karafka-rdkafka 0.19.1 → 0.19.2.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 390b5be16a78ebe2b6f994429cfe32e51bc11d88735ef28bfa57b9b8ba34d73e
4
- data.tar.gz: 66003597faaddea33ab464aa3ec9dd906f3676f85e12e1e7c7bc2379e35feef4
3
+ metadata.gz: d274be74f9ce13d34e8b4151809a030c7965328f39929a7dd9edcda480c38b82
4
+ data.tar.gz: 2a31bab8e00b6b37479e65d717ba797bd1fa5588f6f22304396bd0f760e08782
5
5
  SHA512:
6
- metadata.gz: b7856bee34f2d3d4abe28013d3a8905d4166067f5ce4a1cddc4dc6572d0ebfb03f412a3d4a53ac515a3523cbc8088774699da8fa2fad8d88272db4d08e2ec81e
7
- data.tar.gz: 0d1fbbfce6be2bb41cfc7db66f53030e907f4c9c7f8e2251aabdeb7ca9786d120e22e971eebf426dbdd57dcb60c198506204cb2b4443333744c65339d9956746
6
+ metadata.gz: 21b2985059a41f125539f3921b81c2768da2b48a86e1370e81925641dfd353fa36c9f8f0f10cb5f60972eb6ad544b210e566f0f2f9f7fcc27680b64fe6ddff20
7
+ data.tar.gz: 26c74433fa18d9ffdd1e516bcaa9a8fa3c17cbbf1afe7efb2f749a8219d2ce5540adf440635ce1bf104d1e7776ccd01a598b2ff3e1d2570eb29de9e2b079fe08
checksums.yaml.gz.sig CHANGED
Binary file
@@ -31,9 +31,13 @@ jobs:
31
31
  - '3.3'
32
32
  - '3.2'
33
33
  - '3.1'
34
+ - 'jruby-10.0'
34
35
  include:
35
36
  - ruby: '3.4'
36
37
  coverage: 'true'
38
+ - ruby: 'jruby-10.0'
39
+ continue-on-error: true
40
+
37
41
  steps:
38
42
  - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
39
43
  with:
@@ -47,7 +51,7 @@ jobs:
47
51
  docker compose up -d || (sleep 5 && docker compose up -d)
48
52
 
49
53
  - name: Set up Ruby
50
- uses: ruby/setup-ruby@354a1ad156761f5ee2b7b13fa8e09943a5e8d252 # v1.229.0
54
+ uses: ruby/setup-ruby@eaecf785f6a34567a6d97f686bbb7bccc1ac1e5c # v1.237.0
51
55
  with:
52
56
  ruby-version: ${{matrix.ruby}}
53
57
  bundler-cache: true
@@ -55,6 +59,7 @@ jobs:
55
59
  - name: Run all specs
56
60
  env:
57
61
  GITHUB_COVERAGE: ${{matrix.coverage}}
62
+ continue-on-error: ${{ matrix.continue-on-error || false }} # Use the matrix value if present
58
63
  run: |
59
64
  set -e
60
65
  bundle install --jobs 4 --retry 3
@@ -73,16 +78,21 @@ jobs:
73
78
  - '3.3'
74
79
  - '3.2'
75
80
  - '3.1'
81
+ - 'jruby-9.4'
82
+ include:
83
+ - ruby: 'jruby-10.0'
84
+ continue-on-error: true
76
85
  steps:
77
86
  - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
78
87
 
79
88
  - name: Set up Ruby
80
- uses: ruby/setup-ruby@354a1ad156761f5ee2b7b13fa8e09943a5e8d252 # v1.229.0
89
+ uses: ruby/setup-ruby@eaecf785f6a34567a6d97f686bbb7bccc1ac1e5c # v1.237.0
81
90
  with:
82
91
  ruby-version: ${{matrix.ruby}}
83
92
  bundler-cache: false
84
93
 
85
94
  - name: Build rdkafka-ruby
95
+ continue-on-error: ${{ matrix.continue-on-error || false }}
86
96
  run: |
87
97
  set -e
88
98
  bundle install --jobs 4 --retry 3
data/.ruby-version CHANGED
@@ -1 +1 @@
1
- 3.4.2
1
+ 3.4.3
data/CHANGELOG.md CHANGED
@@ -1,5 +1,9 @@
1
1
  # Rdkafka Changelog
2
2
 
3
+ ## 0.19.2 (Unreleased)
4
+ - [Enhancement] Replace TTL-based partition count cache with a global cache that reuses `librdkafka` statistics data when possible.
5
+ - [Enhancement] Roll out experimental jruby support.
6
+
3
7
  ## 0.19.1 (2025-04-07)
4
8
  - [Enhancement] Support producing and consuming of headers with mulitple values (KIP-82).
5
9
  - [Enhancement] Allow native Kafka customization poll time.
data/README.md CHANGED
@@ -163,15 +163,16 @@ bundle exec rake produce_messages
163
163
 
164
164
  | rdkafka-ruby | librdkafka | patches |
165
165
  |-|-|-|
166
- | 0.19.1 (2025-04-07) | 2.8.0 (2025-01-07) | yes |
167
- | 0.19.0 (2025-01-20) | 2.8.0 (2025-01-07) | yes |
168
- | 0.18.0 (2024-11-26) | 2.6.1 (2024-11-18) | yes |
169
- | 0.17.4 (2024-09-02) | 2.5.3 (2024-09-02) | yes |
170
- | 0.17.0 (2024-08-01) | 2.5.0 (2024-07-10) | yes |
171
- | 0.16.0 (2024-06-13) | 2.4.0 (2024-05-07) | no |
172
- | 0.15.0 (2023-12-03) | 2.3.0 (2023-10-25) | no |
173
- | 0.14.0 (2023-11-21) | 2.2.0 (2023-07-12) | no |
174
- | 0.13.0 (2023-07-24) | 2.0.2 (2023-01-20) | no |
175
- | 0.12.0 (2022-06-17) | 1.9.0 (2022-06-16) | no |
176
- | 0.11.0 (2021-11-17) | 1.8.2 (2021-10-18) | no |
177
- | 0.10.0 (2021-09-07) | 1.5.0 (2020-07-20) | no |
166
+ | 0.19.2 (Unreleased) | 2.8.0 (2025-01-07) | yes |
167
+ | 0.19.1 (2025-04-07) | 2.8.0 (2025-01-07) | yes |
168
+ | 0.19.0 (2025-01-20) | 2.8.0 (2025-01-07) | yes |
169
+ | 0.18.0 (2024-11-26) | 2.6.1 (2024-11-18) | yes |
170
+ | 0.17.4 (2024-09-02) | 2.5.3 (2024-09-02) | yes |
171
+ | 0.17.0 (2024-08-01) | 2.5.0 (2024-07-10) | yes |
172
+ | 0.16.0 (2024-06-13) | 2.4.0 (2024-05-07) | no |
173
+ | 0.15.0 (2023-12-03) | 2.3.0 (2023-10-25) | no |
174
+ | 0.14.0 (2023-11-21) | 2.2.0 (2023-07-12) | no |
175
+ | 0.13.0 (2023-07-24) | 2.0.2 (2023-01-20) | no |
176
+ | 0.12.0 (2022-06-17) | 1.9.0 (2022-06-16) | no |
177
+ | 0.11.0 (2021-11-17) | 1.8.2 (2021-10-18) | no |
178
+ | 0.10.0 (2021-09-07) | 1.5.0 (2020-07-20) | no |
data/docker-compose.yml CHANGED
@@ -1,7 +1,7 @@
1
1
  services:
2
2
  kafka:
3
3
  container_name: kafka
4
- image: confluentinc/cp-kafka:7.9.0
4
+ image: confluentinc/cp-kafka:7.9.1
5
5
 
6
6
  ports:
7
7
  - 9092:9092
@@ -35,6 +35,8 @@ module Rdkafka
35
35
  RD_KAFKA_OFFSET_STORED = -1000
36
36
  RD_KAFKA_OFFSET_INVALID = -1001
37
37
 
38
+ EMPTY_HASH = {}.freeze
39
+
38
40
  class SizePtr < FFI::Struct
39
41
  layout :value, :size_t
40
42
  end
@@ -215,9 +217,31 @@ module Rdkafka
215
217
  StatsCallback = FFI::Function.new(
216
218
  :int, [:pointer, :string, :int, :pointer]
217
219
  ) do |_client_ptr, json, _json_len, _opaque|
218
- # Pass the stats hash to callback in config
219
220
  if Rdkafka::Config.statistics_callback
220
221
  stats = JSON.parse(json)
222
+
223
+ # If user requested statistics callbacks, we can use the statistics data to get the
224
+ # partitions count for each topic when this data is published. That way we do not have
225
+ # to query this information when user is using `partition_key`. This takes around 0.02ms
226
+ # every statistics interval period (most likely every 5 seconds) and saves us from making
227
+ # any queries to the cluster for the partition count.
228
+ #
229
+ # One edge case is if user would set the `statistics.interval.ms` much higher than the
230
+ # default current partition count refresh (30 seconds). This is taken care of as the lack
231
+ # of reporting to the partitions cache will cause cache expire and blocking refresh.
232
+ #
233
+ # If user sets `topic.metadata.refresh.interval.ms` too high this is on the user.
234
+ #
235
+ # Since this cache is shared, having few consumers and/or producers in one process will
236
+ # automatically improve the querying times even with low refresh times.
237
+ (stats['topics'] || EMPTY_HASH).each do |topic_name, details|
238
+ partitions_count = details['partitions'].keys.reject { |k| k == '-1' }.size
239
+
240
+ next unless partitions_count.positive?
241
+
242
+ Rdkafka::Producer.partitions_count_cache.set(topic_name, partitions_count)
243
+ end
244
+
221
245
  Rdkafka::Config.statistics_callback.call(stats)
222
246
  end
223
247
 
@@ -0,0 +1,216 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Rdkafka
4
+ class Producer
5
+ # Caching mechanism for Kafka topic partition counts to avoid frequent cluster queries
6
+ #
7
+ # This cache is designed to optimize the process of obtaining partition counts for topics.
8
+ # It uses several strategies to minimize Kafka cluster queries:
9
+ #
10
+ # @note Design considerations:
11
+ #
12
+ # 1. Statistics-based updates
13
+ # When statistics callbacks are enabled (via `statistics.interval.ms`), we leverage
14
+ # this data to proactively update the partition counts cache. This approach costs
15
+ # approximately 0.02ms of processing time during each statistics interval (typically
16
+ # every 5 seconds) but eliminates the need for explicit blocking metadata queries.
17
+ #
18
+ # 2. Edge case handling
19
+ # If a user configures `statistics.interval.ms` much higher than the default cache TTL
20
+ # (30 seconds), the cache will still function correctly. When statistics updates don't
21
+ # occur frequently enough, the cache entries will expire naturally, triggering a
22
+ # blocking refresh when needed.
23
+ #
24
+ # 3. User configuration awareness
25
+ # The cache respects user-defined settings. If `topic.metadata.refresh.interval.ms` is
26
+ # set very high, the responsibility for potentially stale data falls on the user. This
27
+ # is an explicit design choice to honor user configuration preferences and align with
28
+ # librdkafka settings.
29
+ #
30
+ # 4. Process-wide efficiency
31
+ # Since this cache is shared across all Rdkafka producers and consumers within a process,
32
+ # having multiple clients improves overall efficiency. Each client contributes to keeping
33
+ # the cache updated, benefiting all other clients.
34
+ #
35
+ # 5. Thread-safety approach
36
+ # The implementation uses fine-grained locking with per-topic mutexes to minimize
37
+ # contention in multi-threaded environments while ensuring data consistency.
38
+ #
39
+ # 6. Topic recreation handling
40
+ # If a topic is deleted and recreated with fewer partitions, the cache will continue to
41
+ # report the higher count until either the TTL expires or the process is restarted. This
42
+ # design choice simplifies the implementation while relying on librdkafka's error handling
43
+ # for edge cases. In production environments, topic recreation with different partition
44
+ # counts is typically accompanied by application restarts to handle structural changes.
45
+ # This also aligns with the previous cache implementation.
46
+ class PartitionsCountCache
47
+ include Helpers::Time
48
+
49
+ # Default time-to-live for cached partition counts in seconds
50
+ #
51
+ # @note This default was chosen to balance freshness of metadata with performance
52
+ # optimization. Most Kafka cluster topology changes are planned operations, making 30
53
+ # seconds a reasonable compromise.
54
+ DEFAULT_TTL = 30
55
+
56
+ # Creates a new partition count cache
57
+ #
58
+ # @param ttl [Integer] Time-to-live in seconds for cached values
59
+ def initialize(ttl = DEFAULT_TTL)
60
+ @counts = {}
61
+ @mutex_hash = {}
62
+ # Used only for @mutex_hash access to ensure thread-safety when creating new mutexes
63
+ @mutex_for_hash = Mutex.new
64
+ @ttl = ttl
65
+ end
66
+
67
+ # Reads partition count for a topic with automatic refresh when expired
68
+ #
69
+ # This method will return the cached partition count if available and not expired.
70
+ # If the value is expired or not available, it will execute the provided block
71
+ # to fetch the current value from Kafka.
72
+ #
73
+ # @param topic [String] Kafka topic name
74
+ # @yield Block that returns the current partition count when cache needs refreshing
75
+ # @yieldreturn [Integer] Current partition count retrieved from Kafka
76
+ # @return [Integer] Partition count for the topic
77
+ #
78
+ # @note The implementation prioritizes read performance over write consistency
79
+ # since partition counts typically only increase during normal operation.
80
+ def get(topic)
81
+ current_info = @counts[topic]
82
+
83
+ if current_info.nil? || expired?(current_info[0])
84
+ new_count = yield
85
+
86
+ if current_info.nil?
87
+ # No existing data, create a new entry with mutex
88
+ set(topic, new_count)
89
+
90
+ return new_count
91
+ else
92
+ current_count = current_info[1]
93
+
94
+ if new_count > current_count
95
+ # Higher value needs mutex to update both timestamp and count
96
+ set(topic, new_count)
97
+
98
+ return new_count
99
+ else
100
+ # Same or lower value, just update timestamp without mutex
101
+ refresh_timestamp(topic)
102
+
103
+ return current_count
104
+ end
105
+ end
106
+ end
107
+
108
+ current_info[1]
109
+ end
110
+
111
+ # Update partition count for a topic when needed
112
+ #
113
+ # This method updates the partition count for a topic in the cache.
114
+ # It uses a mutex to ensure thread-safety during updates.
115
+ #
116
+ # @param topic [String] Kafka topic name
117
+ # @param new_count [Integer] New partition count value
118
+ #
119
+ # @note We prioritize higher partition counts and only accept them when using
120
+ # a mutex to ensure consistency. This design decision is based on the fact that
121
+ # partition counts in Kafka only increase during normal operation.
122
+ def set(topic, new_count)
123
+ # First check outside mutex to avoid unnecessary locking
124
+ current_info = @counts[topic]
125
+
126
+ # For lower values, we don't update count but might need to refresh timestamp
127
+ if current_info && new_count < current_info[1]
128
+ refresh_timestamp(topic)
129
+
130
+ return
131
+ end
132
+
133
+ # Only lock the specific topic mutex
134
+ mutex_for(topic).synchronize do
135
+ # Check again inside the lock as another thread might have updated
136
+ current_info = @counts[topic]
137
+
138
+ if current_info.nil?
139
+ # Create new entry
140
+ @counts[topic] = [monotonic_now, new_count]
141
+ else
142
+ current_count = current_info[1]
143
+
144
+ if new_count > current_count
145
+ # Update to higher count value
146
+ current_info[0] = monotonic_now
147
+ current_info[1] = new_count
148
+ else
149
+ # Same or lower count, update timestamp only
150
+ current_info[0] = monotonic_now
151
+ end
152
+ end
153
+ end
154
+ end
155
+
156
+ # @return [Hash] hash with ttls and partitions counts array
157
+ def to_h
158
+ @counts
159
+ end
160
+
161
+ private
162
+
163
+ # Get or create a mutex for a specific topic
164
+ #
165
+ # This method ensures that each topic has its own mutex,
166
+ # allowing operations on different topics to proceed in parallel.
167
+ #
168
+ # @param topic [String] Kafka topic name
169
+ # @return [Mutex] Mutex for the specified topic
170
+ #
171
+ # @note We use a separate mutex (@mutex_for_hash) to protect the creation
172
+ # of new topic mutexes. This pattern allows fine-grained locking while
173
+ # maintaining thread-safety.
174
+ def mutex_for(topic)
175
+ mutex = @mutex_hash[topic]
176
+
177
+ return mutex if mutex
178
+
179
+ # Use a separate mutex to protect the creation of new topic mutexes
180
+ @mutex_for_hash.synchronize do
181
+ # Check again in case another thread created it
182
+ @mutex_hash[topic] ||= Mutex.new
183
+ end
184
+
185
+ @mutex_hash[topic]
186
+ end
187
+
188
+ # Update the timestamp without acquiring the mutex
189
+ #
190
+ # This is an optimization that allows refreshing the TTL of existing entries
191
+ # without the overhead of mutex acquisition.
192
+ #
193
+ # @param topic [String] Kafka topic name
194
+ #
195
+ # @note This method is safe for refreshing existing data regardless of count
196
+ # because it only updates the timestamp, which doesn't affect the correctness
197
+ # of concurrent operations.
198
+ def refresh_timestamp(topic)
199
+ current_info = @counts[topic]
200
+
201
+ return unless current_info
202
+
203
+ # Update the timestamp in-place
204
+ current_info[0] = monotonic_now
205
+ end
206
+
207
+ # Check if a timestamp has expired based on the TTL
208
+ #
209
+ # @param timestamp [Float] Monotonic timestamp to check
210
+ # @return [Boolean] true if expired, false otherwise
211
+ def expired?(timestamp)
212
+ monotonic_now - timestamp > @ttl
213
+ end
214
+ end
215
+ end
216
+ end
@@ -6,13 +6,31 @@ module Rdkafka
6
6
  include Helpers::Time
7
7
  include Helpers::OAuth
8
8
 
9
- # Cache partitions count for 30 seconds
10
- PARTITIONS_COUNT_TTL = 30
9
+ # @private
10
+ @@partitions_count_cache = PartitionsCountCache.new
11
+
12
+ # Global (process wide) partitions cache. We use it to store number of topics partitions,
13
+ # either from the librdkafka statistics (if enabled) or via direct inline calls every now and
14
+ # then. Since the partitions count can only grow and should be same for all consumers and
15
+ # producers, we can use a global cache as long as we ensure that updates only move up.
16
+ #
17
+ # @note It is critical to remember, that not all users may have statistics callbacks enabled,
18
+ # hence we should not make assumption that this cache is always updated from the stats.
19
+ #
20
+ # @return [Rdkafka::Producer::PartitionsCountCache]
21
+ def self.partitions_count_cache
22
+ @@partitions_count_cache
23
+ end
24
+
25
+ # @param partitions_count_cache [Rdkafka::Producer::PartitionsCountCache]
26
+ def self.partitions_count_cache=(partitions_count_cache)
27
+ @@partitions_count_cache = partitions_count_cache
28
+ end
11
29
 
12
30
  # Empty hash used as a default
13
31
  EMPTY_HASH = {}.freeze
14
32
 
15
- private_constant :PARTITIONS_COUNT_TTL, :EMPTY_HASH
33
+ private_constant :EMPTY_HASH
16
34
 
17
35
  # Raised when there was a critical issue when invoking rd_kafka_topic_new
18
36
  # This is a temporary solution until https://github.com/karafka/rdkafka-ruby/issues/451 is
@@ -43,25 +61,6 @@ module Rdkafka
43
61
 
44
62
  # Makes sure, that native kafka gets closed before it gets GCed by Ruby
45
63
  ObjectSpace.define_finalizer(self, native_kafka.finalizer)
46
-
47
- @_partitions_count_cache = Hash.new do |cache, topic|
48
- topic_metadata = nil
49
-
50
- @native_kafka.with_inner do |inner|
51
- topic_metadata = ::Rdkafka::Metadata.new(inner, topic).topics&.first
52
- end
53
-
54
- partition_count = topic_metadata ? topic_metadata[:partition_count] : -1
55
-
56
- # This approach caches the failure to fetch only for 1 second. This will make sure, that
57
- # we do not cache the failure for too long but also "buys" us a bit of time in case there
58
- # would be issues in the cluster so we won't overaload it with consecutive requests
59
- cache[topic] = if partition_count.positive?
60
- [monotonic_now, partition_count]
61
- else
62
- [monotonic_now - PARTITIONS_COUNT_TTL + 5, partition_count]
63
- end
64
- end
65
64
  end
66
65
 
67
66
  # Sets alternative set of configuration details that can be set per topic
@@ -284,18 +283,24 @@ module Rdkafka
284
283
  # @note If 'allow.auto.create.topics' is set to true in the broker, the topic will be
285
284
  # auto-created after returning nil.
286
285
  #
287
- # @note We cache the partition count for a given topic for given time.
286
+ # @note We cache the partition count for a given topic for given time. If statistics are
287
+ # enabled for any producer or consumer, it will take precedence over per instance fetching.
288
+ #
288
289
  # This prevents us in case someone uses `partition_key` from querying for the count with
289
- # each message. Instead we query once every 30 seconds at most if we have a valid partition
290
- # count or every 5 seconds in case we were not able to obtain number of partitions
290
+ # each message. Instead we query at most once every 30 seconds at most if we have a valid
291
+ # partition count or every 5 seconds in case we were not able to obtain number of partitions.
291
292
  def partition_count(topic)
292
293
  closed_producer_check(__method__)
293
294
 
294
- @_partitions_count_cache.delete_if do |_, cached|
295
- monotonic_now - cached.first > PARTITIONS_COUNT_TTL
296
- end
295
+ self.class.partitions_count_cache.get(topic) do
296
+ topic_metadata = nil
297
+
298
+ @native_kafka.with_inner do |inner|
299
+ topic_metadata = ::Rdkafka::Metadata.new(inner, topic).topics&.first
300
+ end
297
301
 
298
- @_partitions_count_cache[topic].last
302
+ topic_metadata ? topic_metadata[:partition_count] : -1
303
+ end
299
304
  end
300
305
 
301
306
  # Produces a message to a Kafka topic. The message is added to rdkafka's queue, call {DeliveryHandle#wait wait} on the returned delivery handle to make sure it is delivered.
@@ -1,7 +1,7 @@
1
1
  # frozen_string_literal: true
2
2
 
3
3
  module Rdkafka
4
- VERSION = "0.19.1"
4
+ VERSION = "0.19.2.rc1"
5
5
  LIBRDKAFKA_VERSION = "2.8.0"
6
6
  LIBRDKAFKA_SOURCE_SHA256 = "5bd1c46f63265f31c6bfcedcde78703f77d28238eadf23821c2b43fc30be3e25"
7
7
  end
data/lib/rdkafka.rb CHANGED
@@ -42,6 +42,7 @@ require "rdkafka/consumer/topic_partition_list"
42
42
  require "rdkafka/error"
43
43
  require "rdkafka/metadata"
44
44
  require "rdkafka/native_kafka"
45
+ require "rdkafka/producer/partitions_count_cache"
45
46
  require "rdkafka/producer"
46
47
  require "rdkafka/producer/delivery_handle"
47
48
  require "rdkafka/producer/delivery_report"
@@ -738,17 +738,19 @@ describe Rdkafka::Admin do
738
738
  end
739
739
  end
740
740
 
741
- context "when operating from a fork" do
742
- # @see https://github.com/ffi/ffi/issues/1114
743
- it 'expect to be able to create topics and run other admin operations without hanging' do
744
- # If the FFI issue is not mitigated, this will hang forever
745
- pid = fork do
746
- admin
747
- .create_topic(topic_name, topic_partition_count, topic_replication_factor)
748
- .wait
749
- end
741
+ unless RUBY_PLATFORM == 'java'
742
+ context "when operating from a fork" do
743
+ # @see https://github.com/ffi/ffi/issues/1114
744
+ it 'expect to be able to create topics and run other admin operations without hanging' do
745
+ # If the FFI issue is not mitigated, this will hang forever
746
+ pid = fork do
747
+ admin
748
+ .create_topic(topic_name, topic_partition_count, topic_replication_factor)
749
+ .wait
750
+ end
750
751
 
751
- Process.wait(pid)
752
+ Process.wait(pid)
753
+ end
752
754
  end
753
755
  end
754
756
  end
@@ -149,15 +149,6 @@ describe Rdkafka::Bindings do
149
149
  end
150
150
 
151
151
  describe "oauthbearer set token" do
152
-
153
- context "without args" do
154
- it "should raise argument error" do
155
- expect {
156
- Rdkafka::Bindings.rd_kafka_oauthbearer_set_token
157
- }.to raise_error(ArgumentError)
158
- end
159
- end
160
-
161
152
  context "with args" do
162
153
  before do
163
154
  DEFAULT_TOKEN_EXPIRY_SECONDS = 900
@@ -33,23 +33,25 @@ describe Rdkafka::Config do
33
33
  expect(log.string).to include "FATAL -- : I love testing"
34
34
  end
35
35
 
36
- it "expect to start new logger thread after fork and work" do
37
- reader, writer = IO.pipe
38
-
39
- pid = fork do
40
- $stdout.reopen(writer)
41
- Rdkafka::Config.logger = Logger.new($stdout)
42
- reader.close
43
- producer = rdkafka_producer_config(debug: 'all').producer
44
- producer.close
36
+ unless RUBY_PLATFORM == 'java'
37
+ it "expect to start new logger thread after fork and work" do
38
+ reader, writer = IO.pipe
39
+
40
+ pid = fork do
41
+ $stdout.reopen(writer)
42
+ Rdkafka::Config.logger = Logger.new($stdout)
43
+ reader.close
44
+ producer = rdkafka_producer_config(debug: 'all').producer
45
+ producer.close
46
+ writer.close
47
+ sleep(1)
48
+ end
49
+
45
50
  writer.close
46
- sleep(1)
51
+ Process.wait(pid)
52
+ output = reader.read
53
+ expect(output.split("\n").size).to be >= 20
47
54
  end
48
-
49
- writer.close
50
- Process.wait(pid)
51
- output = reader.read
52
- expect(output.split("\n").size).to be >= 20
53
55
  end
54
56
  end
55
57