jsmetric4java 0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. data/.gitignore +7 -0
  2. data/.rvmrc +1 -0
  3. data/Gemfile +8 -0
  4. data/README +16 -0
  5. data/Rakefile +37 -0
  6. data/bin/jsmetric4java +20 -0
  7. data/boot.rb +5 -0
  8. data/build +1 -0
  9. data/features/cyclometric_complexity/boolean_complexity_counting.feature +46 -0
  10. data/features/cyclometric_complexity/case_complexity_counting.feature +117 -0
  11. data/features/cyclometric_complexity/exception_complexity_counting.feature +81 -0
  12. data/features/cyclometric_complexity/function_detection.feature +128 -0
  13. data/features/cyclometric_complexity/if_else_complexity_counting.feature +178 -0
  14. data/features/cyclometric_complexity/loop_complexity_counting.feature +81 -0
  15. data/features/graphing/draw_basic_graph.feature +14 -0
  16. data/features/reporting/report.feature +13 -0
  17. data/features/sample_js_files_for_test/foobar.js +30 -0
  18. data/features/step_definitions/cyclometric_complexity_steps.rb +31 -0
  19. data/features/step_definitions/graph_steps.rb +10 -0
  20. data/features/step_definitions/reporting_steps.rb +14 -0
  21. data/features/support/env.rb +1 -0
  22. data/jsgraphlib/Curry-1.0.1.js +29 -0
  23. data/jsgraphlib/dracula_algorithms.js +599 -0
  24. data/jsgraphlib/dracula_graffle.js +106 -0
  25. data/jsgraphlib/dracula_graph.js +534 -0
  26. data/jsgraphlib/graphtest.html +57 -0
  27. data/jsgraphlib/jquery-1.4.2.min.js +154 -0
  28. data/jsgraphlib/jsgraphsource.js +12 -0
  29. data/jsgraphlib/raphael-min.js +7 -0
  30. data/jsgraphlib/seedrandom.js +266 -0
  31. data/jsmetric.gemspec +23 -0
  32. data/lib/cc_report.rb +24 -0
  33. data/lib/complexity_analyser.rb +90 -0
  34. data/lib/fulljslint.js +6100 -0
  35. data/lib/graphing/graph_analyser.rb +19 -0
  36. data/lib/js_lint.rb +23 -0
  37. data/lib/json2.js +480 -0
  38. data/lib/options.js +24 -0
  39. data/lib/report.rb +26 -0
  40. data/lib/utils.rb +18 -0
  41. data/lib/version.rb +3 -0
  42. data/spec/spec_helper.rb +1 -0
  43. data/tasks/dev.rb +4 -0
  44. data/tasks/run.rb +55 -0
  45. metadata +129 -0
@@ -0,0 +1,599 @@
1
+ /*
2
+ * Various algorithms and data structures, licensed under the MIT-license.
3
+ * (c) 2010 by Johann Philipp Strathausen <strathausen@gmail.com>
4
+ * http://strathausen.eu
5
+ *
6
+ */
7
+
8
+
9
+
10
+ /*
11
+ Bellman-Ford
12
+
13
+ Path-finding algorithm, finds the shortest paths from one node to all nodes.
14
+
15
+
16
+ Complexity
17
+
18
+ O( |E| · |V| ), where E = edges and V = vertices (nodes)
19
+
20
+
21
+ Constraints
22
+
23
+ Can run on graphs with negative edge weights as long as they do not have
24
+ any negative weight cycles.
25
+
26
+ */
27
+ function bellman_ford(g, source) {
28
+
29
+ /* STEP 1: initialisation */
30
+ for(var n in g.nodes)
31
+ g.nodes[n].distance = Infinity;
32
+ /* predecessors are implicitly null */
33
+ source.distance = 0;
34
+
35
+ step("Initially, all distances are infinite and all predecessors are null.");
36
+
37
+ /* STEP 2: relax each edge (this is at the heart of Bellman-Ford) */
38
+ /* repeat this for the number of nodes minus one */
39
+ for(var i = 1; i < g.nodes.length; i++)
40
+ /* for each edge */
41
+ for(var e in g.edges) {
42
+ var edge = g.edges[e];
43
+ if(edge.source.distance + edge.weight < edge.target.distance) {
44
+ step("Relax edge between " + edge.source.id + " and " + edge.target.id + ".");
45
+ edge.target.distance = edge.source.distance + edge.weight;
46
+ edge.target.predecessor = edge.source;
47
+ }
48
+ //Added by Jake Stothard (Needs to be tested)
49
+ if(!edge.style.directed) {
50
+ if(edge.target.distance + edge.weight < edge.source.distance) {
51
+ g.snapShot("Relax edge between "+edge.target.id+" and "+edge.source.id+".");
52
+ edge.source.distance = edge.target.distance + edge.weight;
53
+ edge.source.predecessor = edge.target;
54
+ }
55
+ }
56
+ }
57
+ step("Ready.");
58
+
59
+ /* STEP 3: TODO Check for negative cycles */
60
+ /* For now we assume here that the graph does not contain any negative
61
+ weights cycles. (this is left as an excercise to the reader[tm]) */
62
+ }
63
+
64
+
65
+
66
+ /*
67
+ Path-finding algorithm Dijkstra
68
+
69
+ - worst-case running time is O((|E| + |V|) · log |V| ) thus better than
70
+ Bellman-Ford for sparse graphs (with less edges), but cannot handle
71
+ negative edge weights
72
+ */
73
+ function dijkstra(g, source) {
74
+
75
+ /* initially, all distances are infinite and all predecessors are null */
76
+ for(var n in g.nodes)
77
+ g.nodes[n].distance = Infinity;
78
+ /* predecessors are implicitly null */
79
+
80
+ g.snapShot("Initially, all distances are infinite and all predecessors are null.");
81
+
82
+ source.distance = 0;
83
+ /* set of unoptimized nodes, sorted by their distance (but a Fibonacci heap
84
+ would be better) */
85
+ var q = new BinaryMinHeap(g.nodes, "distance");
86
+
87
+ /* pointer to the node in focus */
88
+ var node;
89
+
90
+ /* get the node with the smallest distance
91
+ as long as we have unoptimized nodes. q.min() can have O(log n). */
92
+ while(q.min() != undefined) {
93
+ /* remove the latest */
94
+ node = q.extractMin();
95
+ node.optimized = true;
96
+
97
+ /* no nodes accessible from this one, should not happen */
98
+ if(node.distance == Infinity)
99
+ throw "Orphaned node!";
100
+
101
+ /* for each neighbour of node */
102
+ for(e in node.edges) {
103
+ var other = (node == node.edges[e].target) ? node.edges[e].source : node.edges[e].target;
104
+
105
+ if(other.optimized)
106
+ continue;
107
+
108
+ /* look for an alternative route */
109
+ var alt = node.distance + node.edges[e].weight;
110
+
111
+ /* update distance and route if a better one has been found */
112
+ if (alt < other.distance) {
113
+
114
+ /* update distance of neighbour */
115
+ other.distance = alt;
116
+
117
+ /* update priority queue */
118
+ q.heapify();
119
+
120
+ /* update path */
121
+ other.predecessor = node;
122
+ g.snapShot("Enhancing node.")
123
+ }
124
+ }
125
+ }
126
+ }
127
+
128
+
129
+ /* All-Pairs-Shortest-Paths */
130
+ /* Runs at worst in O(|V|³) and at best in Omega(|V|³) :-)
131
+ complexity Sigma(|V|²) */
132
+ /* This implementation is not yet ready for general use, but works with the
133
+ Dracula graph library. */
134
+ function floyd_warshall(g, source) {
135
+
136
+ /* Step 1: initialising empty path matrix (second dimension is implicit) */
137
+ var path = [];
138
+ var next = [];
139
+ var n = g.nodes.length;
140
+
141
+ /* construct path matrix, initialize with Infinity */
142
+ for(j in g.nodes) {
143
+ path[j] = [];
144
+ next[j] = [];
145
+ for(i in g.nodes)
146
+ path[j][i] = j == i ? 0 : Infinity;
147
+ }
148
+
149
+ /* initialize path with edge weights */
150
+ for(e in g.edges)
151
+ path[g.edges[e].source.id][g.edges[e].target.id] = g.edges[e].weight;
152
+
153
+ /* Note: Usually, the initialisation is done by getting the edge weights
154
+ from a node matrix representation of the graph, not by iterating through
155
+ a list of edges as done here. */
156
+
157
+ /* Step 2: find best distances (the heart of Floyd-Warshall) */
158
+ for(k in g.nodes){
159
+ for(i in g.nodes) {
160
+ for(j in g.nodes)
161
+ if(path[i][j] > path[i][k] + path[k][j]) {
162
+ path[i][j] = path[i][k] + path[k][j];
163
+ /* Step 2.b: remember the path */
164
+ next[i][j] = k;
165
+ }
166
+ }
167
+ }
168
+
169
+ /* Step 3: Path reconstruction, get shortest path */
170
+ function getPath(i, j) {
171
+ if(path[i][j] == Infinity)
172
+ throw "There is no path.";
173
+ var intermediate = next[i][j];
174
+ if(intermediate == undefined)
175
+ return null;
176
+ else
177
+ return getPath(i, intermediate)
178
+ .concat([intermediate])
179
+ .concat(getPath(intermediate, j));
180
+ }
181
+
182
+ /* TODO use the knowledge, e.g. mark path in graph */
183
+ }
184
+
185
+ /*
186
+ Ford-Fulkerson
187
+
188
+ Max-Flow-Min-Cut Algorithm finding the maximum flow through a directed
189
+ graph from source to sink.
190
+
191
+
192
+ Complexity
193
+
194
+ O(E * max(f)), max(f) being the maximum flow
195
+
196
+
197
+ Description
198
+
199
+ As long as there is an open path through the residual graph, send the
200
+ minimum of the residual capacities on the path.
201
+
202
+
203
+ Constraints
204
+
205
+ The algorithm works only if all weights are integers. Otherwise it is
206
+ possible that the Ford–Fulkerson algorithm will not converge to the maximum
207
+ value.
208
+
209
+
210
+ Input
211
+
212
+ g - Graph object
213
+ s - Source ID
214
+ t - Target (sink) ID
215
+
216
+
217
+ Output
218
+
219
+ Maximum flow from Source s to Target t
220
+
221
+ */
222
+ /*
223
+ Edmonds-Karp
224
+
225
+ Max-Flow-Min-Cut Algorithm finding the maximum flow through a directed
226
+ graph from source to sink. An implementation of the Ford-Fulkerson
227
+ algorithm.
228
+
229
+
230
+ Complexity
231
+
232
+ O(|V|*|E|²)
233
+
234
+
235
+ Input
236
+
237
+ g - Graph object (with node and edge lists, capacity is a property of edge)
238
+ s - source ID
239
+ t - sink ID
240
+
241
+ */
242
+ function edmonds_karp(g, s, t) {
243
+
244
+ }
245
+
246
+ /*
247
+ A simple binary min-heap serving as a priority queue
248
+ - takes an array as the input, with elements having a key property
249
+ - elements will look like this:
250
+ {
251
+ key: "... key property ...",
252
+ value: "... element content ..."
253
+ }
254
+ - provides insert(), min(), extractMin() and heapify()
255
+ - example usage (e.g. via the Firebug or Chromium console):
256
+ var x = {foo: 20, hui: "bla"};
257
+ var a = new BinaryMinHeap([x,{foo:3},{foo:10},{foo:20},{foo:30},{foo:6},{foo:1},{foo:3}],"foo");
258
+ console.log(a.extractMin());
259
+ console.log(a.extractMin());
260
+ x.foo = 0; // update key
261
+ a.heapify(); // call this always after having a key updated
262
+ console.log(a.extractMin());
263
+ console.log(a.extractMin());
264
+ - can also be used on a simple array, like [9,7,8,5]
265
+ */
266
+ function BinaryMinHeap(array, key) {
267
+
268
+ /* Binary tree stored in an array, no need for a complicated data structure */
269
+ var tree = [];
270
+
271
+ var key = key || 'key';
272
+
273
+ /* Calculate the index of the parent or a child */
274
+ var parent = function(index) { return Math.floor((index - 1)/2); };
275
+ var right = function(index) { return 2 * index + 2; };
276
+ var left = function(index) { return 2 * index + 1; };
277
+
278
+ /* Helper function to swap elements with their parent
279
+ as long as the parent is bigger */
280
+ function bubble_up(i) {
281
+ var p = parent(i);
282
+ while((p >= 0) && (tree[i][key] < tree[p][key])) {
283
+ /* swap with parent */
284
+ tree[i] = tree.splice(p, 1, tree[i])[0];
285
+ /* go up one level */
286
+ i = p;
287
+ p = parent(i);
288
+ }
289
+ }
290
+
291
+ /* Helper function to swap elements with the smaller of their children
292
+ as long as there is one */
293
+ function bubble_down(i) {
294
+ var l = left(i);
295
+ var r = right(i);
296
+
297
+ /* as long as there are smaller children */
298
+ while(tree[l] && (tree[i][key] > tree[l][key]) || tree[r] && (tree[i][key] > tree[r][key])) {
299
+
300
+ /* find smaller child */
301
+ var child = tree[l] ? tree[r] ? tree[l][key] > tree[r][key] ? r : l : l : l;
302
+
303
+ /* swap with smaller child with current element */
304
+ tree[i] = tree.splice(child, 1, tree[i])[0];
305
+
306
+ /* go up one level */
307
+ i = child;
308
+ l = left(i);
309
+ r = right(i);
310
+ }
311
+ }
312
+
313
+ /* Insert a new element with respect to the heap property
314
+ 1. Insert the element at the end
315
+ 2. Bubble it up until it is smaller than its parent */
316
+ this.insert = function(element) {
317
+
318
+ /* make sure there's a key property */
319
+ (element[key] == undefined) && (element = {key:element});
320
+
321
+ /* insert element at the end */
322
+ tree.push(element);
323
+
324
+ /* bubble up the element */
325
+ bubble_up(tree.length - 1);
326
+ }
327
+
328
+ /* Only show us the minimum */
329
+ this.min = function() {
330
+ return tree.length == 1 ? undefined : tree[0];
331
+ }
332
+
333
+ /* Return and remove the minimum
334
+ 1. Take the root as the minimum that we are looking for
335
+ 2. Move the last element to the root (thereby deleting the root)
336
+ 3. Compare the new root with both of its children, swap it with the
337
+ smaller child and then check again from there (bubble down)
338
+ */
339
+ this.extractMin = function() {
340
+ var result = this.min();
341
+
342
+ /* move the last element to the root or empty the tree completely */
343
+ /* bubble down the new root if necessary */
344
+ (tree.length == 1) && (tree = []) || (tree[0] = tree.pop()) && bubble_down(0);
345
+
346
+ return result;
347
+ }
348
+
349
+ /* currently unused, TODO implement */
350
+ this.changeKey = function(index, key) {
351
+ throw "function not implemented";
352
+ }
353
+
354
+ this.heapify = function() {
355
+ for(var start = Math.floor((tree.length - 2) / 2); start >= 0; start--) {
356
+ bubble_down(start);
357
+ }
358
+ }
359
+
360
+ /* insert the input elements one by one only when we don't have a key property (TODO can be done more elegant) */
361
+ for(i in (array || []))
362
+ this.insert(array[i]);
363
+ }
364
+
365
+
366
+
367
+ /*
368
+ Quick Sort:
369
+ 1. Select some random value from the array, the median.
370
+ 2. Divide the array in three smaller arrays according to the elements
371
+ being less, equal or greater than the median.
372
+ 3. Recursively sort the array containg the elements less than the
373
+ median and the one containing elements greater than the median.
374
+ 4. Concatenate the three arrays (less, equal and greater).
375
+ 5. One or no element is always sorted.
376
+ TODO: This could be implemented more efficiently by using only one array object and several pointers.
377
+ */
378
+ function quickSort(arr) {
379
+ /* recursion anchor: one element is always sorted */
380
+ if(arr.length <= 1) return arr;
381
+ /* randomly selecting some value */
382
+ var median = arr[Math.floor(Math.random() * arr.length)];
383
+ var arr1 = [], arr2 = [], arr3 = [];
384
+ for(var i in arr) {
385
+ arr[i] < median && arr1.push(arr[i]);
386
+ arr[i] == median && arr2.push(arr[i]);
387
+ arr[i] > median && arr3.push(arr[i]);
388
+ }
389
+ /* recursive sorting and assembling final result */
390
+ return quickSort(arr1).concat(arr2).concat(quickSort(arr3));
391
+ }
392
+
393
+ /*
394
+ Selection Sort:
395
+ 1. Select the minimum and remove it from the array
396
+ 2. Sort the rest recursively
397
+ 3. Return the minimum plus the sorted rest
398
+ 4. An array with only one element is already sorted
399
+ */
400
+ function selectionSort(arr) {
401
+ /* recursion anchor: one element is always sorted */
402
+ if(arr.length == 1) return arr;
403
+ var minimum = Infinity;
404
+ var index;
405
+ for(var i in arr) {
406
+ if(arr[i] < minimum) {
407
+ minimum = arr[i];
408
+ index = i; /* remember the minimum index for later removal */
409
+ }
410
+ }
411
+ /* remove the minimum */
412
+ arr.splice(index, 1);
413
+ /* assemble result and sort recursively (could be easily done iteratively as well)*/
414
+ return [minimum].concat(selectionSort(arr));
415
+ }
416
+
417
+ /*
418
+ Merge Sort:
419
+ 1. Cut the array in half
420
+ 2. Sort each of them recursively
421
+ 3. Merge the two sorted arrays
422
+ 4. An array with only one element is considered sorted
423
+
424
+ */
425
+ function mergeSort(arr) {
426
+ /* merges two sorted arrays into one sorted array */
427
+ function merge(a, b) {
428
+ /* result set */
429
+ var c = [];
430
+ /* as long as there are elements in the arrays to be merged */
431
+ while(a.length > 0 || b.length > 0){
432
+ /* are there elements to be merged, if yes, compare them and merge */
433
+ var n = a.length > 0 && b.length > 0 ? a[0] < b[0] ? a.shift() : b.shift() : b.length > 0 ? b.shift() : a.length > 0 ? a.shift() : null;
434
+ /* always push the smaller one onto the result set */
435
+ n != null && c.push(n);
436
+ }
437
+ return c;
438
+ }
439
+ /* this mergeSort implementation cuts the array in half, wich should be fine with randomized arrays, but introduces the risk of a worst-case scenario */
440
+ median = Math.floor(arr.length / 2);
441
+ var part1 = arr.slice(0, median); /* for some reason it doesn't work if inserted directly in the return statement (tried so with firefox) */
442
+ var part2 = arr.slice(median - arr.length);
443
+ return arr.length <= 1 ? arr : merge(
444
+ mergeSort(part1), /* first half */
445
+ mergeSort(part2) /* second half */
446
+ );
447
+ }
448
+
449
+ /* Balanced Red-Black-Tree */
450
+ function RedBlackTree(arr) {
451
+
452
+ }
453
+
454
+ function BTree(arr) {
455
+
456
+ }
457
+
458
+ function NaryTree(n, arr) {
459
+
460
+ }
461
+
462
+ /**
463
+ * Knuth-Morris-Pratt string matching algorithm - finds a pattern in a text.
464
+ * FIXME: Doesn't work correctly yet.
465
+ */
466
+ function kmp(p, t) {
467
+
468
+ /**
469
+ * PREFIX, OVERLAP or FALIURE function for KMP. Computes how many iterations
470
+ * the algorithm can skip after a mismatch.
471
+ *
472
+ * @input p - pattern (string)
473
+ * @result array of skippable iterations
474
+ */
475
+ function prefix(p) {
476
+ /* pi contains the computed skip marks */
477
+ var pi = [0], k = 0;
478
+ for(q = 1; q < p.length; q++) {
479
+ while(k > 0 && (p.charAt(k) != p.charAt(q)))
480
+ k = pi[k-1];
481
+
482
+ (p.charAt(k) == p.charAt(q)) && k++;
483
+
484
+ pi[q] = k;
485
+ }
486
+ return pi;
487
+ }
488
+
489
+ /* The actual KMP algorithm starts here. */
490
+
491
+ var pi = prefix(p), q = 0, result = [];
492
+
493
+ for(var i = 0; i < t.length; i++) {
494
+ /* jump forward as long as the character doesn't match */
495
+ while((q > 0) && (p.charAt(q) != t.charAt(i)))
496
+ q = pi[q];
497
+
498
+ (p.charAt(q) == t.charAt(i)) && q++;
499
+
500
+ (q == p.length) && result.push(i - p.length) && (q = pi[q]);
501
+ }
502
+
503
+ return result;
504
+ }
505
+
506
+ /* step for algorithm visualisation */
507
+ function step(comment, funct) {
508
+ //wait for input
509
+ //display comment (before or after waiting)
510
+ // next.wait();
511
+ /* execute callback function */
512
+ funct();
513
+ }
514
+
515
+ /**
516
+ * Curry - Function currying
517
+ * Copyright (c) 2008 Ariel Flesler - aflesler(at)gmail(dot)com | http://flesler.blogspot.com
518
+ * Licensed under BSD (http://www.opensource.org/licenses/bsd-license.php)
519
+ * Date: 10/4/2008
520
+ *
521
+ * @author Ariel Flesler
522
+ * @version 1.0.1
523
+ */
524
+ function curry( fn ){
525
+ return function(){
526
+ var args = curry.args(arguments),
527
+ master = arguments.callee,
528
+ self = this;
529
+
530
+ return args.length >= fn.length ? fn.apply(self,args) : function(){
531
+ return master.apply( self, args.concat(curry.args(arguments)) );
532
+ };
533
+ };
534
+ };
535
+
536
+ curry.args = function( args ){
537
+ return Array.prototype.slice.call(args);
538
+ };
539
+
540
+ Function.prototype.curry = function(){
541
+ return curry(this);
542
+ };
543
+
544
+ /**
545
+ * Topological Sort
546
+ *
547
+ * Sort a directed graph based on incoming edges
548
+ *
549
+ * Coded by Jake Stothard
550
+ */
551
+ function topological_sort(g) {
552
+ //Mark nodes as "deleted" instead of actually deleting them
553
+ //That way we don't have to copy g
554
+
555
+ for(i in g.nodes)
556
+ g.nodes[i].deleted = false;
557
+
558
+ var ret = topological_sort_helper(g);
559
+
560
+ //Cleanup: Remove the deleted property
561
+ for(i in g.nodes)
562
+ delete g.nodes[i].deleted
563
+
564
+ return ret;
565
+ }
566
+ function topological_sort_helper(g) {
567
+ //Find node with no incoming edges
568
+ var node;
569
+ for(i in g.nodes) {
570
+ if(g.nodes[i].deleted)
571
+ continue; //Bad style, meh
572
+
573
+ var incoming = false;
574
+ for(j in g.nodes[i].edges) {
575
+ if(g.nodes[i].edges[j].target == g.nodes[i]
576
+ && g.nodes[i].edges[j].source.deleted == false) {
577
+ incoming = true;
578
+ break;
579
+ }
580
+ }
581
+ if(!incoming) {
582
+ node = g.nodes[i];
583
+ break;
584
+ }
585
+ }
586
+
587
+ // Either unsortable or done. Either way, GTFO
588
+ if(node == undefined)
589
+ return [];
590
+
591
+ //"Delete" node from g
592
+ node.deleted = true;
593
+
594
+ var tail = topological_sort_helper(g);
595
+
596
+ tail.unshift(node);
597
+
598
+ return tail;
599
+ }
@@ -0,0 +1,106 @@
1
+ /**
2
+ * Originally grabbed from the official RaphaelJS Documentation
3
+ * http://raphaeljs.com/graffle.html
4
+ * Adopted (arrows) and commented by Philipp Strathausen http://blog.ameisenbar.de
5
+ * Licenced under the MIT licence.
6
+ */
7
+
8
+ /**
9
+ * Usage:
10
+ * connect two shapes
11
+ * parameters:
12
+ * source shape [or connection for redrawing],
13
+ * target shape,
14
+ * style with { fg : linecolor, bg : background color, directed: boolean }
15
+ * returns:
16
+ * connection { draw = function() }
17
+ */
18
+ Raphael.fn.connection = function (obj1, obj2, style) {
19
+ var selfRef = this;
20
+ /* create and return new connection */
21
+ var edge = {/*
22
+ from : obj1,
23
+ to : obj2,
24
+ style : style,*/
25
+ draw : function() {
26
+ /* get bounding boxes of target and source */
27
+ var bb1 = obj1.getBBox();
28
+ var bb2 = obj2.getBBox();
29
+ var off1 = 0;
30
+ var off2 = 0;
31
+ /* coordinates for potential connection coordinates from/to the objects */
32
+ var p = [
33
+ {x: bb1.x + bb1.width / 2, y: bb1.y - off1}, /* NORTH 1 */
34
+ {x: bb1.x + bb1.width / 2, y: bb1.y + bb1.height + off1}, /* SOUTH 1 */
35
+ {x: bb1.x - off1, y: bb1.y + bb1.height / 2}, /* WEST 1 */
36
+ {x: bb1.x + bb1.width + off1, y: bb1.y + bb1.height / 2}, /* EAST 1 */
37
+ {x: bb2.x + bb2.width / 2, y: bb2.y - off2}, /* NORTH 2 */
38
+ {x: bb2.x + bb2.width / 2, y: bb2.y + bb2.height + off2}, /* SOUTH 2 */
39
+ {x: bb2.x - off2, y: bb2.y + bb2.height / 2}, /* WEST 2 */
40
+ {x: bb2.x + bb2.width + off2, y: bb2.y + bb2.height / 2} /* EAST 2 */
41
+ ];
42
+
43
+ /* distances between objects and according coordinates connection */
44
+ var d = {}, dis = [];
45
+
46
+ /*
47
+ * find out the best connection coordinates by trying all possible ways
48
+ */
49
+ /* loop the first object's connection coordinates */
50
+ for (var i = 0; i < 4; i++) {
51
+ /* loop the seond object's connection coordinates */
52
+ for (var j = 4; j < 8; j++) {
53
+ var dx = Math.abs(p[i].x - p[j].x),
54
+ dy = Math.abs(p[i].y - p[j].y);
55
+ if ((i == j - 4) || (((i != 3 && j != 6) || p[i].x < p[j].x) && ((i != 2 && j != 7) || p[i].x > p[j].x) && ((i != 0 && j != 5) || p[i].y > p[j].y) && ((i != 1 && j != 4) || p[i].y < p[j].y))) {
56
+ dis.push(dx + dy);
57
+ d[dis[dis.length - 1].toFixed(3)] = [i, j];
58
+ }
59
+ }
60
+ }
61
+ var res = dis.length == 0 ? [0, 4] : d[Math.min.apply(Math, dis).toFixed(3)];
62
+ /* bezier path */
63
+ var x1 = p[res[0]].x,
64
+ y1 = p[res[0]].y,
65
+ x4 = p[res[1]].x,
66
+ y4 = p[res[1]].y,
67
+ dx = Math.max(Math.abs(x1 - x4) / 2, 10),
68
+ dy = Math.max(Math.abs(y1 - y4) / 2, 10),
69
+ x2 = [x1, x1, x1 - dx, x1 + dx][res[0]].toFixed(3),
70
+ y2 = [y1 - dy, y1 + dy, y1, y1][res[0]].toFixed(3),
71
+ x3 = [0, 0, 0, 0, x4, x4, x4 - dx, x4 + dx][res[1]].toFixed(3),
72
+ y3 = [0, 0, 0, 0, y1 + dy, y1 - dy, y4, y4][res[1]].toFixed(3);
73
+ /* assemble path and arrow */
74
+ var path = ["M", x1.toFixed(3), y1.toFixed(3), "C", x2, y2, x3, y3, x4.toFixed(3), y4.toFixed(3)].join(",");
75
+ /* arrow */
76
+ if(style && style.directed) {
77
+ /* magnitude, length of the last path vector */
78
+ var mag = Math.sqrt((y4 - y3) * (y4 - y3) + (x4 - x3) * (x4 - x3));
79
+ /* vector normalisation to specified length */
80
+ var norm = function(x,l){return (-x*(l||5)/mag);};
81
+ /* calculate array coordinates (two lines orthogonal to the path vector) */
82
+ var arr = [
83
+ {x:(norm(x4-x3)+norm(y4-y3)+x4).toFixed(3), y:(norm(y4-y3)+norm(x4-x3)+y4).toFixed(3)},
84
+ {x:(norm(x4-x3)-norm(y4-y3)+x4).toFixed(3), y:(norm(y4-y3)-norm(x4-x3)+y4).toFixed(3)}
85
+ ];
86
+ path = path + ",M"+arr[0].x+","+arr[0].y+",L"+x4+","+y4+",L"+arr[1].x+","+arr[1].y;
87
+ }
88
+ /* function to be used for moving existent path(s), e.g. animate() or attr() */
89
+ var move = "attr";
90
+ /* applying path(s) */
91
+ edge.fg && edge.fg[move]({path:path})
92
+ || (edge.fg = selfRef.path(path).attr({stroke: style && style.stroke || "#000", fill: "none"}).toBack());
93
+ edge.bg && edge.bg[move]({path:path})
94
+ || style && style.fill && (edge.bg = style.fill.split && selfRef.path(path).attr({stroke: style.fill.split("|")[0], fill: "none", "stroke-width": style.fill.split("|")[1] || 3}).toBack());
95
+ /* setting label */
96
+ style && style.label
97
+ && (edge.label && edge.label.attr({x:(x1+x4)/2, y:(y1+y4)/2})
98
+ || (edge.label = selfRef.text((x1+x4)/2, (y1+y4)/2, style.label).attr({fill: "#000", "font-size": style["font-size"] || "12px"})));
99
+ // && selfRef.text(x4, y4, style.label).attr({stroke: style && style.stroke || "#fff", "font-weight":"bold", "font-size":"20px"})
100
+ // style && style.callback && style.callback(edge);
101
+ }
102
+ }
103
+ edge.draw();
104
+ return edge;
105
+ };
106
+ //Raphael.prototype.set.prototype.dodo=function(){console.log("works");};