jblas-ruby 1.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/lib/jblas.rb +325 -0
- data/lib/jblas/0readme.rb +69 -0
- data/lib/jblas/arith.rb +62 -0
- data/lib/jblas/complex.rb +92 -0
- data/lib/jblas/errors.rb +52 -0
- data/lib/jblas/extensions.rb +114 -0
- data/lib/jblas/functions.rb +404 -0
- data/lib/jblas/java.rb +75 -0
- data/lib/jblas/jblas-1.1.1.jar +0 -0
- data/lib/jblas/matrix_mixin.rb +64 -0
- data/lib/jblas/mixin_access.rb +155 -0
- data/lib/jblas/mixin_arith.rb +168 -0
- data/lib/jblas/mixin_class.rb +80 -0
- data/lib/jblas/mixin_complex_matrix.rb +64 -0
- data/lib/jblas/mixin_convert.rb +104 -0
- data/lib/jblas/mixin_enum.rb +83 -0
- data/lib/jblas/mixin_general.rb +202 -0
- data/lib/jblas/proxies.rb +55 -0
- metadata +81 -0
@@ -0,0 +1,92 @@
|
|
1
|
+
# Mixins for complex numbers. Defines JBLAS::ComplexMixin. See also
|
2
|
+
# ComplexDouble and ComplexFloat.
|
3
|
+
|
4
|
+
# Copyright (c) 2009-2010, Mikio L. Braun and contributors
|
5
|
+
# All rights reserved.
|
6
|
+
#
|
7
|
+
# Redistribution and use in source and binary forms, with or without
|
8
|
+
# modification, are permitted provided that the following conditions are
|
9
|
+
# met:
|
10
|
+
#
|
11
|
+
# * Redistributions of source code must retain the above copyright
|
12
|
+
# notice, this list of conditions and the following disclaimer.
|
13
|
+
#
|
14
|
+
# * Redistributions in binary form must reproduce the above
|
15
|
+
# copyright notice, this list of conditions and the following
|
16
|
+
# disclaimer in the documentation and/or other materials provided
|
17
|
+
# with the distribution.
|
18
|
+
#
|
19
|
+
# * Neither the name of the Technische Universität Berlin nor the
|
20
|
+
# names of its contributors may be used to endorse or promote
|
21
|
+
# products derived from this software without specific prior
|
22
|
+
# written permission.
|
23
|
+
#
|
24
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
25
|
+
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
26
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
27
|
+
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
28
|
+
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
29
|
+
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
30
|
+
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
31
|
+
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
32
|
+
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
33
|
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
34
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
35
|
+
|
36
|
+
module JBLAS
|
37
|
+
# Syntactic sugar for complex numbers.
|
38
|
+
#
|
39
|
+
# Defines the arithmetic operators *, +, -, /, and coercion such that
|
40
|
+
# the complex numbers interact well with the builtin numerics.
|
41
|
+
module ComplexMixin
|
42
|
+
# Convert to a string.
|
43
|
+
def to_s
|
44
|
+
"#{real} + #{imag}i"
|
45
|
+
end
|
46
|
+
|
47
|
+
# Same as to_s.
|
48
|
+
def inspect
|
49
|
+
to_s
|
50
|
+
end
|
51
|
+
|
52
|
+
# Multiply complex values.
|
53
|
+
def *(o); mul(o); end
|
54
|
+
# Add complex values.
|
55
|
+
def +(o); add(o); end
|
56
|
+
# Subtract complex values.
|
57
|
+
def -(o); sub(o); end
|
58
|
+
# Divide complex values.
|
59
|
+
def /(o); div(o); end
|
60
|
+
# Negative complex values.
|
61
|
+
def -@; neg; end
|
62
|
+
|
63
|
+
# Subtract with swapped operands.
|
64
|
+
#
|
65
|
+
# This means that a.rsub(b) = b - a. This method is necessary to
|
66
|
+
# make coercion work.
|
67
|
+
def rsub(o); -self + o; end
|
68
|
+
# Divide with swapped operands.
|
69
|
+
#
|
70
|
+
# This means that a.rdiv(b) = b / a. This method is necessary to
|
71
|
+
# make coercion work.
|
72
|
+
def rdiv(o); inv * o; end
|
73
|
+
|
74
|
+
def coerce(o) #:nodoc:
|
75
|
+
unless self.class === o
|
76
|
+
[ReversedArithmetic.new(self), o]
|
77
|
+
end
|
78
|
+
end
|
79
|
+
|
80
|
+
# Compute the square root
|
81
|
+
def sqrt; JAVA_METHOD; end
|
82
|
+
|
83
|
+
# Get the length of the complex number
|
84
|
+
def abs; JAVA_METHOD; end
|
85
|
+
|
86
|
+
# Get the angle of the complex number
|
87
|
+
def arg; JAVA_METHOD; end
|
88
|
+
|
89
|
+
# Get the conjugate of the complex number
|
90
|
+
def conj; JAVA_METHOD; end
|
91
|
+
end
|
92
|
+
end
|
data/lib/jblas/errors.rb
ADDED
@@ -0,0 +1,52 @@
|
|
1
|
+
# Errors used by JBLAS. Contains the module JBLAS::Errors
|
2
|
+
|
3
|
+
# Copyright (c) 2009-2010, Mikio L. Braun and contributors
|
4
|
+
# All rights reserved.
|
5
|
+
#
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
7
|
+
# modification, are permitted provided that the following conditions are
|
8
|
+
# met:
|
9
|
+
#
|
10
|
+
# * Redistributions of source code must retain the above copyright
|
11
|
+
# notice, this list of conditions and the following disclaimer.
|
12
|
+
#
|
13
|
+
# * Redistributions in binary form must reproduce the above
|
14
|
+
# copyright notice, this list of conditions and the following
|
15
|
+
# disclaimer in the documentation and/or other materials provided
|
16
|
+
# with the distribution.
|
17
|
+
#
|
18
|
+
# * Neither the name of the Technische Universität Berlin nor the
|
19
|
+
# names of its contributors may be used to endorse or promote
|
20
|
+
# products derived from this software without specific prior
|
21
|
+
# written permission.
|
22
|
+
#
|
23
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
24
|
+
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
25
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
26
|
+
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
27
|
+
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
28
|
+
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
29
|
+
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
30
|
+
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
31
|
+
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
32
|
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
33
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34
|
+
|
35
|
+
module JBLAS
|
36
|
+
# This modules contains special exceptions raised by JBLAS.
|
37
|
+
module Errors
|
38
|
+
# The routine required a positive definite matrix.
|
39
|
+
class MatrixNotPositiveDefinite < ArgumentError
|
40
|
+
def initialize
|
41
|
+
super "Matrix is not positive definite."
|
42
|
+
end
|
43
|
+
end
|
44
|
+
|
45
|
+
# The routine required a square matrix.
|
46
|
+
class MatrixNotSquare < ArgumentError
|
47
|
+
def initialize
|
48
|
+
super "Matrix is not square."
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
@@ -0,0 +1,114 @@
|
|
1
|
+
# Define extensions to Object, Array, Numeric and Range to play well with
|
2
|
+
# matrices.
|
3
|
+
#
|
4
|
+
# Main additions are: Object#to_mat, and Numeric#columns, Numeric#rows, and so on.
|
5
|
+
|
6
|
+
# Copyright (c) 2009-2010, Mikio L. Braun and contributors
|
7
|
+
# All rights reserved.
|
8
|
+
#
|
9
|
+
# Redistribution and use in source and binary forms, with or without
|
10
|
+
# modification, are permitted provided that the following conditions are
|
11
|
+
# met:
|
12
|
+
#
|
13
|
+
# * Redistributions of source code must retain the above copyright
|
14
|
+
# notice, this list of conditions and the following disclaimer.
|
15
|
+
#
|
16
|
+
# * Redistributions in binary form must reproduce the above
|
17
|
+
# copyright notice, this list of conditions and the following
|
18
|
+
# disclaimer in the documentation and/or other materials provided
|
19
|
+
# with the distribution.
|
20
|
+
#
|
21
|
+
# * Neither the name of the Technische Universität Berlin nor the
|
22
|
+
# names of its contributors may be used to endorse or promote
|
23
|
+
# products derived from this software without specific prior
|
24
|
+
# written permission.
|
25
|
+
#
|
26
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
|
38
|
+
# Extensions to Ruby's Object class
|
39
|
+
class Object
|
40
|
+
# convert object to a matrix through to_mat
|
41
|
+
def to_matrix
|
42
|
+
to_mat
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
# Extensions to Ruby's Array class
|
47
|
+
class Array
|
48
|
+
# Convert array to matrix.
|
49
|
+
def to_mat
|
50
|
+
JBLAS::DoubleMatrix[*self]
|
51
|
+
end
|
52
|
+
|
53
|
+
# Convert array to matrix string representation
|
54
|
+
def to_matlab_string
|
55
|
+
'[' + map{|e| e.to_s}.join(', ') + ']'
|
56
|
+
end
|
57
|
+
end
|
58
|
+
|
59
|
+
# Extensions to Ruby's Range class
|
60
|
+
class Range
|
61
|
+
# Convert to matrix object.
|
62
|
+
def to_mat
|
63
|
+
self.to_a.to_mat
|
64
|
+
end
|
65
|
+
end
|
66
|
+
|
67
|
+
# Extensions to Ruby's Numeric class
|
68
|
+
class Numeric
|
69
|
+
# Convert to matlab. Just returns the object itself. Other
|
70
|
+
# methods are added below to make a Numeric object look like
|
71
|
+
# a matrix.
|
72
|
+
def to_mat
|
73
|
+
self # JBLAS::DoubleMatrix[self]
|
74
|
+
end
|
75
|
+
|
76
|
+
# Convert to matrix.
|
77
|
+
def to_matrix
|
78
|
+
JBLAS::DoubleMatrix[self]
|
79
|
+
end
|
80
|
+
|
81
|
+
# Returns number of columns (= 1).
|
82
|
+
def columns
|
83
|
+
1
|
84
|
+
end
|
85
|
+
|
86
|
+
# Returns number of rows (= 1).
|
87
|
+
def rows
|
88
|
+
1
|
89
|
+
end
|
90
|
+
|
91
|
+
# Element access (always returns the Numeric object itself)
|
92
|
+
def [](*args)
|
93
|
+
self
|
94
|
+
end
|
95
|
+
|
96
|
+
# Is a scalar? (always true)
|
97
|
+
def scalar?
|
98
|
+
true
|
99
|
+
end
|
100
|
+
|
101
|
+
# Transpose (is the same object).
|
102
|
+
def t
|
103
|
+
self
|
104
|
+
end
|
105
|
+
|
106
|
+
# Length of the Numeric object (= 1).
|
107
|
+
def length
|
108
|
+
1
|
109
|
+
end
|
110
|
+
|
111
|
+
def i
|
112
|
+
ComplexDouble.new(0, self)
|
113
|
+
end
|
114
|
+
end
|
@@ -0,0 +1,404 @@
|
|
1
|
+
# Functions within JBLAS, for example, sin, cos, and so on. See JBLAS.
|
2
|
+
|
3
|
+
# Copyright (c) 2009-2010, Mikio L. Braun and contributors
|
4
|
+
# All rights reserved.
|
5
|
+
#
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
7
|
+
# modification, are permitted provided that the following conditions are
|
8
|
+
# met:
|
9
|
+
#
|
10
|
+
# * Redistributions of source code must retain the above copyright
|
11
|
+
# notice, this list of conditions and the following disclaimer.
|
12
|
+
#
|
13
|
+
# * Redistributions in binary form must reproduce the above
|
14
|
+
# copyright notice, this list of conditions and the following
|
15
|
+
# disclaimer in the documentation and/or other materials provided
|
16
|
+
# with the distribution.
|
17
|
+
#
|
18
|
+
# * Neither the name of the Technische Universität Berlin nor the
|
19
|
+
# names of its contributors may be used to endorse or promote
|
20
|
+
# products derived from this software without specific prior
|
21
|
+
# written permission.
|
22
|
+
#
|
23
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
24
|
+
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
25
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
26
|
+
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
27
|
+
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
28
|
+
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
29
|
+
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
30
|
+
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
31
|
+
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
32
|
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
33
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34
|
+
|
35
|
+
require 'jblas/errors'
|
36
|
+
|
37
|
+
module JBLAS
|
38
|
+
module_function
|
39
|
+
|
40
|
+
######################################################################
|
41
|
+
#
|
42
|
+
# Helper methods
|
43
|
+
#
|
44
|
+
######################################################################
|
45
|
+
|
46
|
+
# Check whether matrix is square. Raises Errors::MatrixNotSquare if it isn't.
|
47
|
+
def check_matrix_square(m)
|
48
|
+
unless m.square?
|
49
|
+
raise Errors::MatrixNotSquare
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
######################################################################
|
54
|
+
#
|
55
|
+
# Module Functions
|
56
|
+
#
|
57
|
+
######################################################################
|
58
|
+
|
59
|
+
|
60
|
+
MatrixFactory = {
|
61
|
+
:double => DoubleMatrix,
|
62
|
+
:float => FloatMatrix
|
63
|
+
}
|
64
|
+
|
65
|
+
# Construct a matrix. Use it like this:
|
66
|
+
#
|
67
|
+
# mat[1,2,3] -> constructs a column vector
|
68
|
+
# mat[[1,2,3],[4,5,6]] -> construct a rectangular matrix
|
69
|
+
def mat(type=:double)
|
70
|
+
MatrixFactory[type]
|
71
|
+
end
|
72
|
+
|
73
|
+
# Construct a matrix of all zeros.
|
74
|
+
#
|
75
|
+
# zeros(2, 3) == mat[[0, 0, 0],[0, 0, 0]]
|
76
|
+
#
|
77
|
+
# If the second argument is omitted, a column vector is constructed.
|
78
|
+
def zeros(n,m=nil)
|
79
|
+
if m
|
80
|
+
mat.zeros(n,m)
|
81
|
+
else
|
82
|
+
mat.zeros(n)
|
83
|
+
end
|
84
|
+
end
|
85
|
+
|
86
|
+
# Construct a matrix of all ones.
|
87
|
+
#
|
88
|
+
# ones(2, 3) == mat[[1, 1, 1],[1, 1, 1]]
|
89
|
+
#
|
90
|
+
# If the second argument is omitted, a column vector is constructed.
|
91
|
+
def ones(n,m=nil)
|
92
|
+
if m
|
93
|
+
mat.ones(n,m)
|
94
|
+
else
|
95
|
+
mat.ones(n)
|
96
|
+
end
|
97
|
+
end
|
98
|
+
|
99
|
+
# Return the diagonal of a matrix or return a matrix whose diagonal
|
100
|
+
# is specified by the vector
|
101
|
+
def diag(x)
|
102
|
+
if x.vector?
|
103
|
+
mat.diag(x)
|
104
|
+
else
|
105
|
+
x.diag
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
# Return the identity matrix of given size.
|
110
|
+
def eye(n)
|
111
|
+
mat.eye(n)
|
112
|
+
end
|
113
|
+
|
114
|
+
# Construct a matrix or vector with elements randomly
|
115
|
+
# drawn uniformly from [0, 1].
|
116
|
+
#
|
117
|
+
# If the second argument is omitted, a column vector is constructed.
|
118
|
+
def rand(n=1,m=nil)
|
119
|
+
if m
|
120
|
+
mat.rand(n,m)
|
121
|
+
else
|
122
|
+
mat.rand(n)
|
123
|
+
end
|
124
|
+
end
|
125
|
+
|
126
|
+
# Construct a matrix or vector with elements randomly drawn from a
|
127
|
+
# Gaussian distribution with mean 0 and variance 1. With one
|
128
|
+
# argument, construct a vector, with two a matrix.
|
129
|
+
#
|
130
|
+
# If the second argument is omitted, a column vector is constructed.
|
131
|
+
def randn(n=1,m=nil)
|
132
|
+
if m
|
133
|
+
mat.randn(n,m)
|
134
|
+
else
|
135
|
+
mat.randn(n)
|
136
|
+
end
|
137
|
+
end
|
138
|
+
|
139
|
+
FUNCTIONS = {
|
140
|
+
'abs' => 'Compute the absolute value.',
|
141
|
+
'acos' => 'Compute the arcus cosine.',
|
142
|
+
'asin' => 'Compute the arcus sine.',
|
143
|
+
'atan' => 'Compute the arcus tangens.',
|
144
|
+
'cbrt' => 'Compute the cube root.',
|
145
|
+
'ceil' => 'Round up to the next integer',
|
146
|
+
'cos' => 'Compute the cosine.',
|
147
|
+
'cosh' => 'Compute the hyperbolic cosine.',
|
148
|
+
'exp' => 'Compute the exponential function.',
|
149
|
+
'floor' => 'Round down to the next integer',
|
150
|
+
'log' => 'Compute the natural logarithm',
|
151
|
+
'log10' => 'Compute the base-10 logarithm',
|
152
|
+
'signum' => 'Compute the sign',
|
153
|
+
'sin' => 'Compute the sine',
|
154
|
+
'sinh' => 'Compute the hyperbolic sine',
|
155
|
+
'sqrt' => 'Compute the square root',
|
156
|
+
'tan' => 'Compute the tangens',
|
157
|
+
'tanh' => 'Compute the hyperbolic tangens'
|
158
|
+
}
|
159
|
+
|
160
|
+
FUNCTIONS.each_key do |fn|
|
161
|
+
module_eval <<-EOS
|
162
|
+
def #{fn}(x)
|
163
|
+
if Array === x
|
164
|
+
x = x.to_mat
|
165
|
+
end
|
166
|
+
s = MatrixFunctions.#{fn}(x)
|
167
|
+
end
|
168
|
+
module_function :#{fn}
|
169
|
+
|
170
|
+
def #{fn}i(x)
|
171
|
+
MatrixFunctions.#{fn}i(x)
|
172
|
+
end
|
173
|
+
module_function :#{fn}i
|
174
|
+
|
175
|
+
alias #{fn}! #{fn}i
|
176
|
+
EOS
|
177
|
+
end
|
178
|
+
|
179
|
+
# Computer power. pow(x, y) = x ^ y.
|
180
|
+
def pow(x, y)
|
181
|
+
x = x.to_mat if Array === x
|
182
|
+
y = y.to_amt if Array === y
|
183
|
+
return MatrixFunctions.pow(x, y)
|
184
|
+
end
|
185
|
+
|
186
|
+
# Compute power, in-place.
|
187
|
+
def powi(x, y)
|
188
|
+
MatrixFunctions.powi(x, y)
|
189
|
+
end
|
190
|
+
|
191
|
+
alias pow! powi
|
192
|
+
|
193
|
+
PI = Math::PI
|
194
|
+
|
195
|
+
# Computing the trace of a matrix.
|
196
|
+
def trace(x)
|
197
|
+
JBLAS::check_matrix_square(x)
|
198
|
+
x.diag.sum
|
199
|
+
end
|
200
|
+
|
201
|
+
# Computing the eigenvalues of matrix.
|
202
|
+
def eig(x)
|
203
|
+
check_matrix_square(x)
|
204
|
+
if x.symmetric?
|
205
|
+
return Eigen.symmetric_eigenvalues(x)
|
206
|
+
else
|
207
|
+
return Eigen.eigenvalues(x)
|
208
|
+
end
|
209
|
+
end
|
210
|
+
|
211
|
+
# Computing the eigenvectors of matrix.
|
212
|
+
#
|
213
|
+
# u, v = eigv(x)
|
214
|
+
#
|
215
|
+
# u are the eigenvalues and v is a diagonal matrix containing the
|
216
|
+
# eigenvalues
|
217
|
+
def eigv(x)
|
218
|
+
check_matrix_square(x)
|
219
|
+
if x.symmetric?
|
220
|
+
return Eigen.symmetric_eigenvectors(x).to_a
|
221
|
+
else
|
222
|
+
return Eigen.eigenvectors(x).to_a
|
223
|
+
end
|
224
|
+
end
|
225
|
+
|
226
|
+
# Solve the linear equation a*x = b. See also MatrixMixin#solve.
|
227
|
+
def solve(a, b)
|
228
|
+
a.solve b
|
229
|
+
end
|
230
|
+
|
231
|
+
# Compute the norm of a vector
|
232
|
+
def norm(x, type=2)
|
233
|
+
case type
|
234
|
+
when 1
|
235
|
+
x.norm1
|
236
|
+
when 2
|
237
|
+
x.norm2
|
238
|
+
when :inf
|
239
|
+
x.normmax
|
240
|
+
end
|
241
|
+
end
|
242
|
+
|
243
|
+
# Returns the horizontal concatenation of all arguments.
|
244
|
+
#
|
245
|
+
# See also MatrixGeneralMixin#hcat.
|
246
|
+
def hcat(*args)
|
247
|
+
args.map {|s| s.to_matrix}.inject{|s,x| s = s.hcat x}
|
248
|
+
end
|
249
|
+
|
250
|
+
# Returns the vertical concatenation of all arguments
|
251
|
+
#
|
252
|
+
# See also MatrixGeneralMixin#vcat.
|
253
|
+
def vcat(*args)
|
254
|
+
args.map {|s| s.to_matrix}.inject{|s,x| s = s.vcat x}
|
255
|
+
end
|
256
|
+
|
257
|
+
# Replicate a matrix a certain number of horizontal and
|
258
|
+
# vertical times.
|
259
|
+
#
|
260
|
+
# For example:
|
261
|
+
#
|
262
|
+
# repmat(mat[[1,2,3],[4,5,6]], 1, 2)
|
263
|
+
# => [1.0, 2.0, 3.0, 1.0, 2.0, 3.0; 4.0, 5.0, 6.0, 4.0, 5.0, 6.0]
|
264
|
+
def repmat(m, r, c)
|
265
|
+
m.to_matrix.repmat(r, c)
|
266
|
+
end
|
267
|
+
|
268
|
+
# Generate an array of n linearly spaced points starting at a, ending
|
269
|
+
# at b.
|
270
|
+
def linspace(a, b, n)
|
271
|
+
(0...n).map do |i|
|
272
|
+
t = Float(i) / (n-1)
|
273
|
+
(1-t)*a + t*b
|
274
|
+
end
|
275
|
+
end
|
276
|
+
|
277
|
+
# Generate an array of n logarithmically spaced points starting at
|
278
|
+
# 10^a and ending at 10^b.
|
279
|
+
def logspace(a, b, n)
|
280
|
+
(0...n).map do |i|
|
281
|
+
t = Float(i) / (n-1)
|
282
|
+
10**( (1-t)*a + t*b )
|
283
|
+
end
|
284
|
+
end
|
285
|
+
|
286
|
+
# Generate a range from a to b with step size s.
|
287
|
+
def range(a, s, b)
|
288
|
+
x = []
|
289
|
+
while a < b
|
290
|
+
x << a
|
291
|
+
a += s
|
292
|
+
end
|
293
|
+
return x
|
294
|
+
end
|
295
|
+
|
296
|
+
# The sum of a vector. See also
|
297
|
+
def sum(x)
|
298
|
+
x.sum
|
299
|
+
end
|
300
|
+
|
301
|
+
# The mean of a vector.
|
302
|
+
def mean(x)
|
303
|
+
x.to_mat.mean
|
304
|
+
end
|
305
|
+
|
306
|
+
# Sort the elements of a vector.
|
307
|
+
def sort(x)
|
308
|
+
x.sort
|
309
|
+
end
|
310
|
+
|
311
|
+
# Return the smallest element of a vector.
|
312
|
+
def min(x)
|
313
|
+
x.min
|
314
|
+
end
|
315
|
+
|
316
|
+
# Return the largest element of a vector.
|
317
|
+
def max(x)
|
318
|
+
x.max
|
319
|
+
end
|
320
|
+
|
321
|
+
# The sinc function (Defined as sin(x)/x if x != 0 and 1 else).
|
322
|
+
def sinc(x)
|
323
|
+
sin(x) / x
|
324
|
+
end
|
325
|
+
|
326
|
+
# Compute the cumulative sum of a vector.
|
327
|
+
def cumsum(x)
|
328
|
+
x.cumulative_sum
|
329
|
+
end
|
330
|
+
|
331
|
+
# Compute the LU factorization with pivoting.
|
332
|
+
#
|
333
|
+
# Returns matrices l, u, p
|
334
|
+
def lup(x)
|
335
|
+
check_matrix_square(x)
|
336
|
+
result = Decompose.lu(x)
|
337
|
+
return result.l, result.u, result.p
|
338
|
+
end
|
339
|
+
|
340
|
+
# Compute the Cholesky decomposition of a square,
|
341
|
+
# positive definite matrix.
|
342
|
+
#
|
343
|
+
# Returns a matrix an upper triangular matrix u such
|
344
|
+
# that u * u.t is the original matrix.
|
345
|
+
def cholesky(x)
|
346
|
+
check_matrix_square(x)
|
347
|
+
begin
|
348
|
+
Decompose.cholesky(x)
|
349
|
+
rescue org.jblas.exceptions.LapackPositivityException
|
350
|
+
raise Errors::MatrixNotPositiveDefinite
|
351
|
+
end
|
352
|
+
end
|
353
|
+
|
354
|
+
# Compute the determinant of a square matrix.
|
355
|
+
#
|
356
|
+
# Internally computes the LU factorization and
|
357
|
+
# then takes the product of the diagonal elements.
|
358
|
+
def det(x)
|
359
|
+
check_matrix_square(x)
|
360
|
+
l, u, p = lup(x)
|
361
|
+
return u.diag.prod
|
362
|
+
end
|
363
|
+
|
364
|
+
# Compute the singular value decompositon of a
|
365
|
+
# rectangular matrix.
|
366
|
+
#
|
367
|
+
# Returns matrices u, s, v such that u*diag(s)*v.t is
|
368
|
+
# the original matrix. Put differently, the columns of
|
369
|
+
# u are the left singular vectors, the columns of v are
|
370
|
+
# the right singular vectors, and s are the singular values.
|
371
|
+
def svd(x, sparse=false)
|
372
|
+
if sparse
|
373
|
+
usv = Singular.sparseSVD(x)
|
374
|
+
else
|
375
|
+
usv = Singular.fullSVD(x)
|
376
|
+
end
|
377
|
+
return usv.to_a
|
378
|
+
end
|
379
|
+
|
380
|
+
# Compute the singular values of a rectangular matrix.
|
381
|
+
def svdv(x)
|
382
|
+
Singular.SVDValues(x)
|
383
|
+
end
|
384
|
+
|
385
|
+
#########################################################################
|
386
|
+
#
|
387
|
+
# Utilities
|
388
|
+
#
|
389
|
+
#########################################################################
|
390
|
+
|
391
|
+
# Times a block and returns the elapsed time in seconds.
|
392
|
+
#
|
393
|
+
# For example:
|
394
|
+
#
|
395
|
+
# tictoc { n = 100; x = randn(n, n); u, d = eigv(x) }
|
396
|
+
#
|
397
|
+
# Times how long it takes to generate a random 100*100 matrix and compute
|
398
|
+
# its eigendecomposition.
|
399
|
+
def tictoc
|
400
|
+
saved_time = Time.now
|
401
|
+
yield
|
402
|
+
return Time.now - saved_time
|
403
|
+
end
|
404
|
+
end
|