kvg_character_recognition 0.1.0 → 0.1.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/Gemfile +0 -3
- data/README.md +13 -10
- data/kvg_character_recognition.gemspec +3 -3
- data/lib/kvg_character_recognition.rb +0 -19
- data/lib/kvg_character_recognition/datastore.rb +35 -0
- data/lib/kvg_character_recognition/preprocessor.rb +1 -12
- data/lib/kvg_character_recognition/recognizer.rb +22 -16
- data/lib/kvg_character_recognition/{database.rb → trainer.rb} +10 -45
- data/lib/kvg_character_recognition/utils.rb +14 -0
- data/lib/kvg_character_recognition/version.rb +1 -1
- metadata +20 -19
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2f5bd00df050f48f3ee955daaa966fd04b10a5f3
|
4
|
+
data.tar.gz: bb45a8db8023fb37f4f929a673f1f811756540fa
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: ae3a13b9370276c1714f19acebcf856cff091c27725514ae8f0a75f43ef754576d46bc69b7804d1203db5216524d0841e82b2deac7f29729ad5ebfe55441d080
|
7
|
+
data.tar.gz: 057e9896548709b6fd4187ffcf8d576b2d49fa0fb19f6b1cc3909e75befde49149aa934d54ea9c6bbab48d394f4fdf708404287ec6eae6857dab3b53b7a09650
|
data/Gemfile
CHANGED
data/README.md
CHANGED
@@ -4,21 +4,27 @@ A stroke is an array of points in the format [[x1, y1], [x2, y2], ...].
|
|
4
4
|
For templates, we use svg data from the [KanjiVG project](http://kanjivg.tagaini.net/)
|
5
5
|
|
6
6
|
The engine takes 3 steps to perform the recognition of an input pattern.
|
7
|
+
|
7
8
|
1. Preprocessing
|
9
|
+
|
8
10
|
The preprocessing step consists of smoothing, normalizing, interpolating and downsampling of the data points.
|
11
|
+
|
9
12
|
2. Feature Extraction
|
13
|
+
|
10
14
|
Smoothed heatmap, significant points and directional feature densities are used as features.
|
11
15
|
A heatmap divides the input pattern in small grids and stores the number of data points in each grid.
|
12
16
|
Significant points are defined as start and end point of a stroke, points on curve or edge.
|
13
17
|
Directional feature densities are introduced in the paper "On-line Recognition of Freely Handwritten Japanese Character Using Directional Feature Density"
|
18
|
+
|
14
19
|
3. Matching
|
20
|
+
|
15
21
|
We use the significant points to perform a coarse recognition of the input pattern, that filters out template patterns with great distance to the input pattern. Next, a mixed distance score of directional feature density and smoothed heatmap is calculated.
|
16
22
|
## Installation
|
17
23
|
|
18
24
|
Add this line to your application's Gemfile:
|
19
25
|
|
20
26
|
```ruby
|
21
|
-
gem 'kvg_character_recognition'
|
27
|
+
gem 'kvg_character_recognition', '~>0.1.1'
|
22
28
|
```
|
23
29
|
|
24
30
|
And then execute:
|
@@ -31,15 +37,14 @@ Or install it yourself as:
|
|
31
37
|
|
32
38
|
## Usage
|
33
39
|
|
34
|
-
1.
|
35
|
-
|
36
|
-
2. Setup the characters table in the database and populate it with kanjivg templates from the [xml release](https://github.com/KanjiVG/kanjivg/releases)
|
40
|
+
1. Setup a json datastore and populate it with kanjivg templates from the [xml release](https://github.com/KanjiVG/kanjivg/releases)
|
37
41
|
```ruby
|
38
42
|
require 'kvg_character_recognition'
|
39
43
|
|
40
|
-
KvgCharacterRecognition::
|
44
|
+
datastore = KvgCharacterRecognition::JSONDatastore.new("characters.json")
|
45
|
+
#ignore the warning
|
41
46
|
|
42
|
-
KvgCharacterRecognition::
|
47
|
+
KvgCharacterRecognition::Trainer.populate_from_xml "kanjivg-20150615-2.xml", datastore
|
43
48
|
```
|
44
49
|
|
45
50
|
3. Recognition
|
@@ -48,7 +53,8 @@ Use an input field of size 300x300 for the best recognition accuracy. The input
|
|
48
53
|
```ruby
|
49
54
|
strokes = [[[99.0, 108.0], [100.0, 108.0], [101.0, 108.0], [101.0, 108.0], [103.0, 108.0], [105.0, 107.0], [107.0, 107.0], [108.0, 107.0], [111.0, 106.0], [111.0, 106.0], [112.0, 106.0], [113.0, 106.0], [114.0, 106.0], [115.0, 105.0], [116.0, 105.0], [118.0, 105.0], [120.0, 105.0], [121.0, 104.0], [122.0, 104.0], [122.0, 104.0], [123.0, 104.0], [124.0, 103.0], [125.0, 103.0], [126.0, 103.0], [127.0, 103.0], [129.0, 102.0], [130.0, 102.0], [132.0, 102.0], [132.0, 101.0], [133.0, 101.0], [135.0, 101.0], [136.0, 101.0], [137.0, 101.0], [138.0, 101.0], [140.0, 101.0], [141.0, 100.0], [142.0, 100.0], [143.0, 100.0], [144.0, 100.0], [145.0, 99.0], [148.0, 99.0], [150.0, 99.0], [151.0, 98.0], [152.0, 98.0], [153.0, 98.0], [154.0, 98.0], [156.0, 97.0], [157.0, 97.0], [158.0, 97.0], [159.0, 97.0], [161.0, 97.0], [162.0, 96.0], [162.0, 96.0], [164.0, 96.0], [165.0, 96.0], [166.0, 96.0], [167.0, 96.0], [169.0, 95.0], [170.0, 95.0], [171.0, 95.0], [172.0, 95.0], [173.0, 95.0], [174.0, 95.0]], [[53.0, 190.0], [54.0, 190.0], [56.0, 190.0], [57.0, 190.0], [59.0, 190.0], [61.0, 190.0], [63.0, 189.0], [66.0, 189.0], [67.0, 189.0], [68.0, 189.0], [69.0, 189.0], [71.0, 189.0], [72.0, 188.0], [72.0, 188.0], [74.0, 188.0], [76.0, 187.0], [78.0, 187.0], [80.0, 187.0], [81.0, 187.0], [82.0, 186.0], [84.0, 186.0], [87.0, 186.0], [89.0, 185.0], [91.0, 185.0], [93.0, 185.0], [95.0, 184.0], [98.0, 184.0], [100.0, 183.0], [102.0, 183.0], [104.0, 183.0], [106.0, 183.0], [110.0, 182.0], [111.0, 182.0], [112.0, 182.0], [115.0, 182.0], [118.0, 182.0], [120.0, 182.0], [122.0, 182.0], [125.0, 182.0], [128.0, 181.0], [130.0, 181.0], [133.0, 180.0], [136.0, 180.0], [141.0, 180.0], [143.0, 179.0], [146.0, 179.0], [150.0, 179.0], [152.0, 178.0], [155.0, 178.0], [158.0, 178.0], [159.0, 178.0], [162.0, 177.0], [164.0, 177.0], [167.0, 177.0], [170.0, 177.0], [173.0, 176.0], [176.0, 176.0], [179.0, 176.0], [182.0, 175.0], [187.0, 175.0], [189.0, 174.0], [192.0, 174.0], [194.0, 174.0], [196.0, 173.0], [199.0, 173.0], [202.0, 173.0], [204.0, 172.0], [206.0, 172.0], [209.0, 172.0], [211.0, 172.0], [212.0, 172.0], [215.0, 172.0], [217.0, 172.0], [219.0, 171.0], [221.0, 171.0], [221.0, 172.0]]]
|
50
55
|
|
51
|
-
|
56
|
+
datastore = KvgCharacterRecognition::JSONDatastore.new("characters.json") #this will initialize datastore once for the entire usage
|
57
|
+
scores = KvgCharacterRecognition::Recognizer.scores strokes, datastore
|
52
58
|
|
53
59
|
irb(main):004:0> scores.take 10
|
54
60
|
=> [[1.524079282599697, 60, "二"], [2.8346163809971143, 1373, "工"], [3.0987422100694757, 7, "上"], [3.127346308294038, 365, "冫"], [3.439293212191952, 6, "三"], [3.4890481845638304, 3770, "立"], [3.541524904953307, 2721, "江"], [3.641178875851016, 569, "厂"], [3.6447144433336294, 72, "亠"], [3.7498483818966353, 2706, "氵"]]
|
@@ -73,9 +79,6 @@ Don't forget to redo the whole database step after changing the configuration.
|
|
73
79
|
#from yaml file
|
74
80
|
Kvgcharacterrecognition.configure_with(path_to_yml)
|
75
81
|
|
76
|
-
#configure database with yml
|
77
|
-
#TODO why is postgres slower than sqlite?
|
78
|
-
Kvgcharacterrecognition.configure_database(path_to_yml)
|
79
82
|
```
|
80
83
|
|
81
84
|
|
@@ -26,15 +26,15 @@ Gem::Specification.new do |spec|
|
|
26
26
|
raise "RubyGems 2.0 or newer is required to protect against public gem pushes."
|
27
27
|
end
|
28
28
|
|
29
|
-
spec.files = `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
29
|
+
spec.files = `git ls-files -z`.split("\x0").reject { |f| f == 'kvg_character_recognition-0.1.1.gem' || f.match(%r{^(test|spec|features)/}) }
|
30
30
|
spec.bindir = "exe"
|
31
31
|
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
32
32
|
spec.require_paths = ["lib"]
|
33
33
|
|
34
|
+
spec.add_dependency "parallel"
|
34
35
|
spec.add_dependency "nokogiri"
|
35
|
-
spec.add_dependency "sequel"
|
36
|
-
spec.add_dependency "sqlite3"
|
37
36
|
spec.add_dependency "bundler", "~> 1.10"
|
38
37
|
spec.add_development_dependency "rake", "~> 10.0"
|
39
38
|
spec.add_development_dependency "rspec"
|
39
|
+
spec.add_development_dependency "pry"
|
40
40
|
end
|
@@ -6,7 +6,6 @@ Dir[File.join(File.dirname(__FILE__), '/kvg_character_recognition/*.rb')].each {
|
|
6
6
|
|
7
7
|
module KvgCharacterRecognition
|
8
8
|
|
9
|
-
@db = Sequel.connect('sqlite://characters.db')
|
10
9
|
CONFIG = {
|
11
10
|
size: 109, #fixed canvas size of kanjivg data
|
12
11
|
downsample_interval: 4,
|
@@ -34,22 +33,4 @@ module KvgCharacterRecognition
|
|
34
33
|
|
35
34
|
configure(config)
|
36
35
|
end
|
37
|
-
|
38
|
-
#Configure database
|
39
|
-
def self.configure_database(yml)
|
40
|
-
begin
|
41
|
-
db_config = YAML::load(IO.read(yml))
|
42
|
-
rescue Errno::ENOENT
|
43
|
-
log(:warning, "YAML configuration file couldn't be found. Using defaults."); return
|
44
|
-
rescue Psych::SyntaxError
|
45
|
-
log(:warning, "YAML configuration file contains invalid syntax. Using defaults."); return
|
46
|
-
end
|
47
|
-
@db = Sequel.connect(yml)
|
48
|
-
end
|
49
|
-
|
50
|
-
#getter
|
51
|
-
def self.db
|
52
|
-
@db
|
53
|
-
end
|
54
|
-
|
55
36
|
end
|
@@ -0,0 +1,35 @@
|
|
1
|
+
require 'json'
|
2
|
+
|
3
|
+
module KvgCharacterRecognition
|
4
|
+
class JSONDatastore
|
5
|
+
def initialize filename = 'characters.json'
|
6
|
+
@data = load_file(filename)
|
7
|
+
@filename = filename
|
8
|
+
end
|
9
|
+
|
10
|
+
def load_file filename
|
11
|
+
begin
|
12
|
+
JSON.parse(File.read(filename, encoding: 'utf-8'), symbolize_names: true)
|
13
|
+
rescue
|
14
|
+
puts "WARNING: Can't load file, returning empty character collection."
|
15
|
+
[]
|
16
|
+
end
|
17
|
+
end
|
18
|
+
|
19
|
+
def characters_in_stroke_range range
|
20
|
+
@data.select { |character| range === character[:number_of_strokes] }
|
21
|
+
end
|
22
|
+
|
23
|
+
def store character
|
24
|
+
@data.push character
|
25
|
+
end
|
26
|
+
|
27
|
+
def persist!
|
28
|
+
dump @filename
|
29
|
+
end
|
30
|
+
|
31
|
+
def dump filename
|
32
|
+
File.write(filename, @data.to_json)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
@@ -148,17 +148,6 @@ module KvgCharacterRecognition
|
|
148
148
|
points
|
149
149
|
end
|
150
150
|
|
151
|
-
#This methods calculates the euclidean distance between 2 points
|
152
|
-
#Params:
|
153
|
-
#- p1, p2: [x, y]
|
154
|
-
def self.euclidean_distance(p1, p2)
|
155
|
-
sum_of_squares = 0
|
156
|
-
p1.each_with_index do |p1_coord,index|
|
157
|
-
sum_of_squares += (p1_coord - p2[index]) ** 2
|
158
|
-
end
|
159
|
-
Math.sqrt( sum_of_squares )
|
160
|
-
end
|
161
|
-
|
162
151
|
#This method interpolates points into a stroke with given distance
|
163
152
|
#The algorithm is taken from the paper preprocessing techniques for online character recognition
|
164
153
|
def self.interpolate stroke, d=0.5
|
@@ -171,7 +160,7 @@ module KvgCharacterRecognition
|
|
171
160
|
point = stroke[index]
|
172
161
|
|
173
162
|
#only consider point with greater than d distance to current point
|
174
|
-
if euclidean_distance(current, point) < d
|
163
|
+
if Math.euclidean_distance(current, point) < d
|
175
164
|
index += 1
|
176
165
|
else
|
177
166
|
|
@@ -1,27 +1,32 @@
|
|
1
1
|
require 'matrix'
|
2
|
+
require 'parallel'
|
2
3
|
module KvgCharacterRecognition
|
3
4
|
#This class contains methods calculating similarity scores between input pattern and template patterns
|
4
|
-
|
5
|
+
module Recognizer
|
6
|
+
@thread_count = 10
|
5
7
|
|
6
8
|
#This method selects all templates from the database which should be further examined
|
7
9
|
#It filtered out those characters with a too great difference in number of strokes to the input character
|
8
|
-
def self.select_templates strokes
|
10
|
+
def self.select_templates strokes, datastore
|
9
11
|
min = strokes.count <= 5 ? strokes.count : strokes.count - 5
|
10
12
|
max = strokes.count + 10
|
11
|
-
|
13
|
+
datastore.characters_in_stroke_range(min..max)
|
12
14
|
end
|
13
15
|
|
14
16
|
#This method uses heatmap of significant points to coarse recognize the input pattern
|
15
17
|
#Params:
|
16
18
|
#+strokes+:: strokes should be preprocessed
|
17
|
-
|
19
|
+
#+datastore+:: JSONDatastore or custom datastore type having method characters_in_stroke_range(min..max)
|
20
|
+
def self.coarse_recognize strokes, datastore
|
18
21
|
heatmap = FeatureExtractor.heatmap(Preprocessor.significant_points(strokes), CONFIG[:significant_points_heatmap_grid], CONFIG[:size]).to_a
|
19
22
|
|
20
|
-
templates = select_templates strokes
|
21
|
-
|
23
|
+
templates = select_templates strokes, datastore
|
24
|
+
|
25
|
+
# Use threads to accelerate the process
|
26
|
+
Parallel.map(templates, in_threads: @thread_count) do |candidate|
|
22
27
|
candidate_heatmap = candidate[:heatmap_significant_points].split(",").map(&:to_f)
|
23
28
|
|
24
|
-
score =
|
29
|
+
score = Math.euclidean_distance(heatmap, candidate_heatmap)
|
25
30
|
[score.round(3), candidate]
|
26
31
|
end
|
27
32
|
end
|
@@ -31,7 +36,8 @@ module KvgCharacterRecognition
|
|
31
36
|
#2. euclidean distance of directional feature densities in average
|
32
37
|
#Params:
|
33
38
|
#+strokes+:: strokes are not preprocessed
|
34
|
-
|
39
|
+
#+datastore+:: JSONDatastore or custom datastore type having method characters_in_stroke_range(min..max)
|
40
|
+
def self.scores strokes, datastore
|
35
41
|
#preprocess strokes
|
36
42
|
#with smoothing
|
37
43
|
strokes = Preprocessor.preprocess(strokes, CONFIG[:interpolate_distance], CONFIG[:downsample_interval], true)
|
@@ -42,18 +48,18 @@ module KvgCharacterRecognition
|
|
42
48
|
|
43
49
|
#dump half of the templates after coarse recognition
|
44
50
|
#collection is in the form [[score, c1], [score, c2] ...]
|
45
|
-
collection = coarse_recognize(strokes).sort{ |a, b| a[0] <=> b[0] }
|
51
|
+
collection = coarse_recognize(strokes, datastore).sort{ |a, b| a[0] <=> b[0] }
|
46
52
|
|
47
|
-
scores = collection.take(collection.count / 2)
|
48
|
-
direction_score = (
|
49
|
-
|
50
|
-
|
51
|
-
|
53
|
+
scores = Parallel.map(collection.take(collection.count / 2)) do |cand|
|
54
|
+
direction_score = (Math.euclidean_distance(directions[0], cand[1][:direction_e1].split(",").map(&:to_f)) +
|
55
|
+
Math.euclidean_distance(directions[1], cand[1][:direction_e2].split(",").map(&:to_f)) +
|
56
|
+
Math.euclidean_distance(directions[2], cand[1][:direction_e3].split(",").map(&:to_f)) +
|
57
|
+
Math.euclidean_distance(directions[3], cand[1][:direction_e4].split(",").map(&:to_f)) ) / 4
|
52
58
|
|
53
|
-
heatmap_score =
|
59
|
+
heatmap_score = Math.euclidean_distance(heatmap_smoothed, cand[1][:heatmap_smoothed].split(",").map(&:to_f))
|
54
60
|
|
55
61
|
mix = (direction_score / 100) + heatmap_score
|
56
|
-
[mix/2, cand[1]
|
62
|
+
[mix/2, cand[1]]
|
57
63
|
end
|
58
64
|
|
59
65
|
scores.sort{ |a, b| a[0] <=> b[0] }
|
@@ -1,49 +1,10 @@
|
|
1
|
-
require 'matrix'
|
2
|
-
require 'nokogiri'
|
3
|
-
|
4
1
|
module KvgCharacterRecognition
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
#This method creates a database table for storing the extracted features of the templates
|
9
|
-
#Arrays of points will be serialized and stored as string
|
10
|
-
#Following fields are created:
|
11
|
-
# - primary_key :id
|
12
|
-
# - String :value
|
13
|
-
# - Integer :codepoint
|
14
|
-
# - String :serialized_strokes i.e. [stroke, x, y]
|
15
|
-
# - String :direction_e1
|
16
|
-
# - String :direction_e2
|
17
|
-
# - String :direction_e3
|
18
|
-
# - String :direction_e4
|
19
|
-
# - String :heatmap_smoothed
|
20
|
-
# - String :heatmap_significant_points
|
21
|
-
def self.setup
|
22
|
-
KvgCharacterRecognition.db.create_table :characters do
|
23
|
-
primary_key :id
|
24
|
-
String :value
|
25
|
-
Integer :codepoint
|
26
|
-
Integer :number_of_strokes
|
27
|
-
String :serialized_strokes
|
28
|
-
String :direction_e1
|
29
|
-
String :direction_e2
|
30
|
-
String :direction_e3
|
31
|
-
String :direction_e4
|
32
|
-
String :heatmap_smoothed
|
33
|
-
String :heatmap_significant_points
|
34
|
-
end
|
35
|
-
|
36
|
-
end
|
37
|
-
|
38
|
-
#Drop created table
|
39
|
-
def self.drop
|
40
|
-
KvgCharacterRecognition.db.drop_table(:characters) if KvgCharacterRecognition.db.table_exists?(:characters)
|
41
|
-
end
|
42
|
-
|
43
|
-
#This method populates the database table with parsed template patterns from the kanjivg file in xml format
|
2
|
+
module Trainer
|
3
|
+
#This method populates the datastore with parsed template patterns from the kanjivg file in xml format
|
44
4
|
#Params:
|
45
5
|
#+xml+:: download the latest xml release from https://github.com/KanjiVG/kanjivg/releases
|
46
|
-
|
6
|
+
#+datastore+:: JSONDatastore or custom datastore type having methods store, persist!
|
7
|
+
def self.populate_from_xml xml, datastore
|
47
8
|
file = File.open(xml) { |f| Nokogiri::XML(f) }
|
48
9
|
|
49
10
|
file.xpath("//kanji").each do |kanji|
|
@@ -85,7 +46,8 @@ module KvgCharacterRecognition
|
|
85
46
|
|
86
47
|
#Store to database
|
87
48
|
#--------------
|
88
|
-
|
49
|
+
character = {
|
50
|
+
value: value,
|
89
51
|
codepoint: codepoint.hex,
|
90
52
|
number_of_strokes: strokes.count,
|
91
53
|
serialized_strokes: serialized.join(","),
|
@@ -95,9 +57,12 @@ module KvgCharacterRecognition
|
|
95
57
|
direction_e4: direction[3].join(","),
|
96
58
|
heatmap_smoothed: heatmap_smoothed.to_a.join(","),
|
97
59
|
heatmap_significant_points: heatmap_significant_points.to_a.join(",")
|
60
|
+
}
|
61
|
+
|
62
|
+
datastore.store character
|
98
63
|
end
|
99
64
|
|
65
|
+
datastore.persist!
|
100
66
|
end
|
101
|
-
|
102
67
|
end
|
103
68
|
end
|
@@ -1,3 +1,17 @@
|
|
1
|
+
module Math
|
2
|
+
#Add euclidean distance method to ruby Math module
|
3
|
+
#This methods calculates the euclidean distance between 2 points
|
4
|
+
#Params:
|
5
|
+
#- p1, p2: [x, y]
|
6
|
+
def self.euclidean_distance(p1, p2)
|
7
|
+
sum_of_squares = 0
|
8
|
+
p1.each_with_index do |p1_coord,index|
|
9
|
+
sum_of_squares += (p1_coord - p2[index]) ** 2
|
10
|
+
end
|
11
|
+
Math.sqrt( sum_of_squares )
|
12
|
+
end
|
13
|
+
end
|
14
|
+
|
1
15
|
module KvgCharacterRecognition
|
2
16
|
|
3
17
|
#This class can be used for storing heatmap count and directional feature densities
|
metadata
CHANGED
@@ -1,31 +1,17 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: kvg_character_recognition
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.2
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Jiayi Zheng
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2016-01-
|
11
|
+
date: 2016-01-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
|
-
name:
|
15
|
-
requirement: !ruby/object:Gem::Requirement
|
16
|
-
requirements:
|
17
|
-
- - ">="
|
18
|
-
- !ruby/object:Gem::Version
|
19
|
-
version: '0'
|
20
|
-
type: :runtime
|
21
|
-
prerelease: false
|
22
|
-
version_requirements: !ruby/object:Gem::Requirement
|
23
|
-
requirements:
|
24
|
-
- - ">="
|
25
|
-
- !ruby/object:Gem::Version
|
26
|
-
version: '0'
|
27
|
-
- !ruby/object:Gem::Dependency
|
28
|
-
name: sequel
|
14
|
+
name: parallel
|
29
15
|
requirement: !ruby/object:Gem::Requirement
|
30
16
|
requirements:
|
31
17
|
- - ">="
|
@@ -39,7 +25,7 @@ dependencies:
|
|
39
25
|
- !ruby/object:Gem::Version
|
40
26
|
version: '0'
|
41
27
|
- !ruby/object:Gem::Dependency
|
42
|
-
name:
|
28
|
+
name: nokogiri
|
43
29
|
requirement: !ruby/object:Gem::Requirement
|
44
30
|
requirements:
|
45
31
|
- - ">="
|
@@ -94,6 +80,20 @@ dependencies:
|
|
94
80
|
- - ">="
|
95
81
|
- !ruby/object:Gem::Version
|
96
82
|
version: '0'
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: pry
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - ">="
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '0'
|
90
|
+
type: :development
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - ">="
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '0'
|
97
97
|
description: "This gem contains a CJK-character recognition engine using pattern/template
|
98
98
|
matching techniques.\n It can recognize stroke-order and stroke-number free handwritten
|
99
99
|
character patterns in the format [stroke1, stroke2 ...].\n A stroke is an array
|
@@ -117,10 +117,11 @@ files:
|
|
117
117
|
- bin/setup
|
118
118
|
- kvg_character_recognition.gemspec
|
119
119
|
- lib/kvg_character_recognition.rb
|
120
|
-
- lib/kvg_character_recognition/
|
120
|
+
- lib/kvg_character_recognition/datastore.rb
|
121
121
|
- lib/kvg_character_recognition/feature_extractor.rb
|
122
122
|
- lib/kvg_character_recognition/preprocessor.rb
|
123
123
|
- lib/kvg_character_recognition/recognizer.rb
|
124
|
+
- lib/kvg_character_recognition/trainer.rb
|
124
125
|
- lib/kvg_character_recognition/utils.rb
|
125
126
|
- lib/kvg_character_recognition/version.rb
|
126
127
|
homepage: https://github.com/thebluber/kvg_character_recognition
|