langchain/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.19.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-10-
|
11
|
+
date: 2024-10-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: baran
|