kdtree 0.3 → 0.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +2 -0
- data/.travis.yml +5 -7
- data/README.md +36 -7
- data/Rakefile +4 -4
- data/ext/kdtree/kdtree.c +2 -2
- data/kdtree.gemspec +4 -2
- data/test/test_kdtree.rb +5 -7
- metadata +33 -30
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 4d1d98fec6ed9f4ce19cd558098cbe6038c9d77d
|
4
|
+
data.tar.gz: 4b2f5d14367f4210146a7dea6e0e6dbd62ba9077
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 68331f4219424518d298fa21b5aec5dd6353909a2e0fec61202894fd7b87aeb91d35761afee2b28f1edfc73547834e790b4ee414b18f40b5eab4c4b67d132c87
|
7
|
+
data.tar.gz: 506bd2057fec9dd7f9a82132e947ee37fdf2533ed70fa6c721e4643b113f884e32a8f4219ec20459b1e6a812031ff97b3cccf1b71ea93daf3a31941a87a99a1c
|
data/.gitignore
CHANGED
data/.travis.yml
CHANGED
data/README.md
CHANGED
@@ -1,24 +1,50 @@
|
|
1
1
|
## Kdtree
|
2
2
|
|
3
|
+
[![Build Status](https://travis-ci.org/gurgeous/kdtree.svg?branch=master)](https://travis-ci.org/gurgeous/kdtree)
|
4
|
+
|
3
5
|
A kd tree is a data structure that recursively partitions the world in order to rapidly answer nearest neighbor queries. A generic kd tree can support any number of dimensions, and can return either the nearest neighbor or a set of N nearest neighbors.
|
4
6
|
|
5
7
|
This gem is a blazingly fast, native, 2d kdtree. It's specifically built to find the nearest neighbor when searching millions of points. It's used in production at Urbanspoon and several other companies.
|
6
8
|
|
7
9
|
The first version of this gem was released back in 2009. See the original [blog post](http://gurge.com/2009/10/22/ruby-nearest-neighbor-fast-kdtree-gem/) for the full story. Wikipedia has a great [article on kdtrees](http://en.wikipedia.org/wiki/K-d_tree).
|
8
10
|
|
11
|
+
Note: kdtree 0.3 obsoletes these forks: ghazel-kdtree, groupon-kdtree, tupalo-kdree. Thanks guys!
|
12
|
+
|
9
13
|
### Usage
|
10
14
|
|
11
|
-
|
15
|
+
First, install kdtree:
|
16
|
+
|
17
|
+
```sh
|
18
|
+
$ sudo gem install kdtree
|
19
|
+
```
|
20
|
+
|
21
|
+
It's easy to use:
|
12
22
|
|
13
|
-
* **Kdtree.new(points)** - construct a new tree. Each point should be of the form `[x, y, id]`, where `x/y` are floats and `id` is an int. Not a string, not an object, just an int
|
23
|
+
* **Kdtree.new(points)** - construct a new tree. Each point should be of the form `[x, y, id]`, where `x/y` are floats and `id` is an int. Not a string, not an object, **just an int**.
|
14
24
|
* **kd.nearest(x, y)** - find the nearest point. Returns an id.
|
15
25
|
* **kd.nearestk(x, y, k)** - find the nearest `k` points. Returns an array of ids.
|
16
26
|
|
17
|
-
|
27
|
+
For example:
|
28
|
+
|
29
|
+
```ruby
|
30
|
+
# construct the tree
|
31
|
+
points = []
|
32
|
+
points << [47.6, -122.3, 1] # Seattle id=1
|
33
|
+
points << [45.5, -122.8, 2] # Portland id=2
|
34
|
+
points << [40.7, -74.0, 3] # New York id=3
|
35
|
+
kd = Kdtree.new(points)
|
36
|
+
|
37
|
+
# which city is closest to San Francisco?
|
38
|
+
p kd.nearest(34.1, -118.2) # => 2
|
39
|
+
# which two cities are closest to San Francisco?
|
40
|
+
p kd.nearestk(34.1, -118.2, 2) # => [2, 1]
|
41
|
+
```
|
42
|
+
|
43
|
+
Also, I made it possible to **persist** the tree to disk and load it later. That way you can calculate the tree offline and load it quickly at some future point. Loading a persisted tree w/ 1 millions points takes half a second, as opposed to the 3.5 second build time shown below. At Urbanspoon we persist the tree and rsync it out to other machines. For example:
|
18
44
|
|
19
45
|
```ruby
|
20
46
|
File.open("treefile", "w") { |f| kd.persist(f) }
|
21
|
-
... later ...
|
47
|
+
# ... later ...
|
22
48
|
kd2 = File.open("treefile") { |f| Kdtree.new(f) }
|
23
49
|
```
|
24
50
|
|
@@ -27,16 +53,19 @@ kd2 = File.open("treefile") { |f| Kdtree.new(f) }
|
|
27
53
|
Kdtree is fast. How fast? Using a tree with 1 million points on my i5 2.8ghz:
|
28
54
|
|
29
55
|
```
|
30
|
-
build
|
56
|
+
build (init) 3.52s
|
31
57
|
nearest point 0.000003s
|
32
58
|
nearest 5 points 0.000004s
|
33
59
|
nearest 50 points 0.000014s
|
34
60
|
nearest 255 points 0.000063s
|
61
|
+
|
62
|
+
persist 0.301963s
|
63
|
+
read (init) 0.432676s
|
35
64
|
```
|
36
65
|
|
37
66
|
### Limitations
|
38
67
|
|
39
|
-
* No **editing** allowed! Once you construct a tree you
|
68
|
+
* No **editing** allowed! Once you construct a tree you're stuck with it.
|
40
69
|
* The tree is stored in **one big memory block**, 20 bytes per point. A tree with one million points will allocate a single 19mb block to store its nodes.
|
41
70
|
* Persisted trees are **architecture dependent**, and may not work across different machines due to endian issues.
|
42
71
|
* nearestk is limited to **255 results**
|
@@ -52,7 +81,7 @@ Since this gem was originally released, several folks have contributed important
|
|
52
81
|
|
53
82
|
### Changelog
|
54
83
|
|
55
|
-
#### 0.3
|
84
|
+
#### 0.3
|
56
85
|
|
57
86
|
* Ruby 1.9.x compatibility (@mcerna and others)
|
58
87
|
* renamed KDTree to the more idiomatic Kdtree
|
data/Rakefile
CHANGED
@@ -13,11 +13,11 @@ task :build do
|
|
13
13
|
system "gem build --quiet kdtree.gemspec"
|
14
14
|
end
|
15
15
|
|
16
|
-
task :
|
16
|
+
task install: :build do
|
17
17
|
system "sudo gem install --quiet kdtree-#{spec.version}.gem"
|
18
18
|
end
|
19
19
|
|
20
|
-
task :
|
20
|
+
task release: :build do
|
21
21
|
system "git tag -a #{spec.version} -m 'Tagging #{spec.version}'"
|
22
22
|
system "git push --tags"
|
23
23
|
system "gem push kdtree-#{spec.version}.gem"
|
@@ -37,5 +37,5 @@ Rake::ExtensionTask.new("kdtree", spec)
|
|
37
37
|
Rake::TestTask.new(:test) do |test|
|
38
38
|
test.libs << "test"
|
39
39
|
end
|
40
|
-
task :
|
41
|
-
task :
|
40
|
+
task test: :compile
|
41
|
+
task default: :test
|
data/ext/kdtree/kdtree.c
CHANGED
@@ -278,7 +278,7 @@ static void kdtree_nearest0(struct kdtree_data *kdtreep, int i, float x, float y
|
|
278
278
|
* kd = Kdtree.new(points)
|
279
279
|
*
|
280
280
|
* # which two cities are closest to San Francisco?
|
281
|
-
* kd.
|
281
|
+
* kd.nearestk(34.1, -118.2, 2) #=> [2, 1]
|
282
282
|
*/
|
283
283
|
static VALUE kdtree_nearestk(VALUE kdtree, VALUE x, VALUE y, VALUE k)
|
284
284
|
{
|
@@ -481,7 +481,7 @@ static void write_all(VALUE io, const void *buf, int len)
|
|
481
481
|
* # which city is closest to San Francisco?
|
482
482
|
* kd.nearest(34.1, -118.2) #=> 2
|
483
483
|
* # which two cities are closest to San Francisco?
|
484
|
-
* kd.
|
484
|
+
* kd.nearestk(34.1, -118.2, 2) #=> [2, 1]
|
485
485
|
*
|
486
486
|
* For more information on kd trees, see:
|
487
487
|
*
|
data/kdtree.gemspec
CHANGED
@@ -1,10 +1,11 @@
|
|
1
1
|
Gem::Specification.new do |s|
|
2
2
|
s.name = "kdtree"
|
3
|
-
s.version = "0.
|
3
|
+
s.version = "0.4"
|
4
4
|
|
5
5
|
s.authors = ["Adam Doppelt"]
|
6
6
|
s.email = ["amd@gurge.com"]
|
7
7
|
s.homepage = "http://github.com/gurgeous/kdtree"
|
8
|
+
s.license = "MIT"
|
8
9
|
s.summary = "Blazingly fast, native 2d kdtree."
|
9
10
|
s.description = <<EOF
|
10
11
|
A kdtree is a data structure that makes it possible to quickly solve
|
@@ -13,7 +14,8 @@ production use with millions of points.
|
|
13
14
|
EOF
|
14
15
|
|
15
16
|
s.rubyforge_project = "kdtree"
|
16
|
-
s.add_development_dependency "
|
17
|
+
s.add_development_dependency "minitest", "~> 5.0"
|
18
|
+
s.add_development_dependency "rake-compiler", "~> 1.0"
|
17
19
|
|
18
20
|
s.files = `git ls-files`.split("\n")
|
19
21
|
s.test_files = `git ls-files -- {test,spec,features}/*`.split("\n")
|
data/test/test_kdtree.rb
CHANGED
@@ -1,13 +1,13 @@
|
|
1
1
|
require "benchmark"
|
2
2
|
require "kdtree"
|
3
3
|
require "tempfile"
|
4
|
-
require "
|
4
|
+
require "minitest/autorun"
|
5
5
|
|
6
6
|
#
|
7
7
|
# create a tree
|
8
8
|
#
|
9
9
|
|
10
|
-
class KdtreeTest < Test
|
10
|
+
class KdtreeTest < Minitest::Test
|
11
11
|
TMP = "#{Dir.tmpdir}/kdtree_test"
|
12
12
|
|
13
13
|
def setup
|
@@ -16,7 +16,7 @@ class KdtreeTest < Test::Unit::TestCase
|
|
16
16
|
end
|
17
17
|
|
18
18
|
def teardown
|
19
|
-
File.unlink(TMP) if File.
|
19
|
+
File.unlink(TMP) if File.exist?(TMP)
|
20
20
|
end
|
21
21
|
|
22
22
|
def test_nearest
|
@@ -72,7 +72,7 @@ class KdtreeTest < Test::Unit::TestCase
|
|
72
72
|
|
73
73
|
def test_bad_magic
|
74
74
|
File.open(TMP, "w") { |f| f.puts "That ain't right" }
|
75
|
-
|
75
|
+
assert_raises RuntimeError do
|
76
76
|
File.open(TMP, "r") { |f| Kdtree.new(f) }
|
77
77
|
end
|
78
78
|
end
|
@@ -83,7 +83,7 @@ class KdtreeTest < Test::Unit::TestCase
|
|
83
83
|
|
84
84
|
[2, 10, 100].each do |len|
|
85
85
|
File.open(TMP, "w") { |f| f.write(bytes[0, len]) }
|
86
|
-
|
86
|
+
assert_raises EOFError do
|
87
87
|
File.open(TMP, "r") { |f| Kdtree.new(f) }
|
88
88
|
end
|
89
89
|
end
|
@@ -110,9 +110,7 @@ class KdtreeTest < Test::Unit::TestCase
|
|
110
110
|
|
111
111
|
ks.each do |k|
|
112
112
|
bm.report "100 queries (#{k})" do
|
113
|
-
total = count = 0
|
114
113
|
100.times do
|
115
|
-
tm = Time.now
|
116
114
|
if k == 1
|
117
115
|
kdtree.nearest(rand_coord, rand_coord)
|
118
116
|
else
|
metadata
CHANGED
@@ -1,39 +1,47 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: kdtree
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: '0.
|
5
|
-
prerelease:
|
4
|
+
version: '0.4'
|
6
5
|
platform: ruby
|
7
6
|
authors:
|
8
7
|
- Adam Doppelt
|
9
8
|
autorequire:
|
10
9
|
bindir: bin
|
11
10
|
cert_chain: []
|
12
|
-
date:
|
11
|
+
date: 2017-03-28 00:00:00.000000000 Z
|
13
12
|
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: minitest
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '5.0'
|
20
|
+
type: :development
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '5.0'
|
14
27
|
- !ruby/object:Gem::Dependency
|
15
28
|
name: rake-compiler
|
16
29
|
requirement: !ruby/object:Gem::Requirement
|
17
|
-
none: false
|
18
30
|
requirements:
|
19
|
-
- -
|
31
|
+
- - "~>"
|
20
32
|
- !ruby/object:Gem::Version
|
21
|
-
version: '0'
|
33
|
+
version: '1.0'
|
22
34
|
type: :development
|
23
35
|
prerelease: false
|
24
36
|
version_requirements: !ruby/object:Gem::Requirement
|
25
|
-
none: false
|
26
37
|
requirements:
|
27
|
-
- -
|
38
|
+
- - "~>"
|
28
39
|
- !ruby/object:Gem::Version
|
29
|
-
version: '0'
|
30
|
-
description:
|
31
|
-
|
40
|
+
version: '1.0'
|
41
|
+
description: |
|
42
|
+
A kdtree is a data structure that makes it possible to quickly solve
|
32
43
|
the nearest neighbor problem. This is a native 2d kdtree suitable for
|
33
|
-
|
34
44
|
production use with millions of points.
|
35
|
-
|
36
|
-
'
|
37
45
|
email:
|
38
46
|
- amd@gurge.com
|
39
47
|
executables: []
|
@@ -41,8 +49,8 @@ extensions:
|
|
41
49
|
- ext/kdtree/extconf.rb
|
42
50
|
extra_rdoc_files: []
|
43
51
|
files:
|
44
|
-
- .gitignore
|
45
|
-
- .travis.yml
|
52
|
+
- ".gitignore"
|
53
|
+
- ".travis.yml"
|
46
54
|
- Gemfile
|
47
55
|
- LICENSE
|
48
56
|
- README.md
|
@@ -53,33 +61,28 @@ files:
|
|
53
61
|
- lib/kdtree.rb
|
54
62
|
- test/test_kdtree.rb
|
55
63
|
homepage: http://github.com/gurgeous/kdtree
|
56
|
-
licenses:
|
64
|
+
licenses:
|
65
|
+
- MIT
|
66
|
+
metadata: {}
|
57
67
|
post_install_message:
|
58
68
|
rdoc_options: []
|
59
69
|
require_paths:
|
60
70
|
- lib
|
61
71
|
required_ruby_version: !ruby/object:Gem::Requirement
|
62
|
-
none: false
|
63
72
|
requirements:
|
64
|
-
- -
|
73
|
+
- - ">="
|
65
74
|
- !ruby/object:Gem::Version
|
66
75
|
version: '0'
|
67
|
-
segments:
|
68
|
-
- 0
|
69
|
-
hash: -3094601017742930682
|
70
76
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
71
|
-
none: false
|
72
77
|
requirements:
|
73
|
-
- -
|
78
|
+
- - ">="
|
74
79
|
- !ruby/object:Gem::Version
|
75
80
|
version: '0'
|
76
|
-
segments:
|
77
|
-
- 0
|
78
|
-
hash: -3094601017742930682
|
79
81
|
requirements: []
|
80
82
|
rubyforge_project: kdtree
|
81
|
-
rubygems_version:
|
83
|
+
rubygems_version: 2.6.11
|
82
84
|
signing_key:
|
83
|
-
specification_version:
|
85
|
+
specification_version: 4
|
84
86
|
summary: Blazingly fast, native 2d kdtree.
|
85
|
-
test_files:
|
87
|
+
test_files:
|
88
|
+
- test/test_kdtree.rb
|