j1-template 2022.3.1 → 2022.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/_includes/themes/j1/modules/navigator/generator.html +1 -1
- data/assets/data/cookieconsent.html +4 -4
- data/assets/data/nbinteract.html +128 -0
- data/assets/data/quicklinks.html +15 -0
- data/assets/data/translator.html +15 -15
- data/assets/themes/j1/adapter/js/j1.js +150 -75
- data/assets/themes/j1/adapter/js/mmenu.js +25 -3
- data/assets/themes/j1/adapter/js/navigator.js +2 -2
- data/assets/themes/j1/adapter/js/nbinteract.js +240 -33
- data/assets/themes/j1/adapter/js/rangeSlider.js +27 -10
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
- data/assets/themes/j1/core/js/template.js +14 -3
- data/assets/themes/j1/core/js/template.min.js +1 -1
- data/assets/themes/j1/core/js/template.min.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
- data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.css +5 -0
- data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.min.css +1 -1
- data/lib/j1/version.rb +1 -1
- data/lib/starter_web/Gemfile +1 -1
- data/lib/starter_web/_config.yml +1 -1
- data/lib/starter_web/_data/j1_config.yml +22 -7
- data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
- data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
- data/lib/starter_web/_data/modules/defaults/nbinteract.yml +99 -1
- data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
- data/lib/starter_web/_data/modules/rangeSlider.yml +38 -1
- data/lib/starter_web/_plugins/asciidoctor-extensions/range-slider-block.rb +44 -0
- data/lib/starter_web/_plugins/lunr_index.rb +1 -1
- data/lib/starter_web/package.json +1 -1
- data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
- data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
- data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
- data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
- data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
- data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
- data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_odes_in_python.ipynb +16 -16
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +3 -3
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_odes_in_python.html +10 -10
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +4 -4
- data/lib/starter_web/pages/public/previewer/preview_bootstrap_theme.adoc +2 -2
- data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
- data/lib/starter_web/utilsrv/package.json +1 -1
- metadata +5 -7
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js +0 -94
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js.map +0 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js +0 -94
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js.map +0 -1
- data/lib/starter_web/pages/public/se/se-fake.adoc +0 -47
@@ -87,19 +87,9 @@ ifeval::[{binder-badges-enabled} == true]
|
|
87
87
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
88
88
|
endif::[]
|
89
89
|
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
|
94
|
-
Some sections are rewritten for the text to improve clarity and simplify the
|
95
|
-
language for future translation.
|
96
|
-
|
97
|
-
Meanwhile, a lot of changes were done for the services at
|
98
|
-
link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
|
99
|
-
original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
|
100
|
-
you'll encounter that all interactive pages never change their state and
|
101
|
-
get stuck in `Initializing widgets...` for an infinite initializing loop.
|
102
|
-
====
|
90
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
91
|
+
operations that take a while to finish. The elements are built through a
|
92
|
+
backend in the cloud. Please be patient to see the results.
|
103
93
|
|
104
94
|
The package *nbinteract* aims to enable authors and educators to create and
|
105
95
|
share interactive web pages easily. Interactive explanations of concepts are
|
@@ -123,10 +113,20 @@ In addition, `nbinteract` provides a Python package. Once imported, the package
|
|
123
113
|
provides helper methods that allow users to create simple interactive
|
124
114
|
visualizations with single function calls.
|
125
115
|
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
116
|
+
[NOTE]
|
117
|
+
====
|
118
|
+
This document is a port for J1 Template of the original document pages
|
119
|
+
at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
|
120
|
+
Some sections are rewritten for the text to improve clarity and simplify the
|
121
|
+
language for future translation.
|
122
|
+
|
123
|
+
Meanwhile, a lot of changes were done for the services at
|
124
|
+
link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
|
125
|
+
original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
|
126
|
+
you'll encounter that all interactive pages never change their state and
|
127
|
+
get stuck in `Initializing widgets...` for an infinite initializing loop.
|
128
|
+
====
|
129
|
+
|
130
130
|
|
131
131
|
== Getting Started
|
132
132
|
|
@@ -81,10 +81,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
81
81
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
82
82
|
endif::[]
|
83
83
|
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
original post but re-written for clarity and simplicity.
|
84
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
85
|
+
operations that take a while to finish. The elements are built through a
|
86
|
+
backend in the cloud. Please be patient to see the results.
|
88
87
|
|
89
88
|
First, let's introduce the video from _Mathologer_. This video creates very
|
90
89
|
nice patterns from _Times Tables_. Everybody knows them from primary school.
|
@@ -127,10 +126,10 @@ what _Mathologer_ is doing:
|
|
127
126
|
|
128
127
|
Start your journey on the power of Mathematics!
|
129
128
|
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
129
|
+
NOTE: All examples are taken from
|
130
|
+
link:{times-tables-visualization}[Times Tables Visualization - Finding Patterns, {browser-window--new}],
|
131
|
+
and re-written for the use of module J1 NBI. Some text is used from the
|
132
|
+
original post but re-written for clarity and simplicity.
|
134
133
|
|
135
134
|
// textbook::circular_times_table[]
|
136
135
|
textbook::j1_circular_times_table[]
|
@@ -86,6 +86,10 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
86
86
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
87
87
|
endif::[]
|
88
88
|
|
89
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
90
|
+
operations that take a while to finish. The elements are built through a
|
91
|
+
backend in the cloud. Please be patient to see the results.
|
92
|
+
|
89
93
|
Widgets are eventful python objects that have a representation in the browser,
|
90
94
|
often as a control like a slider, textbox, etc. Widgets are used to build
|
91
95
|
interactive GUIs for your notebooks, and to synchronize stateful and stateless
|
@@ -97,9 +101,4 @@ the most used. Interactive widgets are provided natively by Jupyter Notebooks
|
|
97
101
|
using the library `ipywidgets`. Some more widgets are provided by `nbinteract`.
|
98
102
|
Find common examples in the textbooks below.
|
99
103
|
|
100
|
-
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
101
|
-
operations that take a while to finish. The images and the interactive
|
102
|
-
elements are built through a backend in the cloud. Please be patient
|
103
|
-
to see the results.
|
104
|
-
|
105
104
|
textbook::j1_interactive_widgets[]
|
@@ -84,8 +84,9 @@ endif::[]
|
|
84
84
|
|
85
85
|
// See: https://elc.github.io/posts/ordinary-differential-equations-with-python/
|
86
86
|
|
87
|
-
|
88
|
-
|
87
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
88
|
+
operations that take a while to finish. The elements are built through a
|
89
|
+
backend in the cloud. Please be patient to see the results.
|
89
90
|
|
90
91
|
An ordinary differential equation (often abbreviated to ODE) is one
|
91
92
|
Differential equation where only derivatives of the desired function
|
@@ -100,9 +101,7 @@ describing the dynamics of the population of rabbits and foxes. Check how
|
|
100
101
|
the animals depend on each other. Manipulate some parameters to see the
|
101
102
|
influences on the rabbits and foxes population.
|
102
103
|
|
103
|
-
|
104
|
-
|
105
|
-
elements are built through a backend in the cloud. Please be patient
|
106
|
-
to see the results.
|
104
|
+
NOTE: All examples are taken from
|
105
|
+
link:{odes-in-python}[Ordinary Differential Equations (ODE) with Python, {browser-window--new}]
|
107
106
|
|
108
107
|
textbook::j1_odes_in_python[]
|
@@ -80,6 +80,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
80
80
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
81
81
|
endif::[]
|
82
82
|
|
83
|
+
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
84
|
+
operations that take a while to finish. The elements are built through a
|
85
|
+
backend in the cloud. Please be patient to see the results.
|
83
86
|
|
84
87
|
== Plotly
|
85
88
|
|
@@ -87,9 +90,5 @@ lorem:sentences[5]
|
|
87
90
|
|
88
91
|
lorem:sentences[3]
|
89
92
|
|
90
|
-
CAUTION: Each interactive element presented on this page uses *time-consuming*
|
91
|
-
operations that take a while to finish. The images and the interactive
|
92
|
-
elements are built through a backend in the cloud. Please be patient
|
93
|
-
to see the results.
|
94
93
|
|
95
94
|
textbook::j1_testing_plotly[]
|
@@ -80,15 +80,15 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
|
|
80
80
|
image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
|
81
81
|
endif::[]
|
82
82
|
|
83
|
+
CAUTION: If the J1 NBI module detects *non-interactive* textbooks, the
|
84
|
+
NBI module adapter does *not* start a Binder service for an external
|
85
|
+
computational environment.
|
86
|
+
|
83
87
|
This textbook is an example of a *non-interactive* Jupyter notebook (JN).
|
84
88
|
Jupyter Notebooks don't necessarily need to contain *interactive* widgets.
|
85
89
|
The CLI `nbinteract` can export all types of (Python-based) notebooks to
|
86
90
|
an (HTML) textbooks.
|
87
91
|
|
88
|
-
NOTE: If the J1 NBI module detects non-interactive textbooks, the module
|
89
|
-
adapter does *not* start the Binder service for an external computational
|
90
|
-
environment.
|
91
|
-
|
92
92
|
== Climate change forecasting
|
93
93
|
|
94
94
|
Predicting climate change is a very difficult business. The calculations are
|
@@ -41,7 +41,7 @@
|
|
41
41
|
{
|
42
42
|
"data": {
|
43
43
|
"application/vnd.jupyter.widget-view+json": {
|
44
|
-
"model_id": "
|
44
|
+
"model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
|
45
45
|
"version_major": 2,
|
46
46
|
"version_minor": 0
|
47
47
|
},
|
@@ -76,7 +76,7 @@
|
|
76
76
|
{
|
77
77
|
"data": {
|
78
78
|
"application/vnd.jupyter.widget-view+json": {
|
79
|
-
"model_id": "
|
79
|
+
"model_id": "674a3b8585444242843a165fd36a5cc2",
|
80
80
|
"version_major": 2,
|
81
81
|
"version_minor": 0
|
82
82
|
},
|
@@ -113,7 +113,7 @@
|
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "63e03b8837e042ffb0fb36a48d95d85d",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -150,7 +150,7 @@
|
|
150
150
|
{
|
151
151
|
"data": {
|
152
152
|
"application/vnd.jupyter.widget-view+json": {
|
153
|
-
"model_id": "
|
153
|
+
"model_id": "81de367a58a445afa093b39819fdeb65",
|
154
154
|
"version_major": 2,
|
155
155
|
"version_minor": 0
|
156
156
|
},
|
@@ -164,7 +164,7 @@
|
|
164
164
|
{
|
165
165
|
"data": {
|
166
166
|
"application/vnd.jupyter.widget-view+json": {
|
167
|
-
"model_id": "
|
167
|
+
"model_id": "faba020a11b44537bf1b9f74339d8d52",
|
168
168
|
"version_major": 2,
|
169
169
|
"version_minor": 0
|
170
170
|
},
|
@@ -178,7 +178,7 @@
|
|
178
178
|
{
|
179
179
|
"data": {
|
180
180
|
"application/vnd.jupyter.widget-view+json": {
|
181
|
-
"model_id": "
|
181
|
+
"model_id": "f34cec7fb4a54934940f5d037440e9b7",
|
182
182
|
"version_major": 2,
|
183
183
|
"version_minor": 0
|
184
184
|
},
|
@@ -192,7 +192,7 @@
|
|
192
192
|
{
|
193
193
|
"data": {
|
194
194
|
"application/vnd.jupyter.widget-view+json": {
|
195
|
-
"model_id": "
|
195
|
+
"model_id": "b8b7d85b1759460dadc5568a014d7e80",
|
196
196
|
"version_major": 2,
|
197
197
|
"version_minor": 0
|
198
198
|
},
|
@@ -232,7 +232,7 @@
|
|
232
232
|
{
|
233
233
|
"data": {
|
234
234
|
"application/vnd.jupyter.widget-view+json": {
|
235
|
-
"model_id": "
|
235
|
+
"model_id": "e0535be20c59454aa7529e40e0457f0e",
|
236
236
|
"version_major": 2,
|
237
237
|
"version_minor": 0
|
238
238
|
},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
{
|
310
310
|
"data": {
|
311
311
|
"application/vnd.jupyter.widget-view+json": {
|
312
|
-
"model_id": "
|
312
|
+
"model_id": "1196c754303d48c8954b2ba783112516",
|
313
313
|
"version_major": 2,
|
314
314
|
"version_minor": 0
|
315
315
|
},
|
@@ -363,7 +363,7 @@
|
|
363
363
|
{
|
364
364
|
"data": {
|
365
365
|
"application/vnd.jupyter.widget-view+json": {
|
366
|
-
"model_id": "
|
366
|
+
"model_id": "5940507213474cf7a7a33b5e60f9d386",
|
367
367
|
"version_major": 2,
|
368
368
|
"version_minor": 0
|
369
369
|
},
|
@@ -383,7 +383,7 @@
|
|
383
383
|
" '''\n",
|
384
384
|
" return np.random.normal(loc=mean, scale=sd, size=1000)\n",
|
385
385
|
"\n",
|
386
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
386
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
387
387
|
]
|
388
388
|
},
|
389
389
|
{
|
@@ -401,18 +401,18 @@
|
|
401
401
|
},
|
402
402
|
{
|
403
403
|
"cell_type": "code",
|
404
|
-
"execution_count":
|
404
|
+
"execution_count": 18,
|
405
405
|
"metadata": {},
|
406
406
|
"outputs": [
|
407
407
|
{
|
408
408
|
"data": {
|
409
409
|
"application/vnd.jupyter.widget-view+json": {
|
410
|
-
"model_id": "
|
410
|
+
"model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
|
411
411
|
"version_major": 2,
|
412
412
|
"version_minor": 0
|
413
413
|
},
|
414
414
|
"text/plain": [
|
415
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
415
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
416
416
|
]
|
417
417
|
},
|
418
418
|
"metadata": {},
|
@@ -430,7 +430,7 @@
|
|
430
430
|
" 'ylim': (0, 20),\n",
|
431
431
|
"}\n",
|
432
432
|
"\n",
|
433
|
-
"nbi.bar(categories, heights, n=(
|
433
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
434
434
|
]
|
435
435
|
},
|
436
436
|
{
|
@@ -454,12 +454,12 @@
|
|
454
454
|
{
|
455
455
|
"data": {
|
456
456
|
"application/vnd.jupyter.widget-view+json": {
|
457
|
-
"model_id": "
|
457
|
+
"model_id": "40dc861f38114d0589514725ce5062e3",
|
458
458
|
"version_major": 2,
|
459
459
|
"version_minor": 0
|
460
460
|
},
|
461
461
|
"text/plain": [
|
462
|
-
"VBox(children=(Label(value='y = 1.03x + 0.
|
462
|
+
"VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
463
463
|
]
|
464
464
|
},
|
465
465
|
"metadata": {},
|
@@ -494,12 +494,12 @@
|
|
494
494
|
{
|
495
495
|
"data": {
|
496
496
|
"application/vnd.jupyter.widget-view+json": {
|
497
|
-
"model_id": "
|
497
|
+
"model_id": "4bee645a8f074735b3a76d7611a7ec01",
|
498
498
|
"version_major": 2,
|
499
499
|
"version_minor": 0
|
500
500
|
},
|
501
501
|
"text/plain": [
|
502
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
502
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
503
503
|
]
|
504
504
|
},
|
505
505
|
"metadata": {},
|
@@ -510,7 +510,7 @@
|
|
510
510
|
"def x_values(n): return np.random.choice(100, n)\n",
|
511
511
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
512
512
|
"\n",
|
513
|
-
"nbi.scatter(x_values, y_values, n=(
|
513
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
514
514
|
]
|
515
515
|
},
|
516
516
|
{
|
@@ -532,7 +532,7 @@
|
|
532
532
|
{
|
533
533
|
"data": {
|
534
534
|
"application/vnd.jupyter.widget-view+json": {
|
535
|
-
"model_id": "
|
535
|
+
"model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
|
536
536
|
"version_major": 2,
|
537
537
|
"version_minor": 0
|
538
538
|
},
|
@@ -583,7 +583,7 @@
|
|
583
583
|
{
|
584
584
|
"data": {
|
585
585
|
"application/vnd.jupyter.widget-view+json": {
|
586
|
-
"model_id": "
|
586
|
+
"model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
|
587
587
|
"version_major": 2,
|
588
588
|
"version_minor": 0
|
589
589
|
},
|
@@ -611,7 +611,7 @@
|
|
611
611
|
{
|
612
612
|
"data": {
|
613
613
|
"application/vnd.jupyter.widget-view+json": {
|
614
|
-
"model_id": "
|
614
|
+
"model_id": "bb9674fe94b0491f83de231ff76bc149",
|
615
615
|
"version_major": 2,
|
616
616
|
"version_minor": 0
|
617
617
|
},
|
@@ -648,7 +648,7 @@
|
|
648
648
|
{
|
649
649
|
"data": {
|
650
650
|
"application/vnd.jupyter.widget-view+json": {
|
651
|
-
"model_id": "
|
651
|
+
"model_id": "c488ca7374b0478bb5db7f877738df78",
|
652
652
|
"version_major": 2,
|
653
653
|
"version_minor": 0
|
654
654
|
},
|
@@ -672,7 +672,7 @@
|
|
672
672
|
{
|
673
673
|
"data": {
|
674
674
|
"application/vnd.jupyter.widget-view+json": {
|
675
|
-
"model_id": "
|
675
|
+
"model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
|
676
676
|
"version_major": 2,
|
677
677
|
"version_minor": 0
|
678
678
|
},
|
@@ -697,7 +697,7 @@
|
|
697
697
|
{
|
698
698
|
"data": {
|
699
699
|
"application/vnd.jupyter.widget-view+json": {
|
700
|
-
"model_id": "
|
700
|
+
"model_id": "b0bbe10d65cc485294295b94e6fab3a6",
|
701
701
|
"version_major": 2,
|
702
702
|
"version_minor": 0
|
703
703
|
},
|
@@ -41,7 +41,7 @@
|
|
41
41
|
{
|
42
42
|
"data": {
|
43
43
|
"application/vnd.jupyter.widget-view+json": {
|
44
|
-
"model_id": "
|
44
|
+
"model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
|
45
45
|
"version_major": 2,
|
46
46
|
"version_minor": 0
|
47
47
|
},
|
@@ -76,7 +76,7 @@
|
|
76
76
|
{
|
77
77
|
"data": {
|
78
78
|
"application/vnd.jupyter.widget-view+json": {
|
79
|
-
"model_id": "
|
79
|
+
"model_id": "674a3b8585444242843a165fd36a5cc2",
|
80
80
|
"version_major": 2,
|
81
81
|
"version_minor": 0
|
82
82
|
},
|
@@ -113,7 +113,7 @@
|
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "63e03b8837e042ffb0fb36a48d95d85d",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -150,7 +150,7 @@
|
|
150
150
|
{
|
151
151
|
"data": {
|
152
152
|
"application/vnd.jupyter.widget-view+json": {
|
153
|
-
"model_id": "
|
153
|
+
"model_id": "81de367a58a445afa093b39819fdeb65",
|
154
154
|
"version_major": 2,
|
155
155
|
"version_minor": 0
|
156
156
|
},
|
@@ -164,7 +164,7 @@
|
|
164
164
|
{
|
165
165
|
"data": {
|
166
166
|
"application/vnd.jupyter.widget-view+json": {
|
167
|
-
"model_id": "
|
167
|
+
"model_id": "faba020a11b44537bf1b9f74339d8d52",
|
168
168
|
"version_major": 2,
|
169
169
|
"version_minor": 0
|
170
170
|
},
|
@@ -178,7 +178,7 @@
|
|
178
178
|
{
|
179
179
|
"data": {
|
180
180
|
"application/vnd.jupyter.widget-view+json": {
|
181
|
-
"model_id": "
|
181
|
+
"model_id": "f34cec7fb4a54934940f5d037440e9b7",
|
182
182
|
"version_major": 2,
|
183
183
|
"version_minor": 0
|
184
184
|
},
|
@@ -192,7 +192,7 @@
|
|
192
192
|
{
|
193
193
|
"data": {
|
194
194
|
"application/vnd.jupyter.widget-view+json": {
|
195
|
-
"model_id": "
|
195
|
+
"model_id": "b8b7d85b1759460dadc5568a014d7e80",
|
196
196
|
"version_major": 2,
|
197
197
|
"version_minor": 0
|
198
198
|
},
|
@@ -232,7 +232,7 @@
|
|
232
232
|
{
|
233
233
|
"data": {
|
234
234
|
"application/vnd.jupyter.widget-view+json": {
|
235
|
-
"model_id": "
|
235
|
+
"model_id": "e0535be20c59454aa7529e40e0457f0e",
|
236
236
|
"version_major": 2,
|
237
237
|
"version_minor": 0
|
238
238
|
},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
{
|
310
310
|
"data": {
|
311
311
|
"application/vnd.jupyter.widget-view+json": {
|
312
|
-
"model_id": "
|
312
|
+
"model_id": "1196c754303d48c8954b2ba783112516",
|
313
313
|
"version_major": 2,
|
314
314
|
"version_minor": 0
|
315
315
|
},
|
@@ -363,7 +363,7 @@
|
|
363
363
|
{
|
364
364
|
"data": {
|
365
365
|
"application/vnd.jupyter.widget-view+json": {
|
366
|
-
"model_id": "
|
366
|
+
"model_id": "5940507213474cf7a7a33b5e60f9d386",
|
367
367
|
"version_major": 2,
|
368
368
|
"version_minor": 0
|
369
369
|
},
|
@@ -383,7 +383,7 @@
|
|
383
383
|
" '''\n",
|
384
384
|
" return np.random.normal(loc=mean, scale=sd, size=1000)\n",
|
385
385
|
"\n",
|
386
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
386
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
387
387
|
]
|
388
388
|
},
|
389
389
|
{
|
@@ -401,18 +401,18 @@
|
|
401
401
|
},
|
402
402
|
{
|
403
403
|
"cell_type": "code",
|
404
|
-
"execution_count":
|
404
|
+
"execution_count": 18,
|
405
405
|
"metadata": {},
|
406
406
|
"outputs": [
|
407
407
|
{
|
408
408
|
"data": {
|
409
409
|
"application/vnd.jupyter.widget-view+json": {
|
410
|
-
"model_id": "
|
410
|
+
"model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
|
411
411
|
"version_major": 2,
|
412
412
|
"version_minor": 0
|
413
413
|
},
|
414
414
|
"text/plain": [
|
415
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
415
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
416
416
|
]
|
417
417
|
},
|
418
418
|
"metadata": {},
|
@@ -430,7 +430,7 @@
|
|
430
430
|
" 'ylim': (0, 20),\n",
|
431
431
|
"}\n",
|
432
432
|
"\n",
|
433
|
-
"nbi.bar(categories, heights, n=(
|
433
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
434
434
|
]
|
435
435
|
},
|
436
436
|
{
|
@@ -454,12 +454,12 @@
|
|
454
454
|
{
|
455
455
|
"data": {
|
456
456
|
"application/vnd.jupyter.widget-view+json": {
|
457
|
-
"model_id": "
|
457
|
+
"model_id": "40dc861f38114d0589514725ce5062e3",
|
458
458
|
"version_major": 2,
|
459
459
|
"version_minor": 0
|
460
460
|
},
|
461
461
|
"text/plain": [
|
462
|
-
"VBox(children=(Label(value='y = 1.03x + 0.
|
462
|
+
"VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
463
463
|
]
|
464
464
|
},
|
465
465
|
"metadata": {},
|
@@ -494,12 +494,12 @@
|
|
494
494
|
{
|
495
495
|
"data": {
|
496
496
|
"application/vnd.jupyter.widget-view+json": {
|
497
|
-
"model_id": "
|
497
|
+
"model_id": "4bee645a8f074735b3a76d7611a7ec01",
|
498
498
|
"version_major": 2,
|
499
499
|
"version_minor": 0
|
500
500
|
},
|
501
501
|
"text/plain": [
|
502
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
502
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
503
503
|
]
|
504
504
|
},
|
505
505
|
"metadata": {},
|
@@ -510,7 +510,7 @@
|
|
510
510
|
"def x_values(n): return np.random.choice(100, n)\n",
|
511
511
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
512
512
|
"\n",
|
513
|
-
"nbi.scatter(x_values, y_values, n=(
|
513
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
514
514
|
]
|
515
515
|
},
|
516
516
|
{
|
@@ -532,7 +532,7 @@
|
|
532
532
|
{
|
533
533
|
"data": {
|
534
534
|
"application/vnd.jupyter.widget-view+json": {
|
535
|
-
"model_id": "
|
535
|
+
"model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
|
536
536
|
"version_major": 2,
|
537
537
|
"version_minor": 0
|
538
538
|
},
|
@@ -583,7 +583,7 @@
|
|
583
583
|
{
|
584
584
|
"data": {
|
585
585
|
"application/vnd.jupyter.widget-view+json": {
|
586
|
-
"model_id": "
|
586
|
+
"model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
|
587
587
|
"version_major": 2,
|
588
588
|
"version_minor": 0
|
589
589
|
},
|
@@ -611,7 +611,7 @@
|
|
611
611
|
{
|
612
612
|
"data": {
|
613
613
|
"application/vnd.jupyter.widget-view+json": {
|
614
|
-
"model_id": "
|
614
|
+
"model_id": "bb9674fe94b0491f83de231ff76bc149",
|
615
615
|
"version_major": 2,
|
616
616
|
"version_minor": 0
|
617
617
|
},
|
@@ -648,7 +648,7 @@
|
|
648
648
|
{
|
649
649
|
"data": {
|
650
650
|
"application/vnd.jupyter.widget-view+json": {
|
651
|
-
"model_id": "
|
651
|
+
"model_id": "c488ca7374b0478bb5db7f877738df78",
|
652
652
|
"version_major": 2,
|
653
653
|
"version_minor": 0
|
654
654
|
},
|
@@ -672,7 +672,7 @@
|
|
672
672
|
{
|
673
673
|
"data": {
|
674
674
|
"application/vnd.jupyter.widget-view+json": {
|
675
|
-
"model_id": "
|
675
|
+
"model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
|
676
676
|
"version_major": 2,
|
677
677
|
"version_minor": 0
|
678
678
|
},
|
@@ -697,7 +697,7 @@
|
|
697
697
|
{
|
698
698
|
"data": {
|
699
699
|
"application/vnd.jupyter.widget-view+json": {
|
700
|
-
"model_id": "
|
700
|
+
"model_id": "b0bbe10d65cc485294295b94e6fab3a6",
|
701
701
|
"version_major": 2,
|
702
702
|
"version_minor": 0
|
703
703
|
},
|