karafka-rdkafka 0.19.0 → 0.19.2.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 5a1e9fa0ca2b5dd14aed77c653fc4d154bb566113cac11c04d51cccc4e1d9fb7
4
- data.tar.gz: c513b0b82bdae4d9a16251a0abcd4b73a79ba21d2833814bccddcd8f6446151a
3
+ metadata.gz: d274be74f9ce13d34e8b4151809a030c7965328f39929a7dd9edcda480c38b82
4
+ data.tar.gz: 2a31bab8e00b6b37479e65d717ba797bd1fa5588f6f22304396bd0f760e08782
5
5
  SHA512:
6
- metadata.gz: 53bee0b1c513f6947ca657ca3836df05e6de31ba441aa6d85d71f523c28cad7b996ec14fae798b50bbaafb09eb00367bbc4298da5a926e3fae61cc94cb5179bb
7
- data.tar.gz: 51e903bb75f34fa7f49a8ebd6cdff193b2ee916fd0f4823145aae6ee219bf45e51ce538f3c9c3e4de9ba58c659fa4ecaf494768df1b83f998c9d2509cda58074
6
+ metadata.gz: 21b2985059a41f125539f3921b81c2768da2b48a86e1370e81925641dfd353fa36c9f8f0f10cb5f60972eb6ad544b210e566f0f2f9f7fcc27680b64fe6ddff20
7
+ data.tar.gz: 26c74433fa18d9ffdd1e516bcaa9a8fa3c17cbbf1afe7efb2f749a8219d2ce5540adf440635ce1bf104d1e7776ccd01a598b2ff3e1d2570eb29de9e2b079fe08
checksums.yaml.gz.sig CHANGED
Binary file
@@ -0,0 +1,3 @@
1
+ /.github @mensfeld
2
+ /.github/workflows/ @mensfeld
3
+ /.github/actions/ @mensfeld
@@ -6,9 +6,14 @@ concurrency:
6
6
 
7
7
  on:
8
8
  pull_request:
9
+ branches: [ main, master ]
9
10
  push:
11
+ branches: [ main, master ]
10
12
  schedule:
11
- - cron: '0 1 * * *'
13
+ - cron: '0 1 * * *'
14
+
15
+ permissions:
16
+ contents: read
12
17
 
13
18
  env:
14
19
  BUNDLE_RETRY: 6
@@ -26,20 +31,27 @@ jobs:
26
31
  - '3.3'
27
32
  - '3.2'
28
33
  - '3.1'
34
+ - 'jruby-10.0'
29
35
  include:
30
36
  - ruby: '3.4'
31
37
  coverage: 'true'
38
+ - ruby: 'jruby-10.0'
39
+ continue-on-error: true
40
+
32
41
  steps:
33
- - uses: actions/checkout@v4
42
+ - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
43
+ with:
44
+ fetch-depth: 0
45
+
34
46
  - name: Install package dependencies
35
47
  run: "[ -e $APT_DEPS ] || sudo apt-get install -y --no-install-recommends $APT_DEPS"
36
48
 
37
- - name: Start Kafka with docker compose
49
+ - name: Start Kafka with Docker Compose
38
50
  run: |
39
51
  docker compose up -d || (sleep 5 && docker compose up -d)
40
52
 
41
53
  - name: Set up Ruby
42
- uses: ruby/setup-ruby@v1
54
+ uses: ruby/setup-ruby@eaecf785f6a34567a6d97f686bbb7bccc1ac1e5c # v1.237.0
43
55
  with:
44
56
  ruby-version: ${{matrix.ruby}}
45
57
  bundler-cache: true
@@ -47,15 +59,14 @@ jobs:
47
59
  - name: Run all specs
48
60
  env:
49
61
  GITHUB_COVERAGE: ${{matrix.coverage}}
50
-
62
+ continue-on-error: ${{ matrix.continue-on-error || false }} # Use the matrix value if present
51
63
  run: |
52
64
  set -e
53
- bundle install --path vendor/bundle
65
+ bundle install --jobs 4 --retry 3
54
66
  cd ext && bundle exec rake
55
67
  cd ..
56
68
  bundle exec rspec
57
69
 
58
-
59
70
  macos_build:
60
71
  timeout-minutes: 30
61
72
  runs-on: macos-latest
@@ -67,17 +78,22 @@ jobs:
67
78
  - '3.3'
68
79
  - '3.2'
69
80
  - '3.1'
81
+ - 'jruby-9.4'
82
+ include:
83
+ - ruby: 'jruby-10.0'
84
+ continue-on-error: true
70
85
  steps:
71
- - uses: actions/checkout@v4
86
+ - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
72
87
 
73
88
  - name: Set up Ruby
74
- uses: ruby/setup-ruby@v1
89
+ uses: ruby/setup-ruby@eaecf785f6a34567a6d97f686bbb7bccc1ac1e5c # v1.237.0
75
90
  with:
76
91
  ruby-version: ${{matrix.ruby}}
77
92
  bundler-cache: false
78
93
 
79
94
  - name: Build rdkafka-ruby
95
+ continue-on-error: ${{ matrix.continue-on-error || false }}
80
96
  run: |
81
97
  set -e
82
- bundle install --path vendor/bundle
98
+ bundle install --jobs 4 --retry 3
83
99
  cd ext && bundle exec rake
@@ -0,0 +1,16 @@
1
+ name: Verify Action Pins
2
+ on:
3
+ pull_request:
4
+ paths:
5
+ - '.github/workflows/**'
6
+ jobs:
7
+ verify:
8
+ runs-on: ubuntu-latest
9
+ steps:
10
+ - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
11
+ - name: Check SHA pins
12
+ run: |
13
+ if grep -E -r "uses: .*/.*@(v[0-9]+|main|master)($|[[:space:]]|$)" --include="*.yml" --include="*.yaml" .github/workflows/ | grep -v "#"; then
14
+ echo "::error::Actions should use SHA pins, not tags or branch names"
15
+ exit 1
16
+ fi
data/.ruby-version CHANGED
@@ -1 +1 @@
1
- 3.4.1
1
+ 3.4.3
data/CHANGELOG.md CHANGED
@@ -1,5 +1,13 @@
1
1
  # Rdkafka Changelog
2
2
 
3
+ ## 0.19.2 (Unreleased)
4
+ - [Enhancement] Replace TTL-based partition count cache with a global cache that reuses `librdkafka` statistics data when possible.
5
+ - [Enhancement] Roll out experimental jruby support.
6
+
7
+ ## 0.19.1 (2025-04-07)
8
+ - [Enhancement] Support producing and consuming of headers with mulitple values (KIP-82).
9
+ - [Enhancement] Allow native Kafka customization poll time.
10
+
3
11
  ## 0.19.0 (2025-01-20)
4
12
  - **[Breaking]** Deprecate and remove `#each_batch` due to data consistency concerns.
5
13
  - [Enhancement] Bump librdkafka to 2.8.0
data/README.md CHANGED
@@ -163,14 +163,16 @@ bundle exec rake produce_messages
163
163
 
164
164
  | rdkafka-ruby | librdkafka | patches |
165
165
  |-|-|-|
166
- | 0.19.0 (2025-01-20) | 2.8.0 (2025-01-07) | yes |
167
- | 0.18.0 (2024-11-26) | 2.6.1 (2024-11-18) | yes |
168
- | 0.17.4 (2024-09-02) | 2.5.3 (2024-09-02) | yes |
169
- | 0.17.0 (2024-08-01) | 2.5.0 (2024-07-10) | yes |
170
- | 0.16.0 (2024-06-13) | 2.4.0 (2024-05-07) | no |
171
- | 0.15.0 (2023-12-03) | 2.3.0 (2023-10-25) | no |
172
- | 0.14.0 (2023-11-21) | 2.2.0 (2023-07-12) | no |
173
- | 0.13.0 (2023-07-24) | 2.0.2 (2023-01-20) | no |
174
- | 0.12.0 (2022-06-17) | 1.9.0 (2022-06-16) | no |
175
- | 0.11.0 (2021-11-17) | 1.8.2 (2021-10-18) | no |
176
- | 0.10.0 (2021-09-07) | 1.5.0 (2020-07-20) | no |
166
+ | 0.19.2 (Unreleased) | 2.8.0 (2025-01-07) | yes |
167
+ | 0.19.1 (2025-04-07) | 2.8.0 (2025-01-07) | yes |
168
+ | 0.19.0 (2025-01-20) | 2.8.0 (2025-01-07) | yes |
169
+ | 0.18.0 (2024-11-26) | 2.6.1 (2024-11-18) | yes |
170
+ | 0.17.4 (2024-09-02) | 2.5.3 (2024-09-02) | yes |
171
+ | 0.17.0 (2024-08-01) | 2.5.0 (2024-07-10) | yes |
172
+ | 0.16.0 (2024-06-13) | 2.4.0 (2024-05-07) | no |
173
+ | 0.15.0 (2023-12-03) | 2.3.0 (2023-10-25) | no |
174
+ | 0.14.0 (2023-11-21) | 2.2.0 (2023-07-12) | no |
175
+ | 0.13.0 (2023-07-24) | 2.0.2 (2023-01-20) | no |
176
+ | 0.12.0 (2022-06-17) | 1.9.0 (2022-06-16) | no |
177
+ | 0.11.0 (2021-11-17) | 1.8.2 (2021-10-18) | no |
178
+ | 0.10.0 (2021-09-07) | 1.5.0 (2020-07-20) | no |
data/docker-compose.yml CHANGED
@@ -1,7 +1,7 @@
1
1
  services:
2
2
  kafka:
3
3
  container_name: kafka
4
- image: confluentinc/cp-kafka:7.8.0
4
+ image: confluentinc/cp-kafka:7.9.1
5
5
 
6
6
  ports:
7
7
  - 9092:9092
@@ -35,6 +35,8 @@ module Rdkafka
35
35
  RD_KAFKA_OFFSET_STORED = -1000
36
36
  RD_KAFKA_OFFSET_INVALID = -1001
37
37
 
38
+ EMPTY_HASH = {}.freeze
39
+
38
40
  class SizePtr < FFI::Struct
39
41
  layout :value, :size_t
40
42
  end
@@ -215,9 +217,31 @@ module Rdkafka
215
217
  StatsCallback = FFI::Function.new(
216
218
  :int, [:pointer, :string, :int, :pointer]
217
219
  ) do |_client_ptr, json, _json_len, _opaque|
218
- # Pass the stats hash to callback in config
219
220
  if Rdkafka::Config.statistics_callback
220
221
  stats = JSON.parse(json)
222
+
223
+ # If user requested statistics callbacks, we can use the statistics data to get the
224
+ # partitions count for each topic when this data is published. That way we do not have
225
+ # to query this information when user is using `partition_key`. This takes around 0.02ms
226
+ # every statistics interval period (most likely every 5 seconds) and saves us from making
227
+ # any queries to the cluster for the partition count.
228
+ #
229
+ # One edge case is if user would set the `statistics.interval.ms` much higher than the
230
+ # default current partition count refresh (30 seconds). This is taken care of as the lack
231
+ # of reporting to the partitions cache will cause cache expire and blocking refresh.
232
+ #
233
+ # If user sets `topic.metadata.refresh.interval.ms` too high this is on the user.
234
+ #
235
+ # Since this cache is shared, having few consumers and/or producers in one process will
236
+ # automatically improve the querying times even with low refresh times.
237
+ (stats['topics'] || EMPTY_HASH).each do |topic_name, details|
238
+ partitions_count = details['partitions'].keys.reject { |k| k == '-1' }.size
239
+
240
+ next unless partitions_count.positive?
241
+
242
+ Rdkafka::Producer.partitions_count_cache.set(topic_name, partitions_count)
243
+ end
244
+
221
245
  Rdkafka::Config.statistics_callback.call(stats)
222
246
  end
223
247
 
@@ -233,11 +233,12 @@ module Rdkafka
233
233
  #
234
234
  # @param native_kafka_auto_start [Boolean] should the native kafka operations be started
235
235
  # automatically. Defaults to true. Set to false only when doing complex initialization.
236
+ # @param native_kafka_poll_timeout_ms [Integer] ms poll time of the native Kafka
236
237
  # @return [Producer] The created producer
237
238
  #
238
239
  # @raise [ConfigError] When the configuration contains invalid options
239
240
  # @raise [ClientCreationError] When the native client cannot be created
240
- def producer(native_kafka_auto_start: true)
241
+ def producer(native_kafka_auto_start: true, native_kafka_poll_timeout_ms: 100)
241
242
  # Create opaque
242
243
  opaque = Opaque.new
243
244
  # Create Kafka config
@@ -254,7 +255,8 @@ module Rdkafka
254
255
  kafka,
255
256
  run_polling_thread: true,
256
257
  opaque: opaque,
257
- auto_start: native_kafka_auto_start
258
+ auto_start: native_kafka_auto_start,
259
+ timeout_ms: native_kafka_poll_timeout_ms
258
260
  ),
259
261
  partitioner_name
260
262
  ).tap do |producer|
@@ -266,11 +268,12 @@ module Rdkafka
266
268
  #
267
269
  # @param native_kafka_auto_start [Boolean] should the native kafka operations be started
268
270
  # automatically. Defaults to true. Set to false only when doing complex initialization.
271
+ # @param native_kafka_poll_timeout_ms [Integer] ms poll time of the native Kafka
269
272
  # @return [Admin] The created admin instance
270
273
  #
271
274
  # @raise [ConfigError] When the configuration contains invalid options
272
275
  # @raise [ClientCreationError] When the native client cannot be created
273
- def admin(native_kafka_auto_start: true)
276
+ def admin(native_kafka_auto_start: true, native_kafka_poll_timeout_ms: 100)
274
277
  opaque = Opaque.new
275
278
  config = native_config(opaque)
276
279
  Rdkafka::Bindings.rd_kafka_conf_set_background_event_cb(config, Rdkafka::Callbacks::BackgroundEventCallbackFunction)
@@ -282,7 +285,8 @@ module Rdkafka
282
285
  kafka,
283
286
  run_polling_thread: true,
284
287
  opaque: opaque,
285
- auto_start: native_kafka_auto_start
288
+ auto_start: native_kafka_auto_start,
289
+ timeout_ms: native_kafka_poll_timeout_ms
286
290
  )
287
291
  )
288
292
  end
@@ -7,11 +7,13 @@ module Rdkafka
7
7
  EMPTY_HEADERS = {}.freeze
8
8
 
9
9
  # Reads a librdkafka native message's headers and returns them as a Ruby Hash
10
+ # where each key maps to either a String (single value) or Array<String> (multiple values)
11
+ # to support duplicate headers per KIP-82
10
12
  #
11
13
  # @private
12
14
  #
13
15
  # @param [Rdkafka::Bindings::Message] native_message
14
- # @return [Hash<String, String>] headers Hash for the native_message
16
+ # @return [Hash<String, String|Array<String>>] headers Hash for the native_message
15
17
  # @raise [Rdkafka::RdkafkaError] when fail to read headers
16
18
  def self.from_native(native_message)
17
19
  headers_ptrptr = FFI::MemoryPointer.new(:pointer)
@@ -53,10 +55,19 @@ module Rdkafka
53
55
  size = size_ptr[:value]
54
56
 
55
57
  value_ptr = value_ptrptr.read_pointer
56
-
57
58
  value = value_ptr.read_string(size)
58
59
 
59
- headers[name] = value
60
+ if headers.key?(name)
61
+ # If we've seen this header before, convert to array if needed and append
62
+ if headers[name].is_a?(Array)
63
+ headers[name] << value
64
+ else
65
+ headers[name] = [headers[name], value]
66
+ end
67
+ else
68
+ # First occurrence - store as single value
69
+ headers[name] = value
70
+ end
60
71
 
61
72
  idx += 1
62
73
  end
@@ -4,7 +4,7 @@ module Rdkafka
4
4
  # @private
5
5
  # A wrapper around a native kafka that polls and cleanly exits
6
6
  class NativeKafka
7
- def initialize(inner, run_polling_thread:, opaque:, auto_start: true)
7
+ def initialize(inner, run_polling_thread:, opaque:, auto_start: true, timeout_ms: 100)
8
8
  @inner = inner
9
9
  @opaque = opaque
10
10
  # Lock around external access
@@ -30,6 +30,8 @@ module Rdkafka
30
30
 
31
31
  @run_polling_thread = run_polling_thread
32
32
 
33
+ @timeout_ms = timeout_ms
34
+
33
35
  start if auto_start
34
36
 
35
37
  @closing = false
@@ -50,7 +52,7 @@ module Rdkafka
50
52
  @polling_thread = Thread.new do
51
53
  loop do
52
54
  @poll_mutex.synchronize do
53
- Rdkafka::Bindings.rd_kafka_poll(@inner, 100)
55
+ Rdkafka::Bindings.rd_kafka_poll(@inner, @timeout_ms)
54
56
  end
55
57
 
56
58
  # Exit thread if closing and the poll queue is empty
@@ -0,0 +1,216 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Rdkafka
4
+ class Producer
5
+ # Caching mechanism for Kafka topic partition counts to avoid frequent cluster queries
6
+ #
7
+ # This cache is designed to optimize the process of obtaining partition counts for topics.
8
+ # It uses several strategies to minimize Kafka cluster queries:
9
+ #
10
+ # @note Design considerations:
11
+ #
12
+ # 1. Statistics-based updates
13
+ # When statistics callbacks are enabled (via `statistics.interval.ms`), we leverage
14
+ # this data to proactively update the partition counts cache. This approach costs
15
+ # approximately 0.02ms of processing time during each statistics interval (typically
16
+ # every 5 seconds) but eliminates the need for explicit blocking metadata queries.
17
+ #
18
+ # 2. Edge case handling
19
+ # If a user configures `statistics.interval.ms` much higher than the default cache TTL
20
+ # (30 seconds), the cache will still function correctly. When statistics updates don't
21
+ # occur frequently enough, the cache entries will expire naturally, triggering a
22
+ # blocking refresh when needed.
23
+ #
24
+ # 3. User configuration awareness
25
+ # The cache respects user-defined settings. If `topic.metadata.refresh.interval.ms` is
26
+ # set very high, the responsibility for potentially stale data falls on the user. This
27
+ # is an explicit design choice to honor user configuration preferences and align with
28
+ # librdkafka settings.
29
+ #
30
+ # 4. Process-wide efficiency
31
+ # Since this cache is shared across all Rdkafka producers and consumers within a process,
32
+ # having multiple clients improves overall efficiency. Each client contributes to keeping
33
+ # the cache updated, benefiting all other clients.
34
+ #
35
+ # 5. Thread-safety approach
36
+ # The implementation uses fine-grained locking with per-topic mutexes to minimize
37
+ # contention in multi-threaded environments while ensuring data consistency.
38
+ #
39
+ # 6. Topic recreation handling
40
+ # If a topic is deleted and recreated with fewer partitions, the cache will continue to
41
+ # report the higher count until either the TTL expires or the process is restarted. This
42
+ # design choice simplifies the implementation while relying on librdkafka's error handling
43
+ # for edge cases. In production environments, topic recreation with different partition
44
+ # counts is typically accompanied by application restarts to handle structural changes.
45
+ # This also aligns with the previous cache implementation.
46
+ class PartitionsCountCache
47
+ include Helpers::Time
48
+
49
+ # Default time-to-live for cached partition counts in seconds
50
+ #
51
+ # @note This default was chosen to balance freshness of metadata with performance
52
+ # optimization. Most Kafka cluster topology changes are planned operations, making 30
53
+ # seconds a reasonable compromise.
54
+ DEFAULT_TTL = 30
55
+
56
+ # Creates a new partition count cache
57
+ #
58
+ # @param ttl [Integer] Time-to-live in seconds for cached values
59
+ def initialize(ttl = DEFAULT_TTL)
60
+ @counts = {}
61
+ @mutex_hash = {}
62
+ # Used only for @mutex_hash access to ensure thread-safety when creating new mutexes
63
+ @mutex_for_hash = Mutex.new
64
+ @ttl = ttl
65
+ end
66
+
67
+ # Reads partition count for a topic with automatic refresh when expired
68
+ #
69
+ # This method will return the cached partition count if available and not expired.
70
+ # If the value is expired or not available, it will execute the provided block
71
+ # to fetch the current value from Kafka.
72
+ #
73
+ # @param topic [String] Kafka topic name
74
+ # @yield Block that returns the current partition count when cache needs refreshing
75
+ # @yieldreturn [Integer] Current partition count retrieved from Kafka
76
+ # @return [Integer] Partition count for the topic
77
+ #
78
+ # @note The implementation prioritizes read performance over write consistency
79
+ # since partition counts typically only increase during normal operation.
80
+ def get(topic)
81
+ current_info = @counts[topic]
82
+
83
+ if current_info.nil? || expired?(current_info[0])
84
+ new_count = yield
85
+
86
+ if current_info.nil?
87
+ # No existing data, create a new entry with mutex
88
+ set(topic, new_count)
89
+
90
+ return new_count
91
+ else
92
+ current_count = current_info[1]
93
+
94
+ if new_count > current_count
95
+ # Higher value needs mutex to update both timestamp and count
96
+ set(topic, new_count)
97
+
98
+ return new_count
99
+ else
100
+ # Same or lower value, just update timestamp without mutex
101
+ refresh_timestamp(topic)
102
+
103
+ return current_count
104
+ end
105
+ end
106
+ end
107
+
108
+ current_info[1]
109
+ end
110
+
111
+ # Update partition count for a topic when needed
112
+ #
113
+ # This method updates the partition count for a topic in the cache.
114
+ # It uses a mutex to ensure thread-safety during updates.
115
+ #
116
+ # @param topic [String] Kafka topic name
117
+ # @param new_count [Integer] New partition count value
118
+ #
119
+ # @note We prioritize higher partition counts and only accept them when using
120
+ # a mutex to ensure consistency. This design decision is based on the fact that
121
+ # partition counts in Kafka only increase during normal operation.
122
+ def set(topic, new_count)
123
+ # First check outside mutex to avoid unnecessary locking
124
+ current_info = @counts[topic]
125
+
126
+ # For lower values, we don't update count but might need to refresh timestamp
127
+ if current_info && new_count < current_info[1]
128
+ refresh_timestamp(topic)
129
+
130
+ return
131
+ end
132
+
133
+ # Only lock the specific topic mutex
134
+ mutex_for(topic).synchronize do
135
+ # Check again inside the lock as another thread might have updated
136
+ current_info = @counts[topic]
137
+
138
+ if current_info.nil?
139
+ # Create new entry
140
+ @counts[topic] = [monotonic_now, new_count]
141
+ else
142
+ current_count = current_info[1]
143
+
144
+ if new_count > current_count
145
+ # Update to higher count value
146
+ current_info[0] = monotonic_now
147
+ current_info[1] = new_count
148
+ else
149
+ # Same or lower count, update timestamp only
150
+ current_info[0] = monotonic_now
151
+ end
152
+ end
153
+ end
154
+ end
155
+
156
+ # @return [Hash] hash with ttls and partitions counts array
157
+ def to_h
158
+ @counts
159
+ end
160
+
161
+ private
162
+
163
+ # Get or create a mutex for a specific topic
164
+ #
165
+ # This method ensures that each topic has its own mutex,
166
+ # allowing operations on different topics to proceed in parallel.
167
+ #
168
+ # @param topic [String] Kafka topic name
169
+ # @return [Mutex] Mutex for the specified topic
170
+ #
171
+ # @note We use a separate mutex (@mutex_for_hash) to protect the creation
172
+ # of new topic mutexes. This pattern allows fine-grained locking while
173
+ # maintaining thread-safety.
174
+ def mutex_for(topic)
175
+ mutex = @mutex_hash[topic]
176
+
177
+ return mutex if mutex
178
+
179
+ # Use a separate mutex to protect the creation of new topic mutexes
180
+ @mutex_for_hash.synchronize do
181
+ # Check again in case another thread created it
182
+ @mutex_hash[topic] ||= Mutex.new
183
+ end
184
+
185
+ @mutex_hash[topic]
186
+ end
187
+
188
+ # Update the timestamp without acquiring the mutex
189
+ #
190
+ # This is an optimization that allows refreshing the TTL of existing entries
191
+ # without the overhead of mutex acquisition.
192
+ #
193
+ # @param topic [String] Kafka topic name
194
+ #
195
+ # @note This method is safe for refreshing existing data regardless of count
196
+ # because it only updates the timestamp, which doesn't affect the correctness
197
+ # of concurrent operations.
198
+ def refresh_timestamp(topic)
199
+ current_info = @counts[topic]
200
+
201
+ return unless current_info
202
+
203
+ # Update the timestamp in-place
204
+ current_info[0] = monotonic_now
205
+ end
206
+
207
+ # Check if a timestamp has expired based on the TTL
208
+ #
209
+ # @param timestamp [Float] Monotonic timestamp to check
210
+ # @return [Boolean] true if expired, false otherwise
211
+ def expired?(timestamp)
212
+ monotonic_now - timestamp > @ttl
213
+ end
214
+ end
215
+ end
216
+ end