j1-template 2022.3.1 → 2022.4.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (59) hide show
  1. checksums.yaml +4 -4
  2. data/_includes/themes/j1/modules/navigator/generator.html +1 -1
  3. data/assets/data/cookieconsent.html +4 -4
  4. data/assets/data/nbinteract.html +128 -0
  5. data/assets/data/quicklinks.html +15 -0
  6. data/assets/data/translator.html +15 -15
  7. data/assets/themes/j1/adapter/js/j1.js +150 -75
  8. data/assets/themes/j1/adapter/js/mmenu.js +25 -3
  9. data/assets/themes/j1/adapter/js/navigator.js +2 -2
  10. data/assets/themes/j1/adapter/js/nbinteract.js +240 -33
  11. data/assets/themes/j1/adapter/js/rangeSlider.js +27 -10
  12. data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
  13. data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
  14. data/assets/themes/j1/core/js/template.js +14 -3
  15. data/assets/themes/j1/core/js/template.min.js +1 -1
  16. data/assets/themes/j1/core/js/template.min.js.map +1 -1
  17. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
  18. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
  19. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
  20. data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.css +5 -0
  21. data/assets/themes/j1/modules/rangeSlider/css/theme/uno/nouislider.min.css +1 -1
  22. data/lib/j1/version.rb +1 -1
  23. data/lib/starter_web/Gemfile +1 -1
  24. data/lib/starter_web/_config.yml +1 -1
  25. data/lib/starter_web/_data/j1_config.yml +22 -7
  26. data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
  27. data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
  28. data/lib/starter_web/_data/modules/defaults/nbinteract.yml +99 -1
  29. data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
  30. data/lib/starter_web/_data/modules/rangeSlider.yml +38 -1
  31. data/lib/starter_web/_plugins/asciidoctor-extensions/range-slider-block.rb +44 -0
  32. data/lib/starter_web/_plugins/lunr_index.rb +1 -1
  33. data/lib/starter_web/package.json +1 -1
  34. data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
  35. data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
  36. data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
  37. data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
  38. data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
  39. data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
  40. data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
  41. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
  42. data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
  43. data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_odes_in_python.ipynb +16 -16
  44. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
  45. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
  46. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
  47. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
  48. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +3 -3
  49. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_odes_in_python.html +10 -10
  50. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +4 -4
  51. data/lib/starter_web/pages/public/previewer/preview_bootstrap_theme.adoc +2 -2
  52. data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
  53. data/lib/starter_web/utilsrv/package.json +1 -1
  54. metadata +5 -7
  55. data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js +0 -94
  56. data/assets/themes/j1/modules/nbInteract/js/nbinteract/_new/nbinteract-core.js.map +0 -1
  57. data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js +0 -94
  58. data/assets/themes/j1/modules/nbInteract/js/nbinteract/_old/j1-nbinteract-core.js.map +0 -1
  59. data/lib/starter_web/pages/public/se/se-fake.adoc +0 -47
@@ -87,19 +87,9 @@ ifeval::[{binder-badges-enabled} == true]
87
87
  image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
88
88
  endif::[]
89
89
 
90
- [NOTE]
91
- ====
92
- This document is a port for J1 Template of the original document pages
93
- at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
94
- Some sections are rewritten for the text to improve clarity and simplify the
95
- language for future translation.
96
-
97
- Meanwhile, a lot of changes were done for the services at
98
- link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
99
- original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
100
- you'll encounter that all interactive pages never change their state and
101
- get stuck in `Initializing widgets...` for an infinite initializing loop.
102
- ====
90
+ CAUTION: Each interactive element presented on this page uses *time-consuming*
91
+ operations that take a while to finish. The elements are built through a
92
+ backend in the cloud. Please be patient to see the results.
103
93
 
104
94
  The package *nbinteract* aims to enable authors and educators to create and
105
95
  share interactive web pages easily. Interactive explanations of concepts are
@@ -123,10 +113,20 @@ In addition, `nbinteract` provides a Python package. Once imported, the package
123
113
  provides helper methods that allow users to create simple interactive
124
114
  visualizations with single function calls.
125
115
 
126
- CAUTION: Each interactive element presented on this page uses *time-consuming*
127
- operations that take a while to finish. The images and the interactive
128
- elements are built through a backend in the cloud. Please be patient
129
- to see the results.
116
+ [NOTE]
117
+ ====
118
+ This document is a port for J1 Template of the original document pages
119
+ at link:{url-nbinteract--docs}[nbinteract Docs, {browser-window--new}].
120
+ Some sections are rewritten for the text to improve clarity and simplify the
121
+ language for future translation.
122
+
123
+ Meanwhile, a lot of changes were done for the services at
124
+ link:{url-binder--home}[Binder, {browser-window--new} ], which causes the
125
+ original pages doesn't work anymore. On clicking the NBI button `Show Widgets`,
126
+ you'll encounter that all interactive pages never change their state and
127
+ get stuck in `Initializing widgets...` for an infinite initializing loop.
128
+ ====
129
+
130
130
 
131
131
  == Getting Started
132
132
 
@@ -81,10 +81,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
81
81
  image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
82
82
  endif::[]
83
83
 
84
- NOTE: All examples are taken from
85
- link:{times-tables-visualization}[Times Tables Visualization - Finding Patterns, {browser-window--new}],
86
- and re-written for the use of module J1 NBI. Some text is used from the
87
- original post but re-written for clarity and simplicity.
84
+ CAUTION: Each interactive element presented on this page uses *time-consuming*
85
+ operations that take a while to finish. The elements are built through a
86
+ backend in the cloud. Please be patient to see the results.
88
87
 
89
88
  First, let's introduce the video from _Mathologer_. This video creates very
90
89
  nice patterns from _Times Tables_. Everybody knows them from primary school.
@@ -127,10 +126,10 @@ what _Mathologer_ is doing:
127
126
 
128
127
  Start your journey on the power of Mathematics!
129
128
 
130
- CAUTION: Each interactive element presented on this page uses *time-consuming*
131
- operations that take a while to finish. The images and the interactive
132
- elements are built through a backend in the cloud. Please be patient
133
- to see the results.
129
+ NOTE: All examples are taken from
130
+ link:{times-tables-visualization}[Times Tables Visualization - Finding Patterns, {browser-window--new}],
131
+ and re-written for the use of module J1 NBI. Some text is used from the
132
+ original post but re-written for clarity and simplicity.
134
133
 
135
134
  // textbook::circular_times_table[]
136
135
  textbook::j1_circular_times_table[]
@@ -86,6 +86,10 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
86
86
  image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
87
87
  endif::[]
88
88
 
89
+ CAUTION: Each interactive element presented on this page uses *time-consuming*
90
+ operations that take a while to finish. The elements are built through a
91
+ backend in the cloud. Please be patient to see the results.
92
+
89
93
  Widgets are eventful python objects that have a representation in the browser,
90
94
  often as a control like a slider, textbox, etc. Widgets are used to build
91
95
  interactive GUIs for your notebooks, and to synchronize stateful and stateless
@@ -97,9 +101,4 @@ the most used. Interactive widgets are provided natively by Jupyter Notebooks
97
101
  using the library `ipywidgets`. Some more widgets are provided by `nbinteract`.
98
102
  Find common examples in the textbooks below.
99
103
 
100
- CAUTION: Each interactive element presented on this page uses *time-consuming*
101
- operations that take a while to finish. The images and the interactive
102
- elements are built through a backend in the cloud. Please be patient
103
- to see the results.
104
-
105
104
  textbook::j1_interactive_widgets[]
@@ -84,8 +84,9 @@ endif::[]
84
84
 
85
85
  // See: https://elc.github.io/posts/ordinary-differential-equations-with-python/
86
86
 
87
- NOTE: All examples are taken from
88
- link:{odes-in-python}[Ordinary Differential Equations (ODE) with Python, {browser-window--new}]
87
+ CAUTION: Each interactive element presented on this page uses *time-consuming*
88
+ operations that take a while to finish. The elements are built through a
89
+ backend in the cloud. Please be patient to see the results.
89
90
 
90
91
  An ordinary differential equation (often abbreviated to ODE) is one
91
92
  Differential equation where only derivatives of the desired function
@@ -100,9 +101,7 @@ describing the dynamics of the population of rabbits and foxes. Check how
100
101
  the animals depend on each other. Manipulate some parameters to see the
101
102
  influences on the rabbits and foxes population.
102
103
 
103
- CAUTION: Each interactive element presented on this page uses *time-consuming*
104
- operations that take a while to finish. The images and the interactive
105
- elements are built through a backend in the cloud. Please be patient
106
- to see the results.
104
+ NOTE: All examples are taken from
105
+ link:{odes-in-python}[Ordinary Differential Equations (ODE) with Python, {browser-window--new}]
107
106
 
108
107
  textbook::j1_odes_in_python[]
@@ -80,6 +80,9 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
80
80
  image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
81
81
  endif::[]
82
82
 
83
+ CAUTION: Each interactive element presented on this page uses *time-consuming*
84
+ operations that take a while to finish. The elements are built through a
85
+ backend in the cloud. Please be patient to see the results.
83
86
 
84
87
  == Plotly
85
88
 
@@ -87,9 +90,5 @@ lorem:sentences[5]
87
90
 
88
91
  lorem:sentences[3]
89
92
 
90
- CAUTION: Each interactive element presented on this page uses *time-consuming*
91
- operations that take a while to finish. The images and the interactive
92
- elements are built through a backend in the cloud. Please be patient
93
- to see the results.
94
93
 
95
94
  textbook::j1_testing_plotly[]
@@ -80,15 +80,15 @@ image:/assets/images/badges/notebookBinder.png[Binder, link="{binder-app-launch-
80
80
  image:https://mybinder.org/badge_logo.svg[Binder, link="{binder-app-launch--tree}", {browser-window--new}]
81
81
  endif::[]
82
82
 
83
+ CAUTION: If the J1 NBI module detects *non-interactive* textbooks, the
84
+ NBI module adapter does *not* start a Binder service for an external
85
+ computational environment.
86
+
83
87
  This textbook is an example of a *non-interactive* Jupyter notebook (JN).
84
88
  Jupyter Notebooks don't necessarily need to contain *interactive* widgets.
85
89
  The CLI `nbinteract` can export all types of (Python-based) notebooks to
86
90
  an (HTML) textbooks.
87
91
 
88
- NOTE: If the J1 NBI module detects non-interactive textbooks, the module
89
- adapter does *not* start the Binder service for an external computational
90
- environment.
91
-
92
92
  == Climate change forecasting
93
93
 
94
94
  Predicting climate change is a very difficult business. The calculations are
@@ -41,7 +41,7 @@
41
41
  {
42
42
  "data": {
43
43
  "application/vnd.jupyter.widget-view+json": {
44
- "model_id": "1608d7a21ea54170ac685e198f887628",
44
+ "model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
45
45
  "version_major": 2,
46
46
  "version_minor": 0
47
47
  },
@@ -76,7 +76,7 @@
76
76
  {
77
77
  "data": {
78
78
  "application/vnd.jupyter.widget-view+json": {
79
- "model_id": "a6be50a107e24e85a292bc6145ad6d64",
79
+ "model_id": "674a3b8585444242843a165fd36a5cc2",
80
80
  "version_major": 2,
81
81
  "version_minor": 0
82
82
  },
@@ -113,7 +113,7 @@
113
113
  {
114
114
  "data": {
115
115
  "application/vnd.jupyter.widget-view+json": {
116
- "model_id": "bba72987ae664d9c91bb7d72ea7a4ceb",
116
+ "model_id": "63e03b8837e042ffb0fb36a48d95d85d",
117
117
  "version_major": 2,
118
118
  "version_minor": 0
119
119
  },
@@ -150,7 +150,7 @@
150
150
  {
151
151
  "data": {
152
152
  "application/vnd.jupyter.widget-view+json": {
153
- "model_id": "623ff24264344afba1e0e2ddfaba3954",
153
+ "model_id": "81de367a58a445afa093b39819fdeb65",
154
154
  "version_major": 2,
155
155
  "version_minor": 0
156
156
  },
@@ -164,7 +164,7 @@
164
164
  {
165
165
  "data": {
166
166
  "application/vnd.jupyter.widget-view+json": {
167
- "model_id": "9498800ce6c645129e7a1d0d0960bbab",
167
+ "model_id": "faba020a11b44537bf1b9f74339d8d52",
168
168
  "version_major": 2,
169
169
  "version_minor": 0
170
170
  },
@@ -178,7 +178,7 @@
178
178
  {
179
179
  "data": {
180
180
  "application/vnd.jupyter.widget-view+json": {
181
- "model_id": "a85fe7587ca741c8a763f4be2e2fbce5",
181
+ "model_id": "f34cec7fb4a54934940f5d037440e9b7",
182
182
  "version_major": 2,
183
183
  "version_minor": 0
184
184
  },
@@ -192,7 +192,7 @@
192
192
  {
193
193
  "data": {
194
194
  "application/vnd.jupyter.widget-view+json": {
195
- "model_id": "0589f62cfd2b47688ff5764899459a96",
195
+ "model_id": "b8b7d85b1759460dadc5568a014d7e80",
196
196
  "version_major": 2,
197
197
  "version_minor": 0
198
198
  },
@@ -232,7 +232,7 @@
232
232
  {
233
233
  "data": {
234
234
  "application/vnd.jupyter.widget-view+json": {
235
- "model_id": "3a7017ac9a934ccd8c87cc9bba6561f0",
235
+ "model_id": "e0535be20c59454aa7529e40e0457f0e",
236
236
  "version_major": 2,
237
237
  "version_minor": 0
238
238
  },
@@ -309,7 +309,7 @@
309
309
  {
310
310
  "data": {
311
311
  "application/vnd.jupyter.widget-view+json": {
312
- "model_id": "62a37ef13bf54f0cabe1c5a75d8ad7ab",
312
+ "model_id": "1196c754303d48c8954b2ba783112516",
313
313
  "version_major": 2,
314
314
  "version_minor": 0
315
315
  },
@@ -363,7 +363,7 @@
363
363
  {
364
364
  "data": {
365
365
  "application/vnd.jupyter.widget-view+json": {
366
- "model_id": "4b422c217fb84dc7bffec5159e36071a",
366
+ "model_id": "5940507213474cf7a7a33b5e60f9d386",
367
367
  "version_major": 2,
368
368
  "version_minor": 0
369
369
  },
@@ -383,7 +383,7 @@
383
383
  " '''\n",
384
384
  " return np.random.normal(loc=mean, scale=sd, size=1000)\n",
385
385
  "\n",
386
- "nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
386
+ "nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
387
387
  ]
388
388
  },
389
389
  {
@@ -401,18 +401,18 @@
401
401
  },
402
402
  {
403
403
  "cell_type": "code",
404
- "execution_count": 9,
404
+ "execution_count": 18,
405
405
  "metadata": {},
406
406
  "outputs": [
407
407
  {
408
408
  "data": {
409
409
  "application/vnd.jupyter.widget-view+json": {
410
- "model_id": "dce293ca5d6f40878190033fd4bacb44",
410
+ "model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
411
411
  "version_major": 2,
412
412
  "version_minor": 0
413
413
  },
414
414
  "text/plain": [
415
- "VBox(children=(interactive(children=(IntSlider(value=5, description='n', max=10), IntSlider(value=5, descripti…"
415
+ "VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
416
416
  ]
417
417
  },
418
418
  "metadata": {},
@@ -430,7 +430,7 @@
430
430
  " 'ylim': (0, 20),\n",
431
431
  "}\n",
432
432
  "\n",
433
- "nbi.bar(categories, heights, n=(0, 10), offset=(1, 10), options=opts)"
433
+ "nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
434
434
  ]
435
435
  },
436
436
  {
@@ -454,12 +454,12 @@
454
454
  {
455
455
  "data": {
456
456
  "application/vnd.jupyter.widget-view+json": {
457
- "model_id": "85d808e150a84179a61f5f24324eb233",
457
+ "model_id": "40dc861f38114d0589514725ce5062e3",
458
458
  "version_major": 2,
459
459
  "version_minor": 0
460
460
  },
461
461
  "text/plain": [
462
- "VBox(children=(Label(value='y = 1.03x + 0.36'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
462
+ "VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
463
463
  ]
464
464
  },
465
465
  "metadata": {},
@@ -494,12 +494,12 @@
494
494
  {
495
495
  "data": {
496
496
  "application/vnd.jupyter.widget-view+json": {
497
- "model_id": "b9ab17c9bcb4453e96247d1c3b5376b0",
497
+ "model_id": "4bee645a8f074735b3a76d7611a7ec01",
498
498
  "version_major": 2,
499
499
  "version_minor": 0
500
500
  },
501
501
  "text/plain": [
502
- "VBox(children=(interactive(children=(IntSlider(value=100, description='n', max=200), Output()), _dom_classes=(…"
502
+ "VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
503
503
  ]
504
504
  },
505
505
  "metadata": {},
@@ -510,7 +510,7 @@
510
510
  "def x_values(n): return np.random.choice(100, n)\n",
511
511
  "def y_values(xs): return np.random.choice(100, len(xs))\n",
512
512
  "\n",
513
- "nbi.scatter(x_values, y_values, n=(0,200))"
513
+ "nbi.scatter(x_values, y_values, n=(10,200))"
514
514
  ]
515
515
  },
516
516
  {
@@ -532,7 +532,7 @@
532
532
  {
533
533
  "data": {
534
534
  "application/vnd.jupyter.widget-view+json": {
535
- "model_id": "1acc67b93a504dd68052f4f789977417",
535
+ "model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
536
536
  "version_major": 2,
537
537
  "version_minor": 0
538
538
  },
@@ -583,7 +583,7 @@
583
583
  {
584
584
  "data": {
585
585
  "application/vnd.jupyter.widget-view+json": {
586
- "model_id": "69125fc46e0a4ef98151a9a233699094",
586
+ "model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
587
587
  "version_major": 2,
588
588
  "version_minor": 0
589
589
  },
@@ -611,7 +611,7 @@
611
611
  {
612
612
  "data": {
613
613
  "application/vnd.jupyter.widget-view+json": {
614
- "model_id": "7579a202c6124ff9b054ea2398505fa0",
614
+ "model_id": "bb9674fe94b0491f83de231ff76bc149",
615
615
  "version_major": 2,
616
616
  "version_minor": 0
617
617
  },
@@ -648,7 +648,7 @@
648
648
  {
649
649
  "data": {
650
650
  "application/vnd.jupyter.widget-view+json": {
651
- "model_id": "05e3ccd2d1254beab1511943bec50d2c",
651
+ "model_id": "c488ca7374b0478bb5db7f877738df78",
652
652
  "version_major": 2,
653
653
  "version_minor": 0
654
654
  },
@@ -672,7 +672,7 @@
672
672
  {
673
673
  "data": {
674
674
  "application/vnd.jupyter.widget-view+json": {
675
- "model_id": "4a1cd24a4d61497f82e0a58f51c84409",
675
+ "model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
676
676
  "version_major": 2,
677
677
  "version_minor": 0
678
678
  },
@@ -697,7 +697,7 @@
697
697
  {
698
698
  "data": {
699
699
  "application/vnd.jupyter.widget-view+json": {
700
- "model_id": "d4b70f05b0234029861de4fc50bd3aef",
700
+ "model_id": "b0bbe10d65cc485294295b94e6fab3a6",
701
701
  "version_major": 2,
702
702
  "version_minor": 0
703
703
  },
@@ -41,7 +41,7 @@
41
41
  {
42
42
  "data": {
43
43
  "application/vnd.jupyter.widget-view+json": {
44
- "model_id": "1608d7a21ea54170ac685e198f887628",
44
+ "model_id": "f66db90b8e2746a5bb4ce77b8a81738b",
45
45
  "version_major": 2,
46
46
  "version_minor": 0
47
47
  },
@@ -76,7 +76,7 @@
76
76
  {
77
77
  "data": {
78
78
  "application/vnd.jupyter.widget-view+json": {
79
- "model_id": "a6be50a107e24e85a292bc6145ad6d64",
79
+ "model_id": "674a3b8585444242843a165fd36a5cc2",
80
80
  "version_major": 2,
81
81
  "version_minor": 0
82
82
  },
@@ -113,7 +113,7 @@
113
113
  {
114
114
  "data": {
115
115
  "application/vnd.jupyter.widget-view+json": {
116
- "model_id": "bba72987ae664d9c91bb7d72ea7a4ceb",
116
+ "model_id": "63e03b8837e042ffb0fb36a48d95d85d",
117
117
  "version_major": 2,
118
118
  "version_minor": 0
119
119
  },
@@ -150,7 +150,7 @@
150
150
  {
151
151
  "data": {
152
152
  "application/vnd.jupyter.widget-view+json": {
153
- "model_id": "623ff24264344afba1e0e2ddfaba3954",
153
+ "model_id": "81de367a58a445afa093b39819fdeb65",
154
154
  "version_major": 2,
155
155
  "version_minor": 0
156
156
  },
@@ -164,7 +164,7 @@
164
164
  {
165
165
  "data": {
166
166
  "application/vnd.jupyter.widget-view+json": {
167
- "model_id": "9498800ce6c645129e7a1d0d0960bbab",
167
+ "model_id": "faba020a11b44537bf1b9f74339d8d52",
168
168
  "version_major": 2,
169
169
  "version_minor": 0
170
170
  },
@@ -178,7 +178,7 @@
178
178
  {
179
179
  "data": {
180
180
  "application/vnd.jupyter.widget-view+json": {
181
- "model_id": "a85fe7587ca741c8a763f4be2e2fbce5",
181
+ "model_id": "f34cec7fb4a54934940f5d037440e9b7",
182
182
  "version_major": 2,
183
183
  "version_minor": 0
184
184
  },
@@ -192,7 +192,7 @@
192
192
  {
193
193
  "data": {
194
194
  "application/vnd.jupyter.widget-view+json": {
195
- "model_id": "0589f62cfd2b47688ff5764899459a96",
195
+ "model_id": "b8b7d85b1759460dadc5568a014d7e80",
196
196
  "version_major": 2,
197
197
  "version_minor": 0
198
198
  },
@@ -232,7 +232,7 @@
232
232
  {
233
233
  "data": {
234
234
  "application/vnd.jupyter.widget-view+json": {
235
- "model_id": "3a7017ac9a934ccd8c87cc9bba6561f0",
235
+ "model_id": "e0535be20c59454aa7529e40e0457f0e",
236
236
  "version_major": 2,
237
237
  "version_minor": 0
238
238
  },
@@ -309,7 +309,7 @@
309
309
  {
310
310
  "data": {
311
311
  "application/vnd.jupyter.widget-view+json": {
312
- "model_id": "62a37ef13bf54f0cabe1c5a75d8ad7ab",
312
+ "model_id": "1196c754303d48c8954b2ba783112516",
313
313
  "version_major": 2,
314
314
  "version_minor": 0
315
315
  },
@@ -363,7 +363,7 @@
363
363
  {
364
364
  "data": {
365
365
  "application/vnd.jupyter.widget-view+json": {
366
- "model_id": "4b422c217fb84dc7bffec5159e36071a",
366
+ "model_id": "5940507213474cf7a7a33b5e60f9d386",
367
367
  "version_major": 2,
368
368
  "version_minor": 0
369
369
  },
@@ -383,7 +383,7 @@
383
383
  " '''\n",
384
384
  " return np.random.normal(loc=mean, scale=sd, size=1000)\n",
385
385
  "\n",
386
- "nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
386
+ "nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
387
387
  ]
388
388
  },
389
389
  {
@@ -401,18 +401,18 @@
401
401
  },
402
402
  {
403
403
  "cell_type": "code",
404
- "execution_count": 9,
404
+ "execution_count": 18,
405
405
  "metadata": {},
406
406
  "outputs": [
407
407
  {
408
408
  "data": {
409
409
  "application/vnd.jupyter.widget-view+json": {
410
- "model_id": "dce293ca5d6f40878190033fd4bacb44",
410
+ "model_id": "467a66b0b3ba4036ae7ff52caea9af3c",
411
411
  "version_major": 2,
412
412
  "version_minor": 0
413
413
  },
414
414
  "text/plain": [
415
- "VBox(children=(interactive(children=(IntSlider(value=5, description='n', max=10), IntSlider(value=5, descripti…"
415
+ "VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
416
416
  ]
417
417
  },
418
418
  "metadata": {},
@@ -430,7 +430,7 @@
430
430
  " 'ylim': (0, 20),\n",
431
431
  "}\n",
432
432
  "\n",
433
- "nbi.bar(categories, heights, n=(0, 10), offset=(1, 10), options=opts)"
433
+ "nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
434
434
  ]
435
435
  },
436
436
  {
@@ -454,12 +454,12 @@
454
454
  {
455
455
  "data": {
456
456
  "application/vnd.jupyter.widget-view+json": {
457
- "model_id": "85d808e150a84179a61f5f24324eb233",
457
+ "model_id": "40dc861f38114d0589514725ce5062e3",
458
458
  "version_major": 2,
459
459
  "version_minor": 0
460
460
  },
461
461
  "text/plain": [
462
- "VBox(children=(Label(value='y = 1.03x + 0.36'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
462
+ "VBox(children=(Label(value='y = 1.03x + 0.44'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
463
463
  ]
464
464
  },
465
465
  "metadata": {},
@@ -494,12 +494,12 @@
494
494
  {
495
495
  "data": {
496
496
  "application/vnd.jupyter.widget-view+json": {
497
- "model_id": "b9ab17c9bcb4453e96247d1c3b5376b0",
497
+ "model_id": "4bee645a8f074735b3a76d7611a7ec01",
498
498
  "version_major": 2,
499
499
  "version_minor": 0
500
500
  },
501
501
  "text/plain": [
502
- "VBox(children=(interactive(children=(IntSlider(value=100, description='n', max=200), Output()), _dom_classes=(…"
502
+ "VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
503
503
  ]
504
504
  },
505
505
  "metadata": {},
@@ -510,7 +510,7 @@
510
510
  "def x_values(n): return np.random.choice(100, n)\n",
511
511
  "def y_values(xs): return np.random.choice(100, len(xs))\n",
512
512
  "\n",
513
- "nbi.scatter(x_values, y_values, n=(0,200))"
513
+ "nbi.scatter(x_values, y_values, n=(10,200))"
514
514
  ]
515
515
  },
516
516
  {
@@ -532,7 +532,7 @@
532
532
  {
533
533
  "data": {
534
534
  "application/vnd.jupyter.widget-view+json": {
535
- "model_id": "1acc67b93a504dd68052f4f789977417",
535
+ "model_id": "e86bedcd6aa34fd99f7701ac7ea07efb",
536
536
  "version_major": 2,
537
537
  "version_minor": 0
538
538
  },
@@ -583,7 +583,7 @@
583
583
  {
584
584
  "data": {
585
585
  "application/vnd.jupyter.widget-view+json": {
586
- "model_id": "69125fc46e0a4ef98151a9a233699094",
586
+ "model_id": "d9f2357911f64e08bfd63b97e5f34b7b",
587
587
  "version_major": 2,
588
588
  "version_minor": 0
589
589
  },
@@ -611,7 +611,7 @@
611
611
  {
612
612
  "data": {
613
613
  "application/vnd.jupyter.widget-view+json": {
614
- "model_id": "7579a202c6124ff9b054ea2398505fa0",
614
+ "model_id": "bb9674fe94b0491f83de231ff76bc149",
615
615
  "version_major": 2,
616
616
  "version_minor": 0
617
617
  },
@@ -648,7 +648,7 @@
648
648
  {
649
649
  "data": {
650
650
  "application/vnd.jupyter.widget-view+json": {
651
- "model_id": "05e3ccd2d1254beab1511943bec50d2c",
651
+ "model_id": "c488ca7374b0478bb5db7f877738df78",
652
652
  "version_major": 2,
653
653
  "version_minor": 0
654
654
  },
@@ -672,7 +672,7 @@
672
672
  {
673
673
  "data": {
674
674
  "application/vnd.jupyter.widget-view+json": {
675
- "model_id": "4a1cd24a4d61497f82e0a58f51c84409",
675
+ "model_id": "8f9315d5c2fc4a9b9e1ca7c6e4433341",
676
676
  "version_major": 2,
677
677
  "version_minor": 0
678
678
  },
@@ -697,7 +697,7 @@
697
697
  {
698
698
  "data": {
699
699
  "application/vnd.jupyter.widget-view+json": {
700
- "model_id": "d4b70f05b0234029861de4fc50bd3aef",
700
+ "model_id": "b0bbe10d65cc485294295b94e6fab3a6",
701
701
  "version_major": 2,
702
702
  "version_minor": 0
703
703
  },