langchainrb 0.13.3 → 0.13.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/README.md +2 -2
- data/lib/langchain/assistants/assistant.rb +118 -64
- data/lib/langchain/assistants/messages/base.rb +35 -1
- data/lib/langchain/contextual_logger.rb +2 -2
- data/lib/langchain/llm/google_gemini.rb +17 -3
- data/lib/langchain/llm/replicate.rb +1 -1
- data/lib/langchain/loader.rb +5 -3
- data/lib/langchain/tool/news_retriever/news_retriever.rb +4 -1
- data/lib/langchain/utils/hash_transformer.rb +25 -0
- data/lib/langchain/vectorsearch/chroma.rb +5 -3
- data/lib/langchain/vectorsearch/elasticsearch.rb +2 -2
- data/lib/langchain/vectorsearch/epsilla.rb +2 -2
- data/lib/langchain/vectorsearch/hnswlib.rb +2 -2
- data/lib/langchain/vectorsearch/milvus.rb +19 -4
- data/lib/langchain/vectorsearch/pgvector.rb +2 -2
- data/lib/langchain/vectorsearch/pinecone.rb +2 -2
- data/lib/langchain/vectorsearch/qdrant.rb +2 -2
- data/lib/langchain/vectorsearch/weaviate.rb +2 -2
- data/lib/langchain/version.rb +1 -1
- metadata +8 -7
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d7eac7a6ba7767f6a3f84ee808fa4810eaa1843776695ab0225ddd6b77cf7a73
|
4
|
+
data.tar.gz: e9f7c0170fc2a8dbf443f1bac24874878ee0fbba7e0495bf65a8df969d3d86e6
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e4d14ac64e54e5c7245a9586dfb4899154793ea466f9564a510eb3dfe17a3a7229cf61e408445b38fec37500065b5e1ee725afa634284bea5538abac0766237f
|
7
|
+
data.tar.gz: e8fe3e1639a3f2ed087436610dd1653e775703c1c6cc83f7f52eb7d3fb46db554e7be790bc6bc2ddf18ec4e3c26dddbe1ec72e8f25603db1192e5a111d0f9543
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,15 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.13.5] - 2024-07-01
|
4
|
+
- Add Milvus#remove_texts() method
|
5
|
+
- Langchain::Assistant has a `state` now
|
6
|
+
- Misc fixes and improvements
|
7
|
+
|
8
|
+
## [0.13.4] - 2024-06-16
|
9
|
+
- Fix Chroma#remove_texts() method
|
10
|
+
- Fix NewsRetriever Tool returning non UTF-8 characters
|
11
|
+
- Misc fixes and improvements
|
12
|
+
|
3
13
|
## [0.13.3] - 2024-06-03
|
4
14
|
- New 🛠️ `Langchain::Tool::Tavily` to execute search (better than the GoogleSearch tool)
|
5
15
|
- Remove `activesupport` dependency
|
data/README.md
CHANGED
@@ -57,7 +57,7 @@ Langchain.rb wraps supported LLMs in a unified interface allowing you to easily
|
|
57
57
|
#### Supported LLMs and features:
|
58
58
|
| LLM providers | `embed()` | `complete()` | `chat()` | `summarize()` | Notes |
|
59
59
|
| -------- |:------------------:| :-------: | :-----------------: | :-------: | :----------------- |
|
60
|
-
| [OpenAI](https://openai.com/?utm_source=langchainrb&utm_medium=github) | ✅ | ✅ | ✅ |
|
60
|
+
| [OpenAI](https://openai.com/?utm_source=langchainrb&utm_medium=github) | ✅ | ✅ | ✅ | ✅ | Including Azure OpenAI |
|
61
61
|
| [AI21](https://ai21.com/?utm_source=langchainrb&utm_medium=github) | ❌ | ✅ | ❌ | ✅ | |
|
62
62
|
| [Anthropic](https://anthropic.com/?utm_source=langchainrb&utm_medium=github) | ❌ | ✅ | ✅ | ❌ | |
|
63
63
|
| [AwsBedrock](https://aws.amazon.com/bedrock?utm_source=langchainrb&utm_medium=github) | ✅ | ✅ | ✅ | ❌ | Provides AWS, Cohere, AI21, Antropic and Stability AI models |
|
@@ -343,7 +343,7 @@ You can instantiate any other supported vector search database:
|
|
343
343
|
client = Langchain::Vectorsearch::Chroma.new(...) # `gem "chroma-db", "~> 0.6.0"`
|
344
344
|
client = Langchain::Vectorsearch::Epsilla.new(...) # `gem "epsilla-ruby", "~> 0.0.3"`
|
345
345
|
client = Langchain::Vectorsearch::Hnswlib.new(...) # `gem "hnswlib", "~> 0.8.1"`
|
346
|
-
client = Langchain::Vectorsearch::Milvus.new(...) # `gem "milvus", "~> 0.9.
|
346
|
+
client = Langchain::Vectorsearch::Milvus.new(...) # `gem "milvus", "~> 0.9.3"`
|
347
347
|
client = Langchain::Vectorsearch::Pinecone.new(...) # `gem "pinecone", "~> 0.1.6"`
|
348
348
|
client = Langchain::Vectorsearch::Pgvector.new(...) # `gem "pgvector", "~> 0.2"`
|
349
349
|
client = Langchain::Vectorsearch::Qdrant.new(...) # `gem "qdrant-ruby", "~> 0.9.3"`
|
@@ -15,7 +15,7 @@ module Langchain
|
|
15
15
|
extend Forwardable
|
16
16
|
def_delegators :thread, :messages, :messages=
|
17
17
|
|
18
|
-
attr_reader :llm, :thread, :instructions
|
18
|
+
attr_reader :llm, :thread, :instructions, :state
|
19
19
|
attr_accessor :tools
|
20
20
|
|
21
21
|
SUPPORTED_LLMS = [
|
@@ -46,6 +46,7 @@ module Langchain
|
|
46
46
|
@thread = thread || Langchain::Thread.new
|
47
47
|
@tools = tools
|
48
48
|
@instructions = instructions
|
49
|
+
@state = :ready
|
49
50
|
|
50
51
|
raise ArgumentError, "Thread must be an instance of Langchain::Thread" unless @thread.is_a?(Langchain::Thread)
|
51
52
|
|
@@ -66,7 +67,10 @@ module Langchain
|
|
66
67
|
# @return [Array<Langchain::Message>] The messages in the thread
|
67
68
|
def add_message(content: nil, role: "user", tool_calls: [], tool_call_id: nil)
|
68
69
|
message = build_message(role: role, content: content, tool_calls: tool_calls, tool_call_id: tool_call_id)
|
69
|
-
thread.add_message(message)
|
70
|
+
messages = thread.add_message(message)
|
71
|
+
@state = :ready
|
72
|
+
|
73
|
+
messages
|
70
74
|
end
|
71
75
|
|
72
76
|
# Run the assistant
|
@@ -76,56 +80,12 @@ module Langchain
|
|
76
80
|
def run(auto_tool_execution: false)
|
77
81
|
if thread.messages.empty?
|
78
82
|
Langchain.logger.warn("No messages in the thread")
|
83
|
+
@state = :completed
|
79
84
|
return
|
80
85
|
end
|
81
86
|
|
82
|
-
|
83
|
-
|
84
|
-
while running
|
85
|
-
# TODO: I think we need to look at all messages and not just the last one.
|
86
|
-
last_message = thread.messages.last
|
87
|
-
|
88
|
-
if last_message.system?
|
89
|
-
# Do nothing
|
90
|
-
running = false
|
91
|
-
elsif last_message.llm?
|
92
|
-
if last_message.tool_calls.any?
|
93
|
-
if auto_tool_execution
|
94
|
-
run_tools(last_message.tool_calls)
|
95
|
-
else
|
96
|
-
# Maybe log and tell the user that there's outstanding tool calls?
|
97
|
-
running = false
|
98
|
-
end
|
99
|
-
else
|
100
|
-
# Last message was from the assistant without any tools calls.
|
101
|
-
# Do nothing
|
102
|
-
running = false
|
103
|
-
end
|
104
|
-
elsif last_message.user?
|
105
|
-
# Run it!
|
106
|
-
response = chat_with_llm
|
107
|
-
|
108
|
-
if response.tool_calls.any?
|
109
|
-
# Re-run the while(running) loop to process the tool calls
|
110
|
-
running = true
|
111
|
-
add_message(role: response.role, tool_calls: response.tool_calls)
|
112
|
-
elsif response.chat_completion
|
113
|
-
# Stop the while(running) loop and add the assistant's response to the thread
|
114
|
-
running = false
|
115
|
-
add_message(role: response.role, content: response.chat_completion)
|
116
|
-
end
|
117
|
-
elsif last_message.tool?
|
118
|
-
# Run it!
|
119
|
-
response = chat_with_llm
|
120
|
-
running = true
|
121
|
-
|
122
|
-
if response.tool_calls.any?
|
123
|
-
add_message(role: response.role, tool_calls: response.tool_calls)
|
124
|
-
elsif response.chat_completion
|
125
|
-
add_message(role: response.role, content: response.chat_completion)
|
126
|
-
end
|
127
|
-
end
|
128
|
-
end
|
87
|
+
@state = :in_progress
|
88
|
+
@state = handle_state until run_finished?(auto_tool_execution)
|
129
89
|
|
130
90
|
thread.messages
|
131
91
|
end
|
@@ -146,13 +106,7 @@ module Langchain
|
|
146
106
|
# @param output [String] The output of the tool
|
147
107
|
# @return [Array<Langchain::Message>] The messages in the thread
|
148
108
|
def submit_tool_output(tool_call_id:, output:)
|
149
|
-
tool_role =
|
150
|
-
Langchain::Messages::OpenAIMessage::TOOL_ROLE
|
151
|
-
elsif [Langchain::LLM::GoogleGemini, Langchain::LLM::GoogleVertexAI].include?(llm.class)
|
152
|
-
Langchain::Messages::GoogleGeminiMessage::TOOL_ROLE
|
153
|
-
elsif llm.is_a?(Langchain::LLM::Anthropic)
|
154
|
-
Langchain::Messages::AnthropicMessage::TOOL_ROLE
|
155
|
-
end
|
109
|
+
tool_role = determine_tool_role
|
156
110
|
|
157
111
|
# TODO: Validate that `tool_call_id` is valid by scanning messages and checking if this tool call ID was invoked
|
158
112
|
add_message(role: tool_role, content: output, tool_call_id: tool_call_id)
|
@@ -183,6 +137,114 @@ module Langchain
|
|
183
137
|
|
184
138
|
private
|
185
139
|
|
140
|
+
# Check if the run is finished
|
141
|
+
#
|
142
|
+
# @param auto_tool_execution [Boolean] Whether or not to automatically run tools
|
143
|
+
# @return [Boolean] Whether the run is finished
|
144
|
+
def run_finished?(auto_tool_execution)
|
145
|
+
finished_states = [:completed, :failed]
|
146
|
+
|
147
|
+
requires_manual_action = (@state == :requires_action) && !auto_tool_execution
|
148
|
+
finished_states.include?(@state) || requires_manual_action
|
149
|
+
end
|
150
|
+
|
151
|
+
# Handle the current state and transition to the next state
|
152
|
+
#
|
153
|
+
# @param state [Symbol] The current state
|
154
|
+
# @return [Symbol] The next state
|
155
|
+
def handle_state
|
156
|
+
case @state
|
157
|
+
when :in_progress
|
158
|
+
process_latest_message
|
159
|
+
when :requires_action
|
160
|
+
execute_tools
|
161
|
+
end
|
162
|
+
end
|
163
|
+
|
164
|
+
# Process the latest message in the thread
|
165
|
+
#
|
166
|
+
# @return [Symbol] The next state
|
167
|
+
def process_latest_message
|
168
|
+
last_message = thread.messages.last
|
169
|
+
|
170
|
+
case last_message.standard_role
|
171
|
+
when :system
|
172
|
+
handle_system_message
|
173
|
+
when :llm
|
174
|
+
handle_llm_message
|
175
|
+
when :user, :tool
|
176
|
+
handle_user_or_tool_message
|
177
|
+
else
|
178
|
+
handle_unexpected_message
|
179
|
+
end
|
180
|
+
end
|
181
|
+
|
182
|
+
# Handle system message scenario
|
183
|
+
#
|
184
|
+
# @return [Symbol] The completed state
|
185
|
+
def handle_system_message
|
186
|
+
Langchain.logger.warn("At least one user message is required after a system message")
|
187
|
+
:completed
|
188
|
+
end
|
189
|
+
|
190
|
+
# Handle LLM message scenario
|
191
|
+
#
|
192
|
+
# @param auto_tool_execution [Boolean] Flag to indicate if tools should be executed automatically
|
193
|
+
# @return [Symbol] The next state
|
194
|
+
def handle_llm_message
|
195
|
+
thread.messages.last.tool_calls.any? ? :requires_action : :completed
|
196
|
+
end
|
197
|
+
|
198
|
+
# Handle unexpected message scenario
|
199
|
+
#
|
200
|
+
# @return [Symbol] The failed state
|
201
|
+
def handle_unexpected_message
|
202
|
+
Langchain.logger.error("Unexpected message role encountered: #{thread.messages.last.standard_role}")
|
203
|
+
:failed
|
204
|
+
end
|
205
|
+
|
206
|
+
# Handle user or tool message scenario by processing the LLM response
|
207
|
+
#
|
208
|
+
# @return [Symbol] The next state
|
209
|
+
def handle_user_or_tool_message
|
210
|
+
response = chat_with_llm
|
211
|
+
add_message(role: response.role, content: response.chat_completion, tool_calls: response.tool_calls)
|
212
|
+
|
213
|
+
if response.tool_calls.any?
|
214
|
+
:in_progress
|
215
|
+
elsif response.chat_completion
|
216
|
+
:completed
|
217
|
+
else
|
218
|
+
Langchain.logger.error("LLM response does not contain tool calls or chat completion")
|
219
|
+
:failed
|
220
|
+
end
|
221
|
+
end
|
222
|
+
|
223
|
+
# Execute the tools based on the tool calls in the last message
|
224
|
+
#
|
225
|
+
# @return [Symbol] The next state
|
226
|
+
def execute_tools
|
227
|
+
run_tools(thread.messages.last.tool_calls)
|
228
|
+
:in_progress
|
229
|
+
rescue => e
|
230
|
+
Langchain.logger.error("Error running tools: #{e.message}")
|
231
|
+
:failed
|
232
|
+
end
|
233
|
+
|
234
|
+
# Determine the tool role based on the LLM type
|
235
|
+
#
|
236
|
+
# @return [String] The tool role
|
237
|
+
def determine_tool_role
|
238
|
+
case llm
|
239
|
+
when Langchain::LLM::OpenAI
|
240
|
+
Langchain::Messages::OpenAIMessage::TOOL_ROLE
|
241
|
+
when Langchain::LLM::GoogleGemini, Langchain::LLM::GoogleVertexAI
|
242
|
+
Langchain::Messages::GoogleGeminiMessage::TOOL_ROLE
|
243
|
+
when Langchain::LLM::Anthropic
|
244
|
+
Langchain::Messages::AnthropicMessage::TOOL_ROLE
|
245
|
+
end
|
246
|
+
end
|
247
|
+
|
186
248
|
# Call to the LLM#chat() method
|
187
249
|
#
|
188
250
|
# @return [Langchain::LLM::BaseResponse] The LLM response object
|
@@ -232,14 +294,6 @@ module Langchain
|
|
232
294
|
|
233
295
|
submit_tool_output(tool_call_id: tool_call_id, output: output)
|
234
296
|
end
|
235
|
-
|
236
|
-
response = chat_with_llm
|
237
|
-
|
238
|
-
if response.tool_calls.any?
|
239
|
-
add_message(role: response.role, tool_calls: response.tool_calls)
|
240
|
-
elsif response.chat_completion
|
241
|
-
add_message(role: response.role, content: response.chat_completion)
|
242
|
-
end
|
243
297
|
end
|
244
298
|
|
245
299
|
# Extract the tool call information from the OpenAI tool call hash
|
@@ -7,10 +7,44 @@ module Langchain
|
|
7
7
|
|
8
8
|
# Check if the message came from a user
|
9
9
|
#
|
10
|
-
# @
|
10
|
+
# @return [Boolean] true/false whether the message came from a user
|
11
11
|
def user?
|
12
12
|
role == "user"
|
13
13
|
end
|
14
|
+
|
15
|
+
# Check if the message came from an LLM
|
16
|
+
#
|
17
|
+
# @raise NotImplementedError if the subclass does not implement this method
|
18
|
+
def llm?
|
19
|
+
raise NotImplementedError, "Class #{self.class.name} must implement the method 'llm?'"
|
20
|
+
end
|
21
|
+
|
22
|
+
# Check if the message is a tool call
|
23
|
+
#
|
24
|
+
# @raise NotImplementedError if the subclass does not implement this method
|
25
|
+
def tool?
|
26
|
+
raise NotImplementedError, "Class #{self.class.name} must implement the method 'tool?'"
|
27
|
+
end
|
28
|
+
|
29
|
+
# Check if the message is a system prompt
|
30
|
+
#
|
31
|
+
# @raise NotImplementedError if the subclass does not implement this method
|
32
|
+
def system?
|
33
|
+
raise NotImplementedError, "Class #{self.class.name} must implement the method 'system?'"
|
34
|
+
end
|
35
|
+
|
36
|
+
# Returns the standardized role symbol based on the specific role methods
|
37
|
+
#
|
38
|
+
# @return [Symbol] the standardized role symbol (:system, :llm, :tool, :user, or :unknown)
|
39
|
+
def standard_role
|
40
|
+
return :user if user?
|
41
|
+
return :llm if llm?
|
42
|
+
return :tool if tool?
|
43
|
+
return :system if system?
|
44
|
+
|
45
|
+
# TODO: Should we return :unknown or raise an error?
|
46
|
+
:unknown
|
47
|
+
end
|
14
48
|
end
|
15
49
|
end
|
16
50
|
end
|
@@ -35,8 +35,8 @@ module Langchain
|
|
35
35
|
@logger.respond_to?(method, include_private)
|
36
36
|
end
|
37
37
|
|
38
|
-
def method_missing(method, *args, **kwargs, &
|
39
|
-
return @logger.send(method, *args, **kwargs, &
|
38
|
+
def method_missing(method, *args, **kwargs, &)
|
39
|
+
return @logger.send(method, *args, **kwargs, &) unless @levels.include?(method)
|
40
40
|
|
41
41
|
for_class = kwargs.delete(:for)
|
42
42
|
for_class_name = for_class&.name
|
@@ -18,7 +18,9 @@ module Langchain::LLM
|
|
18
18
|
|
19
19
|
chat_parameters.update(
|
20
20
|
model: {default: @defaults[:chat_completion_model_name]},
|
21
|
-
temperature: {default: @defaults[:temperature]}
|
21
|
+
temperature: {default: @defaults[:temperature]},
|
22
|
+
generation_config: {default: nil},
|
23
|
+
safety_settings: {default: nil}
|
22
24
|
)
|
23
25
|
chat_parameters.remap(
|
24
26
|
messages: :contents,
|
@@ -42,13 +44,25 @@ module Langchain::LLM
|
|
42
44
|
raise ArgumentError.new("messages argument is required") if Array(params[:messages]).empty?
|
43
45
|
|
44
46
|
parameters = chat_parameters.to_params(params)
|
45
|
-
parameters[:generation_config]
|
47
|
+
parameters[:generation_config] ||= {}
|
48
|
+
parameters[:generation_config][:temperature] ||= parameters[:temperature] if parameters[:temperature]
|
49
|
+
parameters.delete(:temperature)
|
50
|
+
parameters[:generation_config][:top_p] ||= parameters[:top_p] if parameters[:top_p]
|
51
|
+
parameters.delete(:top_p)
|
52
|
+
parameters[:generation_config][:top_k] ||= parameters[:top_k] if parameters[:top_k]
|
53
|
+
parameters.delete(:top_k)
|
54
|
+
parameters[:generation_config][:max_output_tokens] ||= parameters[:max_tokens] if parameters[:max_tokens]
|
55
|
+
parameters.delete(:max_tokens)
|
56
|
+
parameters[:generation_config][:response_mime_type] ||= parameters[:response_format] if parameters[:response_format]
|
57
|
+
parameters.delete(:response_format)
|
58
|
+
parameters[:generation_config][:stop_sequences] ||= parameters[:stop] if parameters[:stop]
|
59
|
+
parameters.delete(:stop)
|
46
60
|
|
47
61
|
uri = URI("https://generativelanguage.googleapis.com/v1beta/models/#{parameters[:model]}:generateContent?key=#{api_key}")
|
48
62
|
|
49
63
|
request = Net::HTTP::Post.new(uri)
|
50
64
|
request.content_type = "application/json"
|
51
|
-
request.body = parameters.to_json
|
65
|
+
request.body = Langchain::Utils::HashTransformer.deep_transform_keys(parameters) { |key| Langchain::Utils::HashTransformer.camelize_lower(key.to_s).to_sym }.to_json
|
52
66
|
|
53
67
|
response = Net::HTTP.start(uri.hostname, uri.port, use_ssl: uri.scheme == "https") do |http|
|
54
68
|
http.request(request)
|
@@ -64,7 +64,7 @@ module Langchain::LLM
|
|
64
64
|
# Generate a completion for a given prompt
|
65
65
|
#
|
66
66
|
# @param prompt [String] The prompt to generate a completion for
|
67
|
-
# @return [Langchain::LLM::ReplicateResponse]
|
67
|
+
# @return [Langchain::LLM::ReplicateResponse] Response object
|
68
68
|
#
|
69
69
|
def complete(prompt:, **params)
|
70
70
|
response = completion_model.predict(prompt: prompt)
|
data/lib/langchain/loader.rb
CHANGED
@@ -90,7 +90,9 @@ module Langchain
|
|
90
90
|
private
|
91
91
|
|
92
92
|
def load_from_url
|
93
|
-
URI.
|
93
|
+
unescaped_url = URI.decode_www_form_component(@path)
|
94
|
+
escaped_url = URI::DEFAULT_PARSER.escape(unescaped_url)
|
95
|
+
URI.parse(escaped_url).open
|
94
96
|
end
|
95
97
|
|
96
98
|
def load_from_path
|
@@ -105,7 +107,7 @@ module Langchain
|
|
105
107
|
# Only load and add to result files with supported extensions
|
106
108
|
Langchain::Loader.new(file, @options).load(&block)
|
107
109
|
rescue
|
108
|
-
UnknownFormatError
|
110
|
+
UnknownFormatError.new("Unknown format: #{source_type}")
|
109
111
|
end.flatten.compact
|
110
112
|
end
|
111
113
|
# rubocop:enable Style/ArgumentsForwarding
|
@@ -123,7 +125,7 @@ module Langchain
|
|
123
125
|
end
|
124
126
|
|
125
127
|
def processor_klass
|
126
|
-
raise UnknownFormatError unless (kind = find_processor)
|
128
|
+
raise UnknownFormatError.new("Unknown format: #{source_type}") unless (kind = find_processor)
|
127
129
|
|
128
130
|
Langchain::Processors.const_get(kind)
|
129
131
|
end
|
@@ -126,7 +126,10 @@ module Langchain::Tool
|
|
126
126
|
request["Content-Type"] = "application/json"
|
127
127
|
|
128
128
|
response = http.request(request)
|
129
|
-
response
|
129
|
+
response
|
130
|
+
.body
|
131
|
+
# Remove non-UTF-8 characters
|
132
|
+
.force_encoding(Encoding::UTF_8)
|
130
133
|
end
|
131
134
|
end
|
132
135
|
end
|
@@ -0,0 +1,25 @@
|
|
1
|
+
module Langchain
|
2
|
+
module Utils
|
3
|
+
class HashTransformer
|
4
|
+
# Converts a string to camelCase
|
5
|
+
def self.camelize_lower(str)
|
6
|
+
str.split("_").inject([]) { |buffer, e| buffer.push(buffer.empty? ? e : e.capitalize) }.join
|
7
|
+
end
|
8
|
+
|
9
|
+
# Recursively transforms the keys of a hash to camel case
|
10
|
+
def self.deep_transform_keys(hash, &block)
|
11
|
+
case hash
|
12
|
+
when Hash
|
13
|
+
hash.each_with_object({}) do |(key, value), result|
|
14
|
+
new_key = block.call(key)
|
15
|
+
result[new_key] = deep_transform_keys(value, &block)
|
16
|
+
end
|
17
|
+
when Array
|
18
|
+
hash.map { |item| deep_transform_keys(item, &block) }
|
19
|
+
else
|
20
|
+
hash
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
24
|
+
end
|
25
|
+
end
|
@@ -64,7 +64,9 @@ module Langchain::Vectorsearch
|
|
64
64
|
# @param ids [Array<String>] The list of ids to remove
|
65
65
|
# @return [Hash] The response from the server
|
66
66
|
def remove_texts(ids:)
|
67
|
-
collection.delete(
|
67
|
+
collection.delete(
|
68
|
+
ids: ids.map(&:to_s)
|
69
|
+
)
|
68
70
|
end
|
69
71
|
|
70
72
|
# Create the collection with the default schema
|
@@ -122,7 +124,7 @@ module Langchain::Vectorsearch
|
|
122
124
|
# @param k [Integer] The number of results to have in context
|
123
125
|
# @yield [String] Stream responses back one String at a time
|
124
126
|
# @return [String] The answer to the question
|
125
|
-
def ask(question:, k: 4, &
|
127
|
+
def ask(question:, k: 4, &)
|
126
128
|
search_results = similarity_search(query: question, k: k)
|
127
129
|
|
128
130
|
context = search_results.map do |result|
|
@@ -134,7 +136,7 @@ module Langchain::Vectorsearch
|
|
134
136
|
prompt = generate_rag_prompt(question: question, context: context)
|
135
137
|
|
136
138
|
messages = [{role: "user", content: prompt}]
|
137
|
-
response = llm.chat(messages: messages, &
|
139
|
+
response = llm.chat(messages: messages, &)
|
138
140
|
|
139
141
|
response.context = context
|
140
142
|
response
|
@@ -143,7 +143,7 @@ module Langchain::Vectorsearch
|
|
143
143
|
# @param k [Integer] The number of results to have in context
|
144
144
|
# @yield [String] Stream responses back one String at a time
|
145
145
|
# @return [String] The answer to the question
|
146
|
-
def ask(question:, k: 4, &
|
146
|
+
def ask(question:, k: 4, &)
|
147
147
|
search_results = similarity_search(query: question, k: k)
|
148
148
|
|
149
149
|
context = search_results.map do |result|
|
@@ -153,7 +153,7 @@ module Langchain::Vectorsearch
|
|
153
153
|
prompt = generate_rag_prompt(question: question, context: context)
|
154
154
|
|
155
155
|
messages = [{role: "user", content: prompt}]
|
156
|
-
response = llm.chat(messages: messages, &
|
156
|
+
response = llm.chat(messages: messages, &)
|
157
157
|
|
158
158
|
response.context = context
|
159
159
|
response
|
@@ -129,7 +129,7 @@ module Langchain::Vectorsearch
|
|
129
129
|
# @param k [Integer] The number of results to have in context
|
130
130
|
# @yield [String] Stream responses back one String at a time
|
131
131
|
# @return [String] The answer to the question
|
132
|
-
def ask(question:, k: 4, &
|
132
|
+
def ask(question:, k: 4, &)
|
133
133
|
search_results = similarity_search(query: question, k: k)
|
134
134
|
|
135
135
|
context = search_results.map do |result|
|
@@ -140,7 +140,7 @@ module Langchain::Vectorsearch
|
|
140
140
|
prompt = generate_rag_prompt(question: question, context: context)
|
141
141
|
|
142
142
|
messages = [{role: "user", content: prompt}]
|
143
|
-
response = llm.chat(messages: messages, &
|
143
|
+
response = llm.chat(messages: messages, &)
|
144
144
|
|
145
145
|
response.context = context
|
146
146
|
response
|
@@ -58,7 +58,7 @@ module Langchain::Vectorsearch
|
|
58
58
|
#
|
59
59
|
# @param query [String] The text to search for
|
60
60
|
# @param k [Integer] The number of results to return
|
61
|
-
# @return [Array] Results in the format `[[id1,
|
61
|
+
# @return [Array] Results in the format `[[id1, id2], [distance1, distance2]]`
|
62
62
|
#
|
63
63
|
def similarity_search(
|
64
64
|
query:,
|
@@ -77,7 +77,7 @@ module Langchain::Vectorsearch
|
|
77
77
|
#
|
78
78
|
# @param embedding [Array<Float>] The embedding to search for
|
79
79
|
# @param k [Integer] The number of results to return
|
80
|
-
# @return [Array] Results in the format `[[id1,
|
80
|
+
# @return [Array] Results in the format `[[id1, id2], [distance1, distance2]]`
|
81
81
|
#
|
82
82
|
def similarity_search_by_vector(
|
83
83
|
embedding:,
|
@@ -6,7 +6,7 @@ module Langchain::Vectorsearch
|
|
6
6
|
# Wrapper around Milvus REST APIs.
|
7
7
|
#
|
8
8
|
# Gem requirements:
|
9
|
-
# gem "milvus", "~> 0.9.
|
9
|
+
# gem "milvus", "~> 0.9.3"
|
10
10
|
#
|
11
11
|
# Usage:
|
12
12
|
# milvus = Langchain::Vectorsearch::Milvus.new(url:, index_name:, llm:, api_key:)
|
@@ -39,6 +39,21 @@ module Langchain::Vectorsearch
|
|
39
39
|
)
|
40
40
|
end
|
41
41
|
|
42
|
+
# Deletes a list of texts in the index
|
43
|
+
#
|
44
|
+
# @param ids [Array<Integer>] The ids of texts to delete
|
45
|
+
# @return [Boolean] The response from the server
|
46
|
+
def remove_texts(ids:)
|
47
|
+
raise ArgumentError, "ids must be an array" unless ids.is_a?(Array)
|
48
|
+
# Convert ids to integers if strings are passed
|
49
|
+
ids = ids.map(&:to_i)
|
50
|
+
|
51
|
+
client.entities.delete(
|
52
|
+
collection_name: index_name,
|
53
|
+
expression: "id in #{ids}"
|
54
|
+
)
|
55
|
+
end
|
56
|
+
|
42
57
|
# TODO: Add update_texts method
|
43
58
|
|
44
59
|
# Create default schema
|
@@ -83,7 +98,7 @@ module Langchain::Vectorsearch
|
|
83
98
|
# @return [Boolean] The response from the server
|
84
99
|
def create_default_index
|
85
100
|
client.indices.create(
|
86
|
-
collection_name:
|
101
|
+
collection_name: index_name,
|
87
102
|
field_name: "vectors",
|
88
103
|
extra_params: [
|
89
104
|
{key: "metric_type", value: "L2"},
|
@@ -141,7 +156,7 @@ module Langchain::Vectorsearch
|
|
141
156
|
# @param k [Integer] The number of results to have in context
|
142
157
|
# @yield [String] Stream responses back one String at a time
|
143
158
|
# @return [String] The answer to the question
|
144
|
-
def ask(question:, k: 4, &
|
159
|
+
def ask(question:, k: 4, &)
|
145
160
|
search_results = similarity_search(query: question, k: k)
|
146
161
|
|
147
162
|
content_field = search_results.dig("results", "fields_data").select { |field| field.dig("field_name") == "content" }
|
@@ -152,7 +167,7 @@ module Langchain::Vectorsearch
|
|
152
167
|
prompt = generate_rag_prompt(question: question, context: context)
|
153
168
|
|
154
169
|
messages = [{role: "user", content: prompt}]
|
155
|
-
response = llm.chat(messages: messages, &
|
170
|
+
response = llm.chat(messages: messages, &)
|
156
171
|
|
157
172
|
response.context = context
|
158
173
|
response
|
@@ -146,7 +146,7 @@ module Langchain::Vectorsearch
|
|
146
146
|
# @param k [Integer] The number of results to have in context
|
147
147
|
# @yield [String] Stream responses back one String at a time
|
148
148
|
# @return [String] The answer to the question
|
149
|
-
def ask(question:, k: 4, &
|
149
|
+
def ask(question:, k: 4, &)
|
150
150
|
search_results = similarity_search(query: question, k: k)
|
151
151
|
|
152
152
|
context = search_results.map do |result|
|
@@ -157,7 +157,7 @@ module Langchain::Vectorsearch
|
|
157
157
|
prompt = generate_rag_prompt(question: question, context: context)
|
158
158
|
|
159
159
|
messages = [{role: "user", content: prompt}]
|
160
|
-
response = llm.chat(messages: messages, &
|
160
|
+
response = llm.chat(messages: messages, &)
|
161
161
|
|
162
162
|
response.context = context
|
163
163
|
response
|
@@ -171,7 +171,7 @@ module Langchain::Vectorsearch
|
|
171
171
|
# @param filter [String] The filter to use
|
172
172
|
# @yield [String] Stream responses back one String at a time
|
173
173
|
# @return [String] The answer to the question
|
174
|
-
def ask(question:, namespace: "", filter: nil, k: 4, &
|
174
|
+
def ask(question:, namespace: "", filter: nil, k: 4, &)
|
175
175
|
search_results = similarity_search(query: question, namespace: namespace, filter: filter, k: k)
|
176
176
|
|
177
177
|
context = search_results.map do |result|
|
@@ -182,7 +182,7 @@ module Langchain::Vectorsearch
|
|
182
182
|
prompt = generate_rag_prompt(question: question, context: context)
|
183
183
|
|
184
184
|
messages = [{role: "user", content: prompt}]
|
185
|
-
response = llm.chat(messages: messages, &
|
185
|
+
response = llm.chat(messages: messages, &)
|
186
186
|
|
187
187
|
response.context = context
|
188
188
|
response
|
@@ -137,7 +137,7 @@ module Langchain::Vectorsearch
|
|
137
137
|
# @param k [Integer] The number of results to have in context
|
138
138
|
# @yield [String] Stream responses back one String at a time
|
139
139
|
# @return [String] The answer to the question
|
140
|
-
def ask(question:, k: 4, &
|
140
|
+
def ask(question:, k: 4, &)
|
141
141
|
search_results = similarity_search(query: question, k: k)
|
142
142
|
|
143
143
|
context = search_results.map do |result|
|
@@ -148,7 +148,7 @@ module Langchain::Vectorsearch
|
|
148
148
|
prompt = generate_rag_prompt(question: question, context: context)
|
149
149
|
|
150
150
|
messages = [{role: "user", content: prompt}]
|
151
|
-
response = llm.chat(messages: messages, &
|
151
|
+
response = llm.chat(messages: messages, &)
|
152
152
|
|
153
153
|
response.context = context
|
154
154
|
response
|
@@ -143,7 +143,7 @@ module Langchain::Vectorsearch
|
|
143
143
|
# @param k [Integer] The number of results to have in context
|
144
144
|
# @yield [String] Stream responses back one String at a time
|
145
145
|
# @return [Hash] The answer
|
146
|
-
def ask(question:, k: 4, &
|
146
|
+
def ask(question:, k: 4, &)
|
147
147
|
search_results = similarity_search(query: question, k: k)
|
148
148
|
|
149
149
|
context = search_results.map do |result|
|
@@ -154,7 +154,7 @@ module Langchain::Vectorsearch
|
|
154
154
|
prompt = generate_rag_prompt(question: question, context: context)
|
155
155
|
|
156
156
|
messages = [{role: "user", content: prompt}]
|
157
|
-
response = llm.chat(messages: messages, &
|
157
|
+
response = llm.chat(messages: messages, &)
|
158
158
|
|
159
159
|
response.context = context
|
160
160
|
response
|
data/lib/langchain/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.13.
|
4
|
+
version: 0.13.5
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-07-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: baran
|
@@ -408,14 +408,14 @@ dependencies:
|
|
408
408
|
requirements:
|
409
409
|
- - "~>"
|
410
410
|
- !ruby/object:Gem::Version
|
411
|
-
version: 0.9.
|
411
|
+
version: 0.9.3
|
412
412
|
type: :development
|
413
413
|
prerelease: false
|
414
414
|
version_requirements: !ruby/object:Gem::Requirement
|
415
415
|
requirements:
|
416
416
|
- - "~>"
|
417
417
|
- !ruby/object:Gem::Version
|
418
|
-
version: 0.9.
|
418
|
+
version: 0.9.3
|
419
419
|
- !ruby/object:Gem::Dependency
|
420
420
|
name: llama_cpp
|
421
421
|
requirement: !ruby/object:Gem::Requirement
|
@@ -809,6 +809,7 @@ files:
|
|
809
809
|
- lib/langchain/tool/wikipedia/wikipedia.json
|
810
810
|
- lib/langchain/tool/wikipedia/wikipedia.rb
|
811
811
|
- lib/langchain/utils/cosine_similarity.rb
|
812
|
+
- lib/langchain/utils/hash_transformer.rb
|
812
813
|
- lib/langchain/utils/token_length/ai21_validator.rb
|
813
814
|
- lib/langchain/utils/token_length/base_validator.rb
|
814
815
|
- lib/langchain/utils/token_length/cohere_validator.rb
|
@@ -834,8 +835,8 @@ licenses:
|
|
834
835
|
- MIT
|
835
836
|
metadata:
|
836
837
|
homepage_uri: https://rubygems.org/gems/langchainrb
|
837
|
-
source_code_uri: https://github.com/
|
838
|
-
changelog_uri: https://github.com/
|
838
|
+
source_code_uri: https://github.com/patterns-ai-core/langchainrb
|
839
|
+
changelog_uri: https://github.com/patterns-ai-core/langchainrb/blob/main/CHANGELOG.md
|
839
840
|
documentation_uri: https://rubydoc.info/gems/langchainrb
|
840
841
|
post_install_message:
|
841
842
|
rdoc_options: []
|
@@ -852,7 +853,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
852
853
|
- !ruby/object:Gem::Version
|
853
854
|
version: '0'
|
854
855
|
requirements: []
|
855
|
-
rubygems_version: 3.5.
|
856
|
+
rubygems_version: 3.5.14
|
856
857
|
signing_key:
|
857
858
|
specification_version: 4
|
858
859
|
summary: Build LLM-backed Ruby applications with Ruby's Langchain.rb
|