kerplunk-ai-prompts 0.1.18 → 0.1.21
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/kerplunk/ai/models/attendee_transcript.rb +14 -0
- data/lib/kerplunk/ai/models/interview_question.rb +7 -5
- data/lib/kerplunk/ai/prompts/prompt_handler.rb +2 -0
- data/lib/kerplunk/ai/prompts/templates/analysis/copilot_interview.rb +159 -0
- data/lib/kerplunk/ai/prompts/version.rb +1 -1
- data/lib/kerplunk/ai/prompts.rb +1 -0
- metadata +4 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 764160d106f197a673b5e4c8015c84db95773881f6d0f90511efc125023cb90f
|
4
|
+
data.tar.gz: 65690dd8efd05625009d605ad4d1529d559c56015c830cc551efa516cfd8ae20
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 18cdf4be20194d4d2b5747e4e8a3209e63fe1109793403f392d3a7549bbd2daa6f507617c06bd286d5049308ffc786bff00bb970b9c661db8ecc97b8d5a622a3
|
7
|
+
data.tar.gz: bcb3297000ee00c43a4e2e7e41032b1470ca3c18f856fb245ae21413697132bda04d2f5b932d2f4ecf8ebefef61c8187847cd9a2c3bb62bfc11508aa82d80af4
|
@@ -17,7 +17,7 @@ module Kerplunk
|
|
17
17
|
@index = index
|
18
18
|
@content = content
|
19
19
|
@suggested_answers = suggested_answers
|
20
|
-
@transcript = transcript
|
20
|
+
@transcript = transcript
|
21
21
|
@category = category
|
22
22
|
@previous_score = previous_score
|
23
23
|
@code_blocks = code_blocks
|
@@ -27,15 +27,17 @@ module Kerplunk
|
|
27
27
|
#
|
28
28
|
# @return [String] the formatted question prompt
|
29
29
|
def question_prompt
|
30
|
-
<<~QUESTION_PROMPT
|
30
|
+
prompt = <<~QUESTION_PROMPT
|
31
31
|
==== Question No. #{index + 1}
|
32
32
|
Question Text: #{content}
|
33
33
|
Question Code Blocks (if any): #{code_blocks}
|
34
|
-
Suggested Answer: #{suggested_answers}
|
35
|
-
Transcript: #{transcript}
|
36
34
|
Category: #{category}
|
37
|
-
Previous Score: #{previous_score}
|
38
35
|
QUESTION_PROMPT
|
36
|
+
|
37
|
+
prompt << "Previous Score: #{previous_score}\n" if previous_score
|
38
|
+
prompt << "Suggested Answers: #{suggested_answers}\n" if suggested_answers && !suggested_answers.empty?
|
39
|
+
prompt << "Transcript: #{transcript}\n" if transcript && !transcript.empty?
|
40
|
+
prompt
|
39
41
|
end
|
40
42
|
end
|
41
43
|
end
|
@@ -30,6 +30,8 @@ module Kerplunk
|
|
30
30
|
Templates::Analysis::Interview.generate_prompt(*args)
|
31
31
|
when :resume_analysis
|
32
32
|
Templates::Analysis::Resume.generate_prompt(*args)
|
33
|
+
when :copilot_interview_analysis
|
34
|
+
Templates::Analysis::CopilotInterview.generate_prompt(*args)
|
33
35
|
else
|
34
36
|
raise "Unknown prompt key: #{prompt_key}"
|
35
37
|
end
|
@@ -0,0 +1,159 @@
|
|
1
|
+
module Kerplunk
|
2
|
+
module AI
|
3
|
+
module Prompts
|
4
|
+
module Templates
|
5
|
+
module Analysis
|
6
|
+
# The CopilotInterview class is responsible for generating a prompt for copilot interview analysis.
|
7
|
+
class CopilotInterview
|
8
|
+
# Generates a prompt for analyzing an interview.
|
9
|
+
#
|
10
|
+
# @param job_title [String] the title of the job for which the interview is being conducted
|
11
|
+
# @param job_description [String] the description of the job for which the interview is being conducted
|
12
|
+
# @param organization_name [String] the name of the organization conducting the interview
|
13
|
+
# @param question_models [Array<Kerplunk::AI::Models::InterviewQuestion>] an array of InterviewQuestion objects
|
14
|
+
# @param attendee_transcripts [Array<Kerplunk::AI::Models::AttendeeTranscript>] an array of AttendeeTranscript objects
|
15
|
+
# @return [String] the generated prompt for the interview analysis
|
16
|
+
# @raise [TypeError] if question_models is not an array of InterviewQuestion objects
|
17
|
+
def self.generate_prompt(job_title, job_description, organization_name, question_models, attendee_transcripts)
|
18
|
+
raise ArgumentError, "job_title is required" if job_title.nil? || job_title.empty?
|
19
|
+
raise ArgumentError, "job_description is required" if job_description.nil? || job_description.empty?
|
20
|
+
raise ArgumentError, "organization_name is required" if organization_name.nil? || organization_name.empty?
|
21
|
+
|
22
|
+
raise TypeError, "question_models must be an array of InterviewQuestion objects" unless question_models.is_a?(Array) && question_models.all? { |qm| qm.is_a?(Kerplunk::AI::Models::InterviewQuestion) }
|
23
|
+
raise TypeError, "attendee_transcripts must be an array of AttendeeTranscript objects" unless attendee_transcripts.is_a?(Array) && attendee_transcripts.all? { |at| at.is_a?(Kerplunk::AI::Models::AttendeeTranscript) }
|
24
|
+
|
25
|
+
question_answer_prompts = question_models.collect(&:question_prompt)
|
26
|
+
|
27
|
+
attendee_transcripts_array = []
|
28
|
+
attendee_transcripts.each do |attendee|
|
29
|
+
attendee.transcript.each do |entry|
|
30
|
+
attendee_transcripts_array << {
|
31
|
+
name: attendee.name,
|
32
|
+
start_time: entry[:start_time],
|
33
|
+
text: entry[:text]
|
34
|
+
}
|
35
|
+
end
|
36
|
+
end
|
37
|
+
|
38
|
+
# Sort the transcript by start time
|
39
|
+
attendee_transcripts_array.sort_by! { |line| line[:start_time].to_f }
|
40
|
+
|
41
|
+
attendee_transcript_full = attendee_transcripts_array.collect do |entry|
|
42
|
+
"#{entry[:name]} (#{entry[:start_time]}s): #{entry[:text]}"
|
43
|
+
end.join("\n")
|
44
|
+
|
45
|
+
<<~PROMPT
|
46
|
+
Respond with a RAW JSON object only. Do not include any explanatory text outside the JSON.
|
47
|
+
|
48
|
+
You are an expert recruiter. You are performing the interview of a candidate to effectively evaluate them for a new role at #{organization_name}.
|
49
|
+
|
50
|
+
=== Nonnegotiables for the interview analysis
|
51
|
+
|
52
|
+
- If there is a lack of data, please provide a score of 0.
|
53
|
+
- Please do not be afraid to mention in the commentary if there is not enough data to provide an opinion.
|
54
|
+
- If there are inconsistencies in the transcripts, please double-check your analysis.
|
55
|
+
- Please highlight any red flags or toxic behavior.
|
56
|
+
- Always ensure that all the provided JSON format has a value even if there is not enough data available. Providing a score of 0 or stating there is not enough information is perfectly fine.
|
57
|
+
- If a phone screen would be more appropriate, please do not hesitate to indicate that in your analysis.
|
58
|
+
|
59
|
+
=== The Indicators
|
60
|
+
|
61
|
+
When analyzing the interview, please consider the following 6 indicators:
|
62
|
+
|
63
|
+
1. Interview Score
|
64
|
+
|
65
|
+
This is the overall score of the interview and how well the candidate fits the job description.
|
66
|
+
|
67
|
+
2. X-Factor Score
|
68
|
+
|
69
|
+
This is the score of the candidate's personality and cultural fit. This should be something that stood out during the interview or something that the candidate has that is unique and valuable.
|
70
|
+
|
71
|
+
3. Soft Skills Score
|
72
|
+
|
73
|
+
This is the score of the candidate's soft skills. This should be based on inflection and word choice. Please consider their use of language and how they present themselves.
|
74
|
+
|
75
|
+
4. Resume Score
|
76
|
+
|
77
|
+
Based on the candidate's interview, provide a prediction on how the resume will score. This should be based on the candidate's experience and how well they fit the job description.
|
78
|
+
|
79
|
+
5. Culture Fit Score
|
80
|
+
|
81
|
+
This is the score of the candidate's personality and cultural fit. This should be based on the candidate's personality and how well they fit the company culture.
|
82
|
+
|
83
|
+
6. Technical Score
|
84
|
+
|
85
|
+
This is the score of the candidate's technical skills. This should be based on the candidate's technical knowledge and how well they fit the job description.
|
86
|
+
|
87
|
+
=== The Commentary
|
88
|
+
|
89
|
+
In addition to scoring the candidate on various indicators, please provide commentary on the following. We are looking for a short comment on each category as well as a longer detailed commentary. Also, please provide a Pros and Cons statement (one sentence each) about the candidate. Please remember that this will be shown to the candidate so please be positive and constructive.
|
90
|
+
|
91
|
+
1. Analysis
|
92
|
+
|
93
|
+
Overall analysis of the candidate and how they fit the job description and the company culture. The output should include a summary paragraph followed by three succinct highlights in an array.
|
94
|
+
|
95
|
+
2. Soft Skills
|
96
|
+
|
97
|
+
The candidate's soft skills and how they presented themselves during the interview.
|
98
|
+
|
99
|
+
3. Culture Fit
|
100
|
+
|
101
|
+
The candidate's personality and cultural fit.
|
102
|
+
|
103
|
+
4. Feedback
|
104
|
+
|
105
|
+
In the third person voice, generate a one-paragraph feedback report. Analyze the interview for content relevance and depth, determine communication effectiveness, and evaluate cues for professional presentation. Provide specific examples from the interview to substantiate your points and offer constructive suggestions for improvement where applicable.
|
106
|
+
|
107
|
+
=== JSON Output Example
|
108
|
+
Please output the scores in a JSON object. Please make sure that the scores are aggregated by category and are between 1 and 100. An example output should be JSON and look like the below. Please be sure the output is a valid JSON format even if you cannot generate the interview questions. The JSON should not include any markdown or newline characters such as "```json" that would normally be used for rendering in markdown.
|
109
|
+
|
110
|
+
{
|
111
|
+
"scores": {
|
112
|
+
"interview_score": 4.5,
|
113
|
+
"x_factor_score": 4.5,
|
114
|
+
"soft_skills_score": 4.5,
|
115
|
+
"resume_score": 4.5,
|
116
|
+
"culture_fit_score": 4.5,
|
117
|
+
"technical_score": 4.5
|
118
|
+
},
|
119
|
+
"pros_and_cons": {
|
120
|
+
"pros": "The candidate's strengths",
|
121
|
+
"cons": "The candidate's weaknesses"
|
122
|
+
},
|
123
|
+
"commentary": {
|
124
|
+
"analysis": "The candidate overview",
|
125
|
+
"soft_skills": "The candidate's soft skills",
|
126
|
+
"culture_fit": "The candidate's personality and cultural fit",
|
127
|
+
"feedback": "Feedback for the candidate"
|
128
|
+
},
|
129
|
+
"detailed_commentary": {
|
130
|
+
"overview": "The candidate overview of how they did",
|
131
|
+
"conclusion": "The conclusion of the interview",
|
132
|
+
"experience": "The candidate's experience and expertise",
|
133
|
+
"adaptability": "The candidate's adaptability and efficiency",
|
134
|
+
"communication": "The candidate's communication skills and empathy",
|
135
|
+
"professionalism": "The candidate's professionalism and work ethic and dedication",
|
136
|
+
"continuous_improvement": "The candidate's continuous improvement and learning and education",
|
137
|
+
"financial_impact": "The candidate's financial impact and cost-effectiveness and value alignment"
|
138
|
+
}
|
139
|
+
}
|
140
|
+
|
141
|
+
=== The Job Title
|
142
|
+
#{job_title}
|
143
|
+
|
144
|
+
=== The Job Description
|
145
|
+
#{job_description}
|
146
|
+
|
147
|
+
=== The Interview Questions. Not all of the questions will be asked during the interview, please use the full transcript below to verify if a question was asked or not. If a question was not asked, it should not count towards the candidate's score.
|
148
|
+
#{question_answer_prompts.join("\n\n")}
|
149
|
+
|
150
|
+
=== The Full Transcript of the Interview
|
151
|
+
#{attendee_transcript_full}
|
152
|
+
PROMPT
|
153
|
+
end
|
154
|
+
end
|
155
|
+
end
|
156
|
+
end
|
157
|
+
end
|
158
|
+
end
|
159
|
+
end
|
data/lib/kerplunk/ai/prompts.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: kerplunk-ai-prompts
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.21
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Kyle Schutt
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-09-05 00:00:00.000000000 Z
|
12
12
|
dependencies: []
|
13
13
|
description: A collection of AI prompt templates for use in Kerplunk
|
14
14
|
email:
|
@@ -25,9 +25,11 @@ files:
|
|
25
25
|
- README.md
|
26
26
|
- Rakefile
|
27
27
|
- config/initializers/inflections.rb
|
28
|
+
- lib/kerplunk/ai/models/attendee_transcript.rb
|
28
29
|
- lib/kerplunk/ai/models/interview_question.rb
|
29
30
|
- lib/kerplunk/ai/prompts.rb
|
30
31
|
- lib/kerplunk/ai/prompts/prompt_handler.rb
|
32
|
+
- lib/kerplunk/ai/prompts/templates/analysis/copilot_interview.rb
|
31
33
|
- lib/kerplunk/ai/prompts/templates/analysis/interview.rb
|
32
34
|
- lib/kerplunk/ai/prompts/templates/analysis/interview_question.rb
|
33
35
|
- lib/kerplunk/ai/prompts/templates/analysis/resume.rb
|