langchainrb 0.16.1 → 0.17.1

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,177 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- module Langchain::LLM
4
- #
5
- # Wrapper around the Google PaLM (Pathways Language Model) APIs: https://ai.google/build/machine-learning/
6
- #
7
- # Gem requirements:
8
- # gem "google_palm_api", "~> 0.1.3"
9
- #
10
- # Usage:
11
- # google_palm = Langchain::LLM::GooglePalm.new(api_key: ENV["GOOGLE_PALM_API_KEY"])
12
- #
13
- class GooglePalm < Base
14
- extend Gem::Deprecate
15
-
16
- DEFAULTS = {
17
- temperature: 0.0,
18
- dimensions: 768, # This is what the `embedding-gecko-001` model generates
19
- completion_model_name: "text-bison-001",
20
- chat_completion_model_name: "chat-bison-001",
21
- embeddings_model_name: "embedding-gecko-001"
22
- }.freeze
23
-
24
- ROLE_MAPPING = {
25
- "assistant" => "ai"
26
- }
27
-
28
- attr_reader :defaults
29
-
30
- # @deprecated Please use Langchain::LLM::GoogleGemini instead
31
- #
32
- # @param api_key [String] The API key for the Google PaLM API
33
- def initialize(api_key:, default_options: {})
34
- depends_on "google_palm_api"
35
-
36
- @client = ::GooglePalmApi::Client.new(api_key: api_key)
37
- @defaults = DEFAULTS.merge(default_options)
38
- end
39
- deprecate :initialize, "Langchain::LLM::GoogleGemini.new(api_key:)", 2024, 10
40
-
41
- #
42
- # Generate an embedding for a given text
43
- #
44
- # @param text [String] The text to generate an embedding for
45
- # @return [Langchain::LLM::GooglePalmResponse] Response object
46
- #
47
- def embed(text:)
48
- response = client.embed(text: text)
49
-
50
- Langchain::LLM::GooglePalmResponse.new response,
51
- model: @defaults[:embeddings_model_name]
52
- end
53
-
54
- #
55
- # Generate a completion for a given prompt
56
- #
57
- # @param prompt [String] The prompt to generate a completion for
58
- # @param params extra parameters passed to GooglePalmAPI::Client#generate_text
59
- # @return [Langchain::LLM::GooglePalmResponse] Response object
60
- #
61
- def complete(prompt:, **params)
62
- default_params = {
63
- prompt: prompt,
64
- temperature: @defaults[:temperature],
65
- model: @defaults[:completion_model_name]
66
- }
67
-
68
- if params[:stop_sequences]
69
- default_params[:stop_sequences] = params.delete(:stop_sequences)
70
- end
71
-
72
- if params[:max_tokens]
73
- default_params[:max_output_tokens] = params.delete(:max_tokens)
74
- end
75
-
76
- default_params.merge!(params)
77
-
78
- response = client.generate_text(**default_params)
79
-
80
- Langchain::LLM::GooglePalmResponse.new response,
81
- model: default_params[:model]
82
- end
83
-
84
- #
85
- # Generate a chat completion for a given prompt
86
- #
87
- # @param prompt [String] The prompt to generate a chat completion for
88
- # @param messages [Array<Hash>] The messages that have been sent in the conversation
89
- # @param context [String] An initial context to provide as a system message, ie "You are RubyGPT, a helpful chat bot for helping people learn Ruby"
90
- # @param examples [Array<Hash>] Examples of messages to provide to the model. Useful for Few-Shot Prompting
91
- # @param options [Hash] extra parameters passed to GooglePalmAPI::Client#generate_chat_message
92
- # @return [Langchain::LLM::GooglePalmResponse] Response object
93
- #
94
- def chat(prompt: "", messages: [], context: "", examples: [], **options)
95
- raise ArgumentError.new(":prompt or :messages argument is expected") if prompt.empty? && messages.empty?
96
-
97
- default_params = {
98
- temperature: @defaults[:temperature],
99
- model: @defaults[:chat_completion_model_name],
100
- context: context,
101
- messages: compose_chat_messages(prompt: prompt, messages: messages),
102
- examples: compose_examples(examples)
103
- }
104
-
105
- if options[:stop_sequences]
106
- default_params[:stop] = options.delete(:stop_sequences)
107
- end
108
-
109
- if options[:max_tokens]
110
- default_params[:max_output_tokens] = options.delete(:max_tokens)
111
- end
112
-
113
- default_params.merge!(options)
114
-
115
- response = client.generate_chat_message(**default_params)
116
- raise "GooglePalm API returned an error: #{response}" if response.dig("error")
117
-
118
- Langchain::LLM::GooglePalmResponse.new response,
119
- model: default_params[:model]
120
- # TODO: Pass in prompt_tokens: prompt_tokens
121
- end
122
-
123
- #
124
- # Generate a summarization for a given text
125
- #
126
- # @param text [String] The text to generate a summarization for
127
- # @return [String] The summarization
128
- #
129
- def summarize(text:)
130
- prompt_template = Langchain::Prompt.load_from_path(
131
- file_path: Langchain.root.join("langchain/llm/prompts/summarize_template.yaml")
132
- )
133
- prompt = prompt_template.format(text: text)
134
-
135
- complete(
136
- prompt: prompt,
137
- temperature: @defaults[:temperature],
138
- # Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
139
- max_tokens: 256
140
- )
141
- end
142
-
143
- private
144
-
145
- def compose_chat_messages(prompt:, messages:)
146
- history = []
147
- history.concat transform_messages(messages) unless messages.empty?
148
-
149
- unless prompt.empty?
150
- if history.last && history.last[:role] == "user"
151
- history.last[:content] += "\n#{prompt}"
152
- else
153
- history.append({author: "user", content: prompt})
154
- end
155
- end
156
- history
157
- end
158
-
159
- def compose_examples(examples)
160
- examples.each_slice(2).map do |example|
161
- {
162
- input: {content: example.first[:content]},
163
- output: {content: example.last[:content]}
164
- }
165
- end
166
- end
167
-
168
- def transform_messages(messages)
169
- messages.map do |message|
170
- {
171
- author: ROLE_MAPPING.fetch(message[:role], message[:role]),
172
- content: message[:content]
173
- }
174
- end
175
- end
176
- end
177
- end
@@ -1,40 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- module Langchain::LLM
4
- class GooglePalmResponse < BaseResponse
5
- attr_reader :prompt_tokens
6
-
7
- def initialize(raw_response, model: nil, prompt_tokens: nil)
8
- @prompt_tokens = prompt_tokens
9
- super(raw_response, model: model)
10
- end
11
-
12
- def completion
13
- completions&.dig(0, "output")
14
- end
15
-
16
- def embedding
17
- embeddings.first
18
- end
19
-
20
- def completions
21
- raw_response.dig("candidates")
22
- end
23
-
24
- def chat_completion
25
- chat_completions&.dig(0, "content")
26
- end
27
-
28
- def chat_completions
29
- raw_response.dig("candidates")
30
- end
31
-
32
- def embeddings
33
- [raw_response.dig("embedding", "value")]
34
- end
35
-
36
- def role
37
- "assistant"
38
- end
39
- end
40
- end