jekyll_ai_related_posts 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.rspec +3 -0
- data/.rubocop.yml +5 -0
- data/CHANGELOG.md +5 -0
- data/LICENSE.txt +21 -0
- data/README.md +101 -0
- data/Rakefile +12 -0
- data/lib/jekyll_ai_related_posts/generator.rb +181 -0
- data/lib/jekyll_ai_related_posts/models/post.rb +8 -0
- data/lib/jekyll_ai_related_posts/open_ai_embeddings.rb +38 -0
- data/lib/jekyll_ai_related_posts/version.rb +5 -0
- data/lib/jekyll_ai_related_posts.rb +13 -0
- metadata +142 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 8b59977a0c1d912e06792f7123c7d443547f1decb9fdf4042d90a4fcd4e1eb4e
|
4
|
+
data.tar.gz: 159db1306777a201cff3a9d3532ddba444164dbfb780207fb9457ce4898df5f8
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: e0f73857997bdacd22059c542a1d2a642a3ea76aa165241c155a0e8b2cafdc4f48607f334a2ed7a265a252e86969d9e523bf4ef2ac5889e1f39c36d1a27792f5
|
7
|
+
data.tar.gz: a5f5f573459deb7fab308b1fb98a1d60ce1aeda95e28860161ed886a3ab90c43f1b7d36fea6cc5c570b05cd15284a59240e8676f5b10f44290b05fbacbd379df
|
data/.rspec
ADDED
data/.rubocop.yml
ADDED
data/CHANGELOG.md
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2024 Mike Kasberg
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,101 @@
|
|
1
|
+
# Jekyll AI Related Posts 🪄
|
2
|
+
|
3
|
+
Jekyll ships with functionality that populates
|
4
|
+
[related_posts](https://jekyllrb.com/docs/variables/) with the ten most recent
|
5
|
+
posts. If you install
|
6
|
+
[classifier_reborn](https://jekyll.github.io/classifier-reborn/) and use the
|
7
|
+
`--lsi` option, Jekyll will populate `related_posts` using latent semantic
|
8
|
+
indexing.
|
9
|
+
|
10
|
+
**Using AI is a much better approach.** Latent semantic indexing seems
|
11
|
+
promising, but in practice requires libraries like Numo or GSL that are tricky
|
12
|
+
to install, and still produces mediocre results. In contrast, OpenAI offers an
|
13
|
+
embeddings API that allows us to easily get the embedding vector (in one of
|
14
|
+
OpenAI's models) of some text. We can use these vectors to compute related
|
15
|
+
posts with the accuracy of OpenAI's models (or any other LLM, for that matter).
|
16
|
+
|
17
|
+
## Installation
|
18
|
+
|
19
|
+
Jekyll AI Related Posts is a [Jekyll
|
20
|
+
plugin](https://jekyllrb.com/docs/plugins/installation/). It can be installed
|
21
|
+
using any Jekyll plugin installation method.
|
22
|
+
|
23
|
+
## Configuration
|
24
|
+
|
25
|
+
All config for this plugin sits under a top-level `ai_related_posts` key.
|
26
|
+
|
27
|
+
The only required config is `openai_api_key` -- we need to authenticate to the
|
28
|
+
API to fetch embedding vectors.
|
29
|
+
|
30
|
+
- **openai_api_key** Your OpenAI API key, used to fetch embeddings.
|
31
|
+
- **fetch_enabled** (optional, default `true`). If true, fetch embeddings. If
|
32
|
+
false, don't fetch embeddings. If this is a string (like `prod`), fetch
|
33
|
+
embeddings only when the `JEKYLL_ENV` environment variable is equal to the
|
34
|
+
string. (This is useful if you want to reduce API costs by only fetching
|
35
|
+
embeddings on production builds.)
|
36
|
+
|
37
|
+
### Example Config
|
38
|
+
|
39
|
+
```yaml
|
40
|
+
ai_related_posts:
|
41
|
+
openai_api_key: sk-proj-abc123
|
42
|
+
fetch_enabled: prod
|
43
|
+
```
|
44
|
+
|
45
|
+
## Usage
|
46
|
+
|
47
|
+
When the plugin is installed and configured, it will populate an
|
48
|
+
`ai_related_posts` key in the post data for all posts. Here's an example of how
|
49
|
+
to use it:
|
50
|
+
|
51
|
+
```liquid
|
52
|
+
<h2>Related Posts</h2>
|
53
|
+
<ul>
|
54
|
+
{% for post in page.ai_related_posts limit:3 %}
|
55
|
+
<li><a href="{{ post.url }}">{{ post.title }}</a></li>
|
56
|
+
{% endfor %}
|
57
|
+
</ul>
|
58
|
+
```
|
59
|
+
|
60
|
+
### Upgrading from Built-In Related Posts
|
61
|
+
|
62
|
+
If you're already using Jekyll's built-in `site.related_posts` and you want to
|
63
|
+
upgrade to AI related posts:
|
64
|
+
|
65
|
+
- Install the plugin.
|
66
|
+
- Replace `site.related_posts` with `page.ai_related_posts` in your templates.
|
67
|
+
- If you were using LSI, stop. It's no longer necessary. Don't pass the `--lsi`
|
68
|
+
option to the `jekyll` command. You can remove the `classifier-reborn` gem and
|
69
|
+
its dependencies (Numo).
|
70
|
+
|
71
|
+
|
72
|
+
## How It Works
|
73
|
+
|
74
|
+
Jekyll AI Related Posts is implemented as a Jekyll Generator plugin. During the
|
75
|
+
build process, the plugin will call the [OpenAI Embeddings
|
76
|
+
API](https://platform.openai.com/docs/guides/embeddings) to fetch the vector
|
77
|
+
embedding for a string containing the title, tags, and categories of your
|
78
|
+
article. It's not necessary to use the full post text, in most cases the title
|
79
|
+
and tags produce very accurate results because the LLM knows when topics are
|
80
|
+
related even if they never use identical words. This is also why the LLM
|
81
|
+
produces better results than LSI. These vector embeddings are cached in a SQLite
|
82
|
+
database. To query for related posts, we query the cached vectors using the
|
83
|
+
[sqlite-vss](https://github.com/asg017/sqlite-vss) plugin.
|
84
|
+
|
85
|
+
## Development
|
86
|
+
|
87
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run
|
88
|
+
`rake spec` to run the tests. You can also run `bin/console` for an interactive
|
89
|
+
prompt that will allow you to experiment.
|
90
|
+
|
91
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To
|
92
|
+
release a new version, update the version number in `version.rb`, and then run
|
93
|
+
`bundle exec rake release`, which will create a git tag for the version, push
|
94
|
+
git commits and the created tag, and push the `.gem` file to
|
95
|
+
[rubygems.org](https://rubygems.org).
|
96
|
+
|
97
|
+
## Contributing
|
98
|
+
|
99
|
+
Bug reports and pull requests are welcome on GitHub at
|
100
|
+
https://github.com/mkasberg/jekyll_ai_related_posts.
|
101
|
+
|
data/Rakefile
ADDED
@@ -0,0 +1,181 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "active_record"
|
4
|
+
require "sqlite3"
|
5
|
+
require "sqlite_vss"
|
6
|
+
require "jekyll"
|
7
|
+
require "json"
|
8
|
+
|
9
|
+
module JekyllAiRelatedPosts
|
10
|
+
class Generator < Jekyll::Generator
|
11
|
+
def generate(site)
|
12
|
+
@site = site
|
13
|
+
setup_database
|
14
|
+
|
15
|
+
if fetch_enabled?
|
16
|
+
Jekyll.logger.info "[ai_related_posts] Generating related posts..."
|
17
|
+
@embeddings_fetcher = new_fetcher
|
18
|
+
|
19
|
+
@site.posts.docs.each do |p|
|
20
|
+
ensure_embedding_cached(p)
|
21
|
+
end
|
22
|
+
|
23
|
+
@indexed_posts = {}
|
24
|
+
site.posts.docs.each do |p|
|
25
|
+
@indexed_posts[p.relative_path] = p
|
26
|
+
end
|
27
|
+
|
28
|
+
@site.posts.docs.each do |p|
|
29
|
+
find_related(p)
|
30
|
+
end
|
31
|
+
else
|
32
|
+
Jekyll.logger.info "[ai_related_posts] Using cached related posts data..."
|
33
|
+
|
34
|
+
@site.posts.docs.each do |p|
|
35
|
+
fallback_generate_related(p)
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
39
|
+
|
40
|
+
private
|
41
|
+
|
42
|
+
def fetch_enabled?
|
43
|
+
enabled = true
|
44
|
+
if @site.config["ai_related_posts"]["fetch_enabled"].is_a? String
|
45
|
+
enabled = ENV["JEKYLL_ENV"] == @site.config["ai_related_posts"]["fetch_enabled"]
|
46
|
+
elsif [ true, false ].include? @site.config["ai_related_posts"]["fetch_enabled"]
|
47
|
+
enabled = @site.config["ai_related_posts"]["fetch_enabled"]
|
48
|
+
end
|
49
|
+
|
50
|
+
enabled
|
51
|
+
end
|
52
|
+
|
53
|
+
def fallback_generate_related(post)
|
54
|
+
existing = Models::Post.find_by(relative_path: post.relative_path)
|
55
|
+
if existing.nil?
|
56
|
+
post.data["ai_related_posts"] = post.related_posts
|
57
|
+
else
|
58
|
+
find_related(post)
|
59
|
+
end
|
60
|
+
end
|
61
|
+
|
62
|
+
def new_fetcher
|
63
|
+
case @site.config["ai_related_posts"]["embeddings_source"]
|
64
|
+
when "mock"
|
65
|
+
MockEmbeddings.new
|
66
|
+
else
|
67
|
+
OpenAiEmbeddings.new(@site.config["ai_related_posts"]["openai_api_key"])
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
def ensure_embedding_cached(post)
|
72
|
+
existing = Models::Post.find_by(relative_path: post.relative_path)
|
73
|
+
|
74
|
+
# Clear cache if post has been updated
|
75
|
+
if !existing.nil? && existing.embedding_text != embedding_text(post)
|
76
|
+
sql = "DELETE FROM vss_posts WHERE rowid = (SELECT rowid FROM posts WHERE relative_path = :relative_path);"
|
77
|
+
ActiveRecord::Base.connection.execute(ActiveRecord::Base.sanitize_sql([ sql,
|
78
|
+
{ relative_path: post.relative_path } ]))
|
79
|
+
existing.destroy!
|
80
|
+
existing = nil
|
81
|
+
end
|
82
|
+
|
83
|
+
return unless existing.nil?
|
84
|
+
|
85
|
+
Models::Post.create!(
|
86
|
+
relative_path: post.relative_path,
|
87
|
+
embedding_text: embedding_text(post),
|
88
|
+
embedding: embedding_for(post).to_json
|
89
|
+
)
|
90
|
+
|
91
|
+
sql = <<-SQL
|
92
|
+
INSERT INTO vss_posts (rowid, post_embedding)
|
93
|
+
SELECT rowid, embedding FROM posts WHERE relative_path = :relative_path;
|
94
|
+
SQL
|
95
|
+
ActiveRecord::Base.connection.execute(ActiveRecord::Base.sanitize_sql([ sql,
|
96
|
+
{ relative_path: post.relative_path } ]))
|
97
|
+
end
|
98
|
+
|
99
|
+
def find_related(post)
|
100
|
+
sql = <<-SQL
|
101
|
+
SELECT rowid, distance
|
102
|
+
FROM vss_posts
|
103
|
+
WHERE vss_search(
|
104
|
+
post_embedding,
|
105
|
+
(select embedding from posts where relative_path = :relative_path)
|
106
|
+
)
|
107
|
+
LIMIT 10000;
|
108
|
+
SQL
|
109
|
+
|
110
|
+
results = ActiveRecord::Base.connection.execute(ActiveRecord::Base.sanitize_sql([ sql, {
|
111
|
+
relative_path: post.relative_path
|
112
|
+
} ]))
|
113
|
+
# The first result is the post itself, with a distance of 0.
|
114
|
+
rowids = results.sort_by { |r| r["distance"] }.drop(1).first(3).map { |r| r["rowid"] }
|
115
|
+
|
116
|
+
posts_by_rowid = {}
|
117
|
+
rowids.each do |rowid|
|
118
|
+
# This *is* an N+1 query, but:
|
119
|
+
# - N+1 penalty is way less with SQLite
|
120
|
+
# - N is relatively small (it's Jekyll post count)
|
121
|
+
# - This is an easy way to work around rowid not being a real column that ActiveRecord knows about.
|
122
|
+
posts_by_rowid[rowid] = Models::Post.select(:relative_path).find_by(rowid: rowid)
|
123
|
+
end
|
124
|
+
|
125
|
+
related_posts = rowids.map do |rowid|
|
126
|
+
relative_path = posts_by_rowid[rowid]["relative_path"]
|
127
|
+
@indexed_posts[relative_path]
|
128
|
+
end
|
129
|
+
|
130
|
+
post.data["ai_related_posts"] = related_posts
|
131
|
+
end
|
132
|
+
|
133
|
+
def embedding_text(post)
|
134
|
+
text = "Title: #{post.data["title"]}"
|
135
|
+
text += "; Categories: #{post.data["categories"].join(", ")}" unless post.data["categories"].empty?
|
136
|
+
text += "; Tags: #{post.data["tags"].join(", ")}" unless post.data["tags"].empty?
|
137
|
+
|
138
|
+
text
|
139
|
+
end
|
140
|
+
|
141
|
+
def embedding_for(post)
|
142
|
+
Jekyll.logger.info "[ai_related_posts] Fetching embedding for #{post.relative_path}"
|
143
|
+
input = embedding_text(post)
|
144
|
+
|
145
|
+
@embeddings_fetcher.embedding_for(input)
|
146
|
+
end
|
147
|
+
|
148
|
+
def setup_database
|
149
|
+
ActiveRecord::Base.establish_connection(
|
150
|
+
adapter: "sqlite3",
|
151
|
+
database: @site.in_source_dir(".ai_related_posts_cache.sqlite3")
|
152
|
+
)
|
153
|
+
# We don't need WAL mode for this.
|
154
|
+
ActiveRecord::Base.connection.execute("PRAGMA journal_mode=DELETE;")
|
155
|
+
|
156
|
+
# Enable sqlite-vss vector extension
|
157
|
+
db = ActiveRecord::Base.connection.raw_connection
|
158
|
+
db.enable_load_extension(true)
|
159
|
+
SqliteVss.load(db)
|
160
|
+
db.enable_load_extension(false)
|
161
|
+
|
162
|
+
create_posts = <<-SQL
|
163
|
+
CREATE TABLE IF NOT EXISTS posts(
|
164
|
+
relative_path TEXT PRIMARY KEY,
|
165
|
+
embedding_text TEXT,
|
166
|
+
embedding TEXT
|
167
|
+
);
|
168
|
+
SQL
|
169
|
+
ActiveRecord::Base.connection.execute(create_posts)
|
170
|
+
|
171
|
+
create_vss_posts = <<-SQL
|
172
|
+
CREATE VIRTUAL TABLE IF NOT EXISTS vss_posts using vss0(
|
173
|
+
post_embedding(#{OpenAiEmbeddings::DIMENSIONS})
|
174
|
+
);
|
175
|
+
SQL
|
176
|
+
ActiveRecord::Base.connection.execute(create_vss_posts)
|
177
|
+
|
178
|
+
Jekyll.logger.debug("ai_related_posts db setup complete")
|
179
|
+
end
|
180
|
+
end
|
181
|
+
end
|
@@ -0,0 +1,38 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "faraday"
|
4
|
+
|
5
|
+
module JekyllAiRelatedPosts
|
6
|
+
class OpenAiEmbeddings
|
7
|
+
DIMENSIONS = 1536
|
8
|
+
|
9
|
+
def initialize(api_key, connection: nil)
|
10
|
+
@connection = if connection.nil?
|
11
|
+
Faraday.new(url: "https://api.openai.com") do |builder|
|
12
|
+
builder.request :authorization, "Bearer", api_key
|
13
|
+
builder.request :json
|
14
|
+
builder.response :json
|
15
|
+
builder.response :raise_error
|
16
|
+
end
|
17
|
+
else
|
18
|
+
connection
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
def embedding_for(text)
|
23
|
+
res = @connection.post("/v1/embeddings") do |req|
|
24
|
+
req.body = {
|
25
|
+
input: text,
|
26
|
+
model: "text-embedding-3-small"
|
27
|
+
}
|
28
|
+
end
|
29
|
+
|
30
|
+
res.body["data"].first["embedding"]
|
31
|
+
rescue Faraday::Error => e
|
32
|
+
Jekyll.logger.error "Error response from OpanAI API!"
|
33
|
+
Jekyll.logger.error e.inspect
|
34
|
+
|
35
|
+
raise
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
@@ -0,0 +1,13 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require_relative "jekyll_ai_related_posts/generator"
|
4
|
+
|
5
|
+
require "zeitwerk"
|
6
|
+
loader = Zeitwerk::Loader.for_gem
|
7
|
+
loader.setup
|
8
|
+
|
9
|
+
module JekyllAiRelatedPosts
|
10
|
+
GEM_ROOT = File.expand_path("..", __dir__)
|
11
|
+
|
12
|
+
class Error < StandardError; end
|
13
|
+
end
|
metadata
ADDED
@@ -0,0 +1,142 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: jekyll_ai_related_posts
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Mike Kasberg
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2024-04-23 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: activerecord
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '7.1'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '7.1'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: faraday
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '2.9'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '2.9'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: jekyll
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - ">="
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '3.0'
|
48
|
+
type: :runtime
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - ">="
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '3.0'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: sqlite3
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '1.4'
|
62
|
+
type: :runtime
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '1.4'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: sqlite-vss
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - "~>"
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: 0.1.2
|
76
|
+
type: :runtime
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - "~>"
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: 0.1.2
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: zeitwerk
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - "~>"
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '2.6'
|
90
|
+
type: :runtime
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - "~>"
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '2.6'
|
97
|
+
description: Populate ai_related_posts using Open AI embeddings
|
98
|
+
email:
|
99
|
+
- kasberg.mike@gmail.com
|
100
|
+
executables: []
|
101
|
+
extensions: []
|
102
|
+
extra_rdoc_files: []
|
103
|
+
files:
|
104
|
+
- ".rspec"
|
105
|
+
- ".rubocop.yml"
|
106
|
+
- CHANGELOG.md
|
107
|
+
- LICENSE.txt
|
108
|
+
- README.md
|
109
|
+
- Rakefile
|
110
|
+
- lib/jekyll_ai_related_posts.rb
|
111
|
+
- lib/jekyll_ai_related_posts/generator.rb
|
112
|
+
- lib/jekyll_ai_related_posts/models/post.rb
|
113
|
+
- lib/jekyll_ai_related_posts/open_ai_embeddings.rb
|
114
|
+
- lib/jekyll_ai_related_posts/version.rb
|
115
|
+
homepage: https://github.com/mkasberg/jekyll_ai_related_posts
|
116
|
+
licenses:
|
117
|
+
- MIT
|
118
|
+
metadata:
|
119
|
+
allowed_push_host: https://rubygems.org
|
120
|
+
homepage_uri: https://github.com/mkasberg/jekyll_ai_related_posts
|
121
|
+
source_code_uri: https://github.com/mkasberg/jekyll_ai_related_posts
|
122
|
+
changelog_uri: https://github.com/mkasberg/jekyll_ai_related_posts
|
123
|
+
post_install_message:
|
124
|
+
rdoc_options: []
|
125
|
+
require_paths:
|
126
|
+
- lib
|
127
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
128
|
+
requirements:
|
129
|
+
- - ">="
|
130
|
+
- !ruby/object:Gem::Version
|
131
|
+
version: 3.0.0
|
132
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
133
|
+
requirements:
|
134
|
+
- - ">="
|
135
|
+
- !ruby/object:Gem::Version
|
136
|
+
version: '0'
|
137
|
+
requirements: []
|
138
|
+
rubygems_version: 3.5.6
|
139
|
+
signing_key:
|
140
|
+
specification_version: 4
|
141
|
+
summary: Populate ai_related_posts using Open AI embeddings
|
142
|
+
test_files: []
|