j1-template 2022.3.1 → 2022.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/_includes/themes/j1/modules/navigator/generator.html +1 -1
- data/assets/data/cookieconsent.html +4 -4
- data/assets/data/nbinteract.html +128 -0
- data/assets/data/quicklinks.html +15 -0
- data/assets/data/translator.html +15 -15
- data/assets/themes/j1/adapter/js/j1.js +150 -75
- data/assets/themes/j1/adapter/js/mmenu.js +25 -3
- data/assets/themes/j1/adapter/js/navigator.js +2 -2
- data/assets/themes/j1/adapter/js/nbinteract.js +240 -33
- data/assets/themes/j1/adapter/js/rangeSlider.js +27 -10
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
- data/assets/themes/j1/core/js/template.js +14 -3
- data/assets/themes/j1/core/js/template.min.js +1 -1
- data/assets/themes/j1/core/js/template.min.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
- data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.css +5 -0
- data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.min.css +1 -1
- data/lib/j1/version.rb +1 -1
- data/lib/starter_web/Gemfile +1 -1
- data/lib/starter_web/_config.yml +1 -1
- data/lib/starter_web/_data/j1_config.yml +22 -7
- data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
- data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
- data/lib/starter_web/_data/modules/defaults/nbinteract.yml +99 -1
- data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
- data/lib/starter_web/_data/modules/rangeSlider.yml +38 -1
- data/lib/starter_web/_plugins/asciidoctor-extensions/range-slider-block.rb +44 -0
- data/lib/starter_web/_plugins/lunr_index.rb +1 -1
- data/lib/starter_web/package.json +1 -1
- data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
- data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
- data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
- data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
- data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
- data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
- data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_odes_in_python.ipynb +16 -16
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +3 -3
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_odes_in_python.html +10 -10
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +4 -4
- data/lib/starter_web/pages/public/previewer/preview_bootstrap_theme.adoc +2 -2
- data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
- data/lib/starter_web/utilsrv/package.json +1 -1
- metadata +5 -7
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js +0 -94
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js.map +0 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js +0 -94
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js.map +0 -1
- data/lib/starter_web/pages/public/se/se-fake.adoc +0 -47
@@ -87,19 +87,9 @@ ifeval::[{binder-badges-enabled} == true]
|
|
87
87
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
88
88
|
endif::[]
|
89
89
|
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
|
94
|
-
Some sections are rewritten for the text to improve clarity and simplify the
|
95
|
-
language for future translation.
|
96
|
-
|
97
|
-
Meanwhile, a lot of changes were done for the services at
|
98
|
-
link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
|
99
|
-
original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
|
100
|
-
you'll encounter that all interactive pages never change their state and
|
101
|
-
get stuck in `Initializing widgets...` for an infinite initializing loop.
|
102
|
-
====
|
90
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
91
|
+
operations that take a while to finish. The elements are built through a
|
92
|
+
backend in the cloud. Please be patient to see the results.
|
103
93
|
|
104
94
|
The package *nbinteract* aims to enable authors and educators to create and
|
105
95
|
share interactive web pages easily. Interactive explanations of concepts are
|
@@ -123,10 +113,20 @@ In addition, `nbinteract` provides a Python package. Once imported, the package
|
|
123
113
|
provides helper methods that allow users to create simple interactive
|
124
114
|
visualizations with single function calls.
|
125
115
|
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
116
|
+
[NOTE]
|
117
|
+
====
|
118
|
+
This document is a port for J1 Template of the original document pages
|
119
|
+
at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
|
120
|
+
Some sections are rewritten for the text to improve clarity and simplify the
|
121
|
+
language for future translation.
|
122
|
+
|
123
|
+
Meanwhile, a lot of changes were done for the services at
|
124
|
+
link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
|
125
|
+
original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
|
126
|
+
you'll encounter that all interactive pages never change their state and
|
127
|
+
get stuck in `Initializing widgets...` for an infinite initializing loop.
|
128
|
+
====
|
129
|
+
|
130
130
|
|
131
131
|
== Getting Started
|
132
132
|
|
@@ -81,10 +81,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
81
81
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
82
82
|
endif::[]
|
83
83
|
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
original post but re-written for clarity and simplicity.
|
84
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
85
|
+
operations that take a while to finish. The elements are built through a
|
86
|
+
backend in the cloud. Please be patient to see the results.
|
88
87
|
|
89
88
|
First, let's introduce the video from _Mathologer_. This video creates very
|
90
89
|
nice patterns from _Times Tables_. Everybody knows them from primary school.
|
@@ -127,10 +126,10 @@ what _Mathologer_ is doing:
|
|
127
126
|
|
128
127
|
Start your journey on the power of Mathematics!
|
129
128
|
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
129
|
+
NOTE: All examples are taken from
|
130
|
+
link:{times-tables-visualization}[Times Tables Visualization - Finding Patterns, {browser-window--new}],
|
131
|
+
and re-written for the use of module J1 NBI. Some text is used from the
|
132
|
+
original post but re-written for clarity and simplicity.
|
134
133
|
|
135
134
|
// textbook::circular_times_table[]
|
136
135
|
textbook::j1_circular_times_table[]
|
@@ -86,6 +86,10 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
86
86
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
87
87
|
endif::[]
|
88
88
|
|
89
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
90
|
+
operations that take a while to finish. The elements are built through a
|
91
|
+
backend in the cloud. Please be patient to see the results.
|
92
|
+
|
89
93
|
Widgets are eventful python objects that have a representation in the browser,
|
90
94
|
often as a control like a slider, textbox, etc. Widgets are used to build
|
91
95
|
interactive GUIs for your notebooks, and to synchronize stateful and stateless
|
@@ -97,9 +101,4 @@ the most used. Interactive widgets are provided natively by Jupyter Notebooks
|
|
97
101
|
using the library `ipywidgets`. Some more widgets are provided by `nbinteract`.
|
98
102
|
Find common examples in the textbooks below.
|
99
103
|
|
100
|
-
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
101
|
-
operations that take a while to finish. The images and the interactive
|
102
|
-
elements are built through a backend in the cloud. Please be patient
|
103
|
-
to see the results.
|
104
|
-
|
105
104
|
textbook::j1_interactive_widgets[]
|
@@ -84,8 +84,9 @@ endif::[]
|
|
84
84
|
|
85
85
|
// See: https://elc.github.io/posts/ordinary-differential-equations-with-python/
|
86
86
|
|
87
|
-
|
88
|
-
|
87
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
88
|
+
operations that take a while to finish. The elements are built through a
|
89
|
+
backend in the cloud. Please be patient to see the results.
|
89
90
|
|
90
91
|
An ordinary differential equation (often abbreviated to ODE) is one
|
91
92
|
Differential equation where only derivatives of the desired function
|
@@ -100,9 +101,7 @@ describing the dynamics of the population of rabbits and foxes. Check how
|
|
100
101
|
the animals depend on each other. Manipulate some parameters to see the
|
101
102
|
influences on the rabbits and foxes population.
|
102
103
|
|
103
|
-
|
104
|
-
|
105
|
-
elements are built through a backend in the cloud. Please be patient
|
106
|
-
to see the results.
|
104
|
+
NOTE: All examples are taken from
|
105
|
+
link:{odes-in-python}[Ordinary Differential Equations (ODE) with Python, {browser-window--new}]
|
107
106
|
|
108
107
|
textbook::j1_odes_in_python[]
|
@@ -80,6 +80,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
80
80
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
81
81
|
endif::[]
|
82
82
|
|
83
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
84
|
+
operations that take a while to finish. The elements are built through a
|
85
|
+
backend in the cloud. Please be patient to see the results.
|
83
86
|
|
84
87
|
== Plotly
|
85
88
|
|
@@ -87,9 +90,5 @@ lorem:sentences[5]
|
|
87
90
|
|
88
91
|
lorem:sentences[3]
|
89
92
|
|
90
|
-
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
91
|
-
operations that take a while to finish. The images and the interactive
|
92
|
-
elements are built through a backend in the cloud. Please be patient
|
93
|
-
to see the results.
|
94
93
|
|
95
94
|
textbook::j1_testing_plotly[]
|
@@ -80,15 +80,15 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
80
80
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
81
81
|
endif::[]
|
82
82
|
|
83
|
+
CAUTION: If the J1 NBI module detects *non-interactive* textbooks, the
|
84
|
+
NBI module adapter does *not* start a Binder service for an external
|
85
|
+
computational environment.
|
86
|
+
|
83
87
|
This textbook is an example of a *non-interactive* Jupyter notebook (JN).
|
84
88
|
Jupyter Notebooks don't necessarily need to contain *interactive* widgets.
|
85
89
|
The CLI `nbinteract` can export all types of (Python-based) notebooks to
|
86
90
|
an (HTML) textbooks.
|
87
91
|
|
88
|
-
NOTE: If the J1 NBI module detects non-interactive textbooks, the module
|
89
|
-
adapter does *not* start the Binder service for an external computational
|
90
|
-
environment.
|
91
|
-
|
92
92
|
== Climate change forecasting
|
93
93
|
|
94
94
|
Predicting climate change is a very difficult business. The calculations are
|
@@ -41,7 +41,7 @@
|
|
41
41
|
{
|
42
42
|
"data": {
|
43
43
|
"application/vnd.jupyter.widget-view+json": {
|
44
|
-
"model_id": "
|
44
|
+
"model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
|
45
45
|
"version_major": 2,
|
46
46
|
"version_minor": 0
|
47
47
|
},
|
@@ -76,7 +76,7 @@
|
|
76
76
|
{
|
77
77
|
"data": {
|
78
78
|
"application/vnd.jupyter.widget-view+json": {
|
79
|
-
"model_id": "
|
79
|
+
"model_id": "674a3b8585444242843a165fd36a5cc2",
|
80
80
|
"version_major": 2,
|
81
81
|
"version_minor": 0
|
82
82
|
},
|
@@ -113,7 +113,7 @@
|
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "63e03b8837e042ffb0fb36a48d95d85d",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -150,7 +150,7 @@
|
|
150
150
|
{
|
151
151
|
"data": {
|
152
152
|
"application/vnd.jupyter.widget-view+json": {
|
153
|
-
"model_id": "
|
153
|
+
"model_id": "81de367a58a445afa093b39819fdeb65",
|
154
154
|
"version_major": 2,
|
155
155
|
"version_minor": 0
|
156
156
|
},
|
@@ -164,7 +164,7 @@
|
|
164
164
|
{
|
165
165
|
"data": {
|
166
166
|
"application/vnd.jupyter.widget-view+json": {
|
167
|
-
"model_id": "
|
167
|
+
"model_id": "faba020a11b44537bf1b9f74339d8d52",
|
168
168
|
"version_major": 2,
|
169
169
|
"version_minor": 0
|
170
170
|
},
|
@@ -178,7 +178,7 @@
|
|
178
178
|
{
|
179
179
|
"data": {
|
180
180
|
"application/vnd.jupyter.widget-view+json": {
|
181
|
-
"model_id": "
|
181
|
+
"model_id": "f34cec7fb4a54934940f5d037440e9b7",
|
182
182
|
"version_major": 2,
|
183
183
|
"version_minor": 0
|
184
184
|
},
|
@@ -192,7 +192,7 @@
|
|
192
192
|
{
|
193
193
|
"data": {
|
194
194
|
"application/vnd.jupyter.widget-view+json": {
|
195
|
-
"model_id": "
|
195
|
+
"model_id": "b8b7d85b1759460dadc5568a014d7e80",
|
196
196
|
"version_major": 2,
|
197
197
|
"version_minor": 0
|
198
198
|
},
|
@@ -232,7 +232,7 @@
|
|
232
232
|
{
|
233
233
|
"data": {
|
234
234
|
"application/vnd.jupyter.widget-view+json": {
|
235
|
-
"model_id": "
|
235
|
+
"model_id": "e0535be20c59454aa7529e40e0457f0e",
|
236
236
|
"version_major": 2,
|
237
237
|
"version_minor": 0
|
238
238
|
},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
{
|
310
310
|
"data": {
|
311
311
|
"application/vnd.jupyter.widget-view+json": {
|
312
|
-
"model_id": "
|
312
|
+
"model_id": "1196c754303d48c8954b2ba783112516",
|
313
313
|
"version_major": 2,
|
314
314
|
"version_minor": 0
|
315
315
|
},
|
@@ -363,7 +363,7 @@
|
|
363
363
|
{
|
364
364
|
"data": {
|
365
365
|
"application/vnd.jupyter.widget-view+json": {
|
366
|
-
"model_id": "
|
366
|
+
"model_id": "5940507213474cf7a7a33b5e60f9d386",
|
367
367
|
"version_major": 2,
|
368
368
|
"version_minor": 0
|
369
369
|
},
|
@@ -383,7 +383,7 @@
|
|
383
383
|
" '''\n",
|
384
384
|
" return np.random.normal(loc=mean, scale=sd, size=1000)\n",
|
385
385
|
"\n",
|
386
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
386
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
387
387
|
]
|
388
388
|
},
|
389
389
|
{
|
@@ -401,18 +401,18 @@
|
|
401
401
|
},
|
402
402
|
{
|
403
403
|
"cell_type": "code",
|
404
|
-
"execution_count":
|
404
|
+
"execution_count": 18,
|
405
405
|
"metadata": {},
|
406
406
|
"outputs": [
|
407
407
|
{
|
408
408
|
"data": {
|
409
409
|
"application/vnd.jupyter.widget-view+json": {
|
410
|
-
"model_id": "
|
410
|
+
"model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
|
411
411
|
"version_major": 2,
|
412
412
|
"version_minor": 0
|
413
413
|
},
|
414
414
|
"text/plain": [
|
415
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
415
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
416
416
|
]
|
417
417
|
},
|
418
418
|
"metadata": {},
|
@@ -430,7 +430,7 @@
|
|
430
430
|
" 'ylim': (0, 20),\n",
|
431
431
|
"}\n",
|
432
432
|
"\n",
|
433
|
-
"nbi.bar(categories, heights, n=(
|
433
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
434
434
|
]
|
435
435
|
},
|
436
436
|
{
|
@@ -454,12 +454,12 @@
|
|
454
454
|
{
|
455
455
|
"data": {
|
456
456
|
"application/vnd.jupyter.widget-view+json": {
|
457
|
-
"model_id": "
|
457
|
+
"model_id": "40dc861f38114d0589514725ce5062e3",
|
458
458
|
"version_major": 2,
|
459
459
|
"version_minor": 0
|
460
460
|
},
|
461
461
|
"text/plain": [
|
462
|
-
"VBox(children=(Label(value='y = 1.03x + 0.
|
462
|
+
"VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
463
463
|
]
|
464
464
|
},
|
465
465
|
"metadata": {},
|
@@ -494,12 +494,12 @@
|
|
494
494
|
{
|
495
495
|
"data": {
|
496
496
|
"application/vnd.jupyter.widget-view+json": {
|
497
|
-
"model_id": "
|
497
|
+
"model_id": "4bee645a8f074735b3a76d7611a7ec01",
|
498
498
|
"version_major": 2,
|
499
499
|
"version_minor": 0
|
500
500
|
},
|
501
501
|
"text/plain": [
|
502
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
502
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
503
503
|
]
|
504
504
|
},
|
505
505
|
"metadata": {},
|
@@ -510,7 +510,7 @@
|
|
510
510
|
"def x_values(n): return np.random.choice(100, n)\n",
|
511
511
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
512
512
|
"\n",
|
513
|
-
"nbi.scatter(x_values, y_values, n=(
|
513
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
514
514
|
]
|
515
515
|
},
|
516
516
|
{
|
@@ -532,7 +532,7 @@
|
|
532
532
|
{
|
533
533
|
"data": {
|
534
534
|
"application/vnd.jupyter.widget-view+json": {
|
535
|
-
"model_id": "
|
535
|
+
"model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
|
536
536
|
"version_major": 2,
|
537
537
|
"version_minor": 0
|
538
538
|
},
|
@@ -583,7 +583,7 @@
|
|
583
583
|
{
|
584
584
|
"data": {
|
585
585
|
"application/vnd.jupyter.widget-view+json": {
|
586
|
-
"model_id": "
|
586
|
+
"model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
|
587
587
|
"version_major": 2,
|
588
588
|
"version_minor": 0
|
589
589
|
},
|
@@ -611,7 +611,7 @@
|
|
611
611
|
{
|
612
612
|
"data": {
|
613
613
|
"application/vnd.jupyter.widget-view+json": {
|
614
|
-
"model_id": "
|
614
|
+
"model_id": "bb9674fe94b0491f83de231ff76bc149",
|
615
615
|
"version_major": 2,
|
616
616
|
"version_minor": 0
|
617
617
|
},
|
@@ -648,7 +648,7 @@
|
|
648
648
|
{
|
649
649
|
"data": {
|
650
650
|
"application/vnd.jupyter.widget-view+json": {
|
651
|
-
"model_id": "
|
651
|
+
"model_id": "c488ca7374b0478bb5db7f877738df78",
|
652
652
|
"version_major": 2,
|
653
653
|
"version_minor": 0
|
654
654
|
},
|
@@ -672,7 +672,7 @@
|
|
672
672
|
{
|
673
673
|
"data": {
|
674
674
|
"application/vnd.jupyter.widget-view+json": {
|
675
|
-
"model_id": "
|
675
|
+
"model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
|
676
676
|
"version_major": 2,
|
677
677
|
"version_minor": 0
|
678
678
|
},
|
@@ -697,7 +697,7 @@
|
|
697
697
|
{
|
698
698
|
"data": {
|
699
699
|
"application/vnd.jupyter.widget-view+json": {
|
700
|
-
"model_id": "
|
700
|
+
"model_id": "b0bbe10d65cc485294295b94e6fab3a6",
|
701
701
|
"version_major": 2,
|
702
702
|
"version_minor": 0
|
703
703
|
},
|
@@ -41,7 +41,7 @@
|
|
41
41
|
{
|
42
42
|
"data": {
|
43
43
|
"application/vnd.jupyter.widget-view+json": {
|
44
|
-
"model_id": "
|
44
|
+
"model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
|
45
45
|
"version_major": 2,
|
46
46
|
"version_minor": 0
|
47
47
|
},
|
@@ -76,7 +76,7 @@
|
|
76
76
|
{
|
77
77
|
"data": {
|
78
78
|
"application/vnd.jupyter.widget-view+json": {
|
79
|
-
"model_id": "
|
79
|
+
"model_id": "674a3b8585444242843a165fd36a5cc2",
|
80
80
|
"version_major": 2,
|
81
81
|
"version_minor": 0
|
82
82
|
},
|
@@ -113,7 +113,7 @@
|
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "63e03b8837e042ffb0fb36a48d95d85d",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -150,7 +150,7 @@
|
|
150
150
|
{
|
151
151
|
"data": {
|
152
152
|
"application/vnd.jupyter.widget-view+json": {
|
153
|
-
"model_id": "
|
153
|
+
"model_id": "81de367a58a445afa093b39819fdeb65",
|
154
154
|
"version_major": 2,
|
155
155
|
"version_minor": 0
|
156
156
|
},
|
@@ -164,7 +164,7 @@
|
|
164
164
|
{
|
165
165
|
"data": {
|
166
166
|
"application/vnd.jupyter.widget-view+json": {
|
167
|
-
"model_id": "
|
167
|
+
"model_id": "faba020a11b44537bf1b9f74339d8d52",
|
168
168
|
"version_major": 2,
|
169
169
|
"version_minor": 0
|
170
170
|
},
|
@@ -178,7 +178,7 @@
|
|
178
178
|
{
|
179
179
|
"data": {
|
180
180
|
"application/vnd.jupyter.widget-view+json": {
|
181
|
-
"model_id": "
|
181
|
+
"model_id": "f34cec7fb4a54934940f5d037440e9b7",
|
182
182
|
"version_major": 2,
|
183
183
|
"version_minor": 0
|
184
184
|
},
|
@@ -192,7 +192,7 @@
|
|
192
192
|
{
|
193
193
|
"data": {
|
194
194
|
"application/vnd.jupyter.widget-view+json": {
|
195
|
-
"model_id": "
|
195
|
+
"model_id": "b8b7d85b1759460dadc5568a014d7e80",
|
196
196
|
"version_major": 2,
|
197
197
|
"version_minor": 0
|
198
198
|
},
|
@@ -232,7 +232,7 @@
|
|
232
232
|
{
|
233
233
|
"data": {
|
234
234
|
"application/vnd.jupyter.widget-view+json": {
|
235
|
-
"model_id": "
|
235
|
+
"model_id": "e0535be20c59454aa7529e40e0457f0e",
|
236
236
|
"version_major": 2,
|
237
237
|
"version_minor": 0
|
238
238
|
},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
{
|
310
310
|
"data": {
|
311
311
|
"application/vnd.jupyter.widget-view+json": {
|
312
|
-
"model_id": "
|
312
|
+
"model_id": "1196c754303d48c8954b2ba783112516",
|
313
313
|
"version_major": 2,
|
314
314
|
"version_minor": 0
|
315
315
|
},
|
@@ -363,7 +363,7 @@
|
|
363
363
|
{
|
364
364
|
"data": {
|
365
365
|
"application/vnd.jupyter.widget-view+json": {
|
366
|
-
"model_id": "
|
366
|
+
"model_id": "5940507213474cf7a7a33b5e60f9d386",
|
367
367
|
"version_major": 2,
|
368
368
|
"version_minor": 0
|
369
369
|
},
|
@@ -383,7 +383,7 @@
|
|
383
383
|
" '''\n",
|
384
384
|
" return np.random.normal(loc=mean, scale=sd, size=1000)\n",
|
385
385
|
"\n",
|
386
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
386
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
387
387
|
]
|
388
388
|
},
|
389
389
|
{
|
@@ -401,18 +401,18 @@
|
|
401
401
|
},
|
402
402
|
{
|
403
403
|
"cell_type": "code",
|
404
|
-
"execution_count":
|
404
|
+
"execution_count": 18,
|
405
405
|
"metadata": {},
|
406
406
|
"outputs": [
|
407
407
|
{
|
408
408
|
"data": {
|
409
409
|
"application/vnd.jupyter.widget-view+json": {
|
410
|
-
"model_id": "
|
410
|
+
"model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
|
411
411
|
"version_major": 2,
|
412
412
|
"version_minor": 0
|
413
413
|
},
|
414
414
|
"text/plain": [
|
415
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
415
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
416
416
|
]
|
417
417
|
},
|
418
418
|
"metadata": {},
|
@@ -430,7 +430,7 @@
|
|
430
430
|
" 'ylim': (0, 20),\n",
|
431
431
|
"}\n",
|
432
432
|
"\n",
|
433
|
-
"nbi.bar(categories, heights, n=(
|
433
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
434
434
|
]
|
435
435
|
},
|
436
436
|
{
|
@@ -454,12 +454,12 @@
|
|
454
454
|
{
|
455
455
|
"data": {
|
456
456
|
"application/vnd.jupyter.widget-view+json": {
|
457
|
-
"model_id": "
|
457
|
+
"model_id": "40dc861f38114d0589514725ce5062e3",
|
458
458
|
"version_major": 2,
|
459
459
|
"version_minor": 0
|
460
460
|
},
|
461
461
|
"text/plain": [
|
462
|
-
"VBox(children=(Label(value='y = 1.03x + 0.
|
462
|
+
"VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
463
463
|
]
|
464
464
|
},
|
465
465
|
"metadata": {},
|
@@ -494,12 +494,12 @@
|
|
494
494
|
{
|
495
495
|
"data": {
|
496
496
|
"application/vnd.jupyter.widget-view+json": {
|
497
|
-
"model_id": "
|
497
|
+
"model_id": "4bee645a8f074735b3a76d7611a7ec01",
|
498
498
|
"version_major": 2,
|
499
499
|
"version_minor": 0
|
500
500
|
},
|
501
501
|
"text/plain": [
|
502
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
502
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
503
503
|
]
|
504
504
|
},
|
505
505
|
"metadata": {},
|
@@ -510,7 +510,7 @@
|
|
510
510
|
"def x_values(n): return np.random.choice(100, n)\n",
|
511
511
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
512
512
|
"\n",
|
513
|
-
"nbi.scatter(x_values, y_values, n=(
|
513
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
514
514
|
]
|
515
515
|
},
|
516
516
|
{
|
@@ -532,7 +532,7 @@
|
|
532
532
|
{
|
533
533
|
"data": {
|
534
534
|
"application/vnd.jupyter.widget-view+json": {
|
535
|
-
"model_id": "
|
535
|
+
"model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
|
536
536
|
"version_major": 2,
|
537
537
|
"version_minor": 0
|
538
538
|
},
|
@@ -583,7 +583,7 @@
|
|
583
583
|
{
|
584
584
|
"data": {
|
585
585
|
"application/vnd.jupyter.widget-view+json": {
|
586
|
-
"model_id": "
|
586
|
+
"model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
|
587
587
|
"version_major": 2,
|
588
588
|
"version_minor": 0
|
589
589
|
},
|
@@ -611,7 +611,7 @@
|
|
611
611
|
{
|
612
612
|
"data": {
|
613
613
|
"application/vnd.jupyter.widget-view+json": {
|
614
|
-
"model_id": "
|
614
|
+
"model_id": "bb9674fe94b0491f83de231ff76bc149",
|
615
615
|
"version_major": 2,
|
616
616
|
"version_minor": 0
|
617
617
|
},
|
@@ -648,7 +648,7 @@
|
|
648
648
|
{
|
649
649
|
"data": {
|
650
650
|
"application/vnd.jupyter.widget-view+json": {
|
651
|
-
"model_id": "
|
651
|
+
"model_id": "c488ca7374b0478bb5db7f877738df78",
|
652
652
|
"version_major": 2,
|
653
653
|
"version_minor": 0
|
654
654
|
},
|
@@ -672,7 +672,7 @@
|
|
672
672
|
{
|
673
673
|
"data": {
|
674
674
|
"application/vnd.jupyter.widget-view+json": {
|
675
|
-
"model_id": "
|
675
|
+
"model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
|
676
676
|
"version_major": 2,
|
677
677
|
"version_minor": 0
|
678
678
|
},
|
@@ -697,7 +697,7 @@
|
|
697
697
|
{
|
698
698
|
"data": {
|
699
699
|
"application/vnd.jupyter.widget-view+json": {
|
700
|
-
"model_id": "
|
700
|
+
"model_id": "b0bbe10d65cc485294295b94e6fab3a6",
|
701
701
|
"version_major": 2,
|
702
702
|
"version_minor": 0
|
703
703
|
},
|