kerplunk-ai-prompts 0.1.8 → 0.1.10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/kerplunk/ai/prompts/templates/analysis/interview.rb +1 -1
- data/lib/kerplunk/ai/prompts/templates/analysis/interview_question.rb +1 -1
- data/lib/kerplunk/ai/prompts/templates/analysis/resume.rb +1 -1
- data/lib/kerplunk/ai/prompts/templates/generation/interview_questions.rb +14 -4
- data/lib/kerplunk/ai/prompts/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 37d5c2f9b01f10439875481c2dd69caf76928256a13ad73a962d7b2a3bbfa834
|
4
|
+
data.tar.gz: 0c7658ae88473659d9ff3fe92dd393d0e53f0cf933a7a8b10fd2eaf60005d8fb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 27e0e38e6db58f33c66f16c2a56fccb1d4745396995e75ef8baf7da35fad314fbd7eea4cd8580e486858808b8d24809ac96052eff4b0af8ddb37b980b20533dc
|
7
|
+
data.tar.gz: 754f3943f92ccb06b23ae78224c28ef1d5a4380cf1d9d030057ea4a5d0e71f8f22939c03d4ebd495d27cf7a7bcbdcf24d16802e88082abc5dc2c9445ccbde123
|
@@ -23,7 +23,7 @@ module Kerplunk
|
|
23
23
|
question_answer_prompts = question_models.collect(&:question_prompt)
|
24
24
|
|
25
25
|
<<~PROMPT
|
26
|
-
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
26
|
+
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
27
27
|
|
28
28
|
You are an expert recruiter. You are performing the interview of a candidate to effectively evaluate them for a new role at #{organization_name}.
|
29
29
|
|
@@ -18,7 +18,7 @@ module Kerplunk
|
|
18
18
|
transcript = "<NOTRANSCRIPT />" if transcript.nil? || transcript.empty?
|
19
19
|
|
20
20
|
<<~PROMPT
|
21
|
-
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
21
|
+
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
22
22
|
|
23
23
|
|
24
24
|
You are an expert recruiter. You are performing the interview of a candidate to effectively evaluate them for their #{question_type} skills. Please provide a score from 1 to 100. Please provide three high-level bullet pointed comments about how the candidate did on the question as the `commentary` key.
|
@@ -19,7 +19,7 @@ module Kerplunk
|
|
19
19
|
raise ArgumentError, "resume_text is required" if resume_text.nil? || resume_text.empty?
|
20
20
|
|
21
21
|
<<~PROMPT
|
22
|
-
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
22
|
+
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
23
23
|
|
24
24
|
You are an expert recruiter. You are performing the interview of a candidate to effectively evaluate them for a new role at #{organization_name}. Please analyze the resume added after `====`. Please provide a score from 1 to 100.
|
25
25
|
|
@@ -8,11 +8,19 @@ module Kerplunk
|
|
8
8
|
#
|
9
9
|
# @param description [String] the job description to base the interview questions on
|
10
10
|
# @return [String] the generated prompt for interview questions
|
11
|
-
def self.generate_prompt(description)
|
11
|
+
def self.generate_prompt(description, generate_coding_questions: false)
|
12
12
|
raise ArgumentError, "description is required" if description.nil? || description.empty?
|
13
13
|
|
14
|
+
generate_coding_question_callout = ""
|
15
|
+
generate_coding_question_example = ""
|
16
|
+
|
17
|
+
if generate_coding_questions
|
18
|
+
generate_coding_question_callout = "- provide a scenario to assess the candidate's technical skills which may include code snippets, please ensure any code snippets are the raw source code and not markdown formatted. Please follow the example format below for coding questions."
|
19
|
+
generate_coding_question_example = ', { "question": "question6", "code_blocks": [{ "content": "<source code>", "language": "<language>" }] }'
|
20
|
+
end
|
21
|
+
|
14
22
|
<<~PROMPT
|
15
|
-
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
23
|
+
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
16
24
|
|
17
25
|
You are an expert recruiter. You are performing the interview of a candidate to effectively evaluate them on all fronts: personal skills, technical skills, job-specific skills, soft-skills, and the “x-factor”. The interview should start off with a few questions about the candidate, then go to exactly 5 questions regarding the job posting listed below after ###, and then finally please ask a few questions to help assess personality and cultural fit (you can be creative here). These questions should aim to be simple, effective, empathetic, non-biased, and descriptive enough to be used in further prompts when analyzing the results of the interview.
|
18
26
|
|
@@ -35,17 +43,19 @@ module Kerplunk
|
|
35
43
|
- are not too easy.
|
36
44
|
- are deep enough to assess the candidate’s technical knowledge.
|
37
45
|
- use industry standard terminology and jargon as much as possible.
|
46
|
+
#{generate_coding_question_callout}
|
47
|
+
|
38
48
|
|
39
49
|
If for any reason you are unable to generate the questions, please try again. Please check your output, and rerun the prompt if you are not satisfied with the results.
|
40
50
|
|
41
51
|
An example output should be JSON and look like the below. Please be sure the output is a valid JSON format even if you cannot generate the interview questions. The JSON should not include any markdown or newline characters such as "```json" that would normally be used for rendering in markdown.
|
42
52
|
{
|
43
53
|
"personal_questions": ["question1", "question2", "question3"],
|
44
|
-
"technical_questions": ["question4", "question5"],
|
54
|
+
"technical_questions": ["question4", "question5"#{generate_coding_question_example}],
|
45
55
|
"cultural_questions": ["question6", "question7"]
|
46
56
|
}
|
47
57
|
|
48
|
-
###
|
58
|
+
### Job Description
|
49
59
|
#{description}
|
50
60
|
PROMPT
|
51
61
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: kerplunk-ai-prompts
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.10
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Kyle Schutt
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-07-17 00:00:00.000000000 Z
|
12
12
|
dependencies: []
|
13
13
|
description: A collection of AI prompt templates for use in Kerplunk
|
14
14
|
email:
|