j1-template 2022.3.1 → 2022.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/_includes/themes/j1/modules/navigator/generator.html +1 -1
- data/assets/data/cookieconsent.html +4 -4
- data/assets/data/nbinteract.html +128 -0
- data/assets/data/quicklinks.html +15 -0
- data/assets/data/translator.html +15 -15
- data/assets/themes/j1/adapter/js/mmenu.js +25 -3
- data/assets/themes/j1/adapter/js/navigator.js +2 -2
- data/assets/themes/j1/adapter/js/nbinteract.js +230 -34
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
- data/assets/themes/j1/core/js/template.js +14 -3
- data/assets/themes/j1/core/js/template.min.js +1 -1
- data/assets/themes/j1/core/js/template.min.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
- data/lib/j1/version.rb +3 -3
- data/lib/starter_web/Gemfile +1 -1
- data/lib/starter_web/_config.yml +1 -1
- data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
- data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
- data/lib/starter_web/_data/modules/defaults/nbinteract.yml +95 -1
- data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
- data/lib/starter_web/_plugins/lunr_index.rb +1 -1
- data/lib/starter_web/package.json +1 -1
- data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
- data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
- data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
- data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
- data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
- data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
- data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +919 -919
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +473 -473
- data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
- data/lib/starter_web/utilsrv/package.json +1 -1
- metadata +4 -2
@@ -74,7 +74,7 @@
|
|
74
74
|
},
|
75
75
|
{
|
76
76
|
"cell_type": "code",
|
77
|
-
"execution_count":
|
77
|
+
"execution_count": 13,
|
78
78
|
"metadata": {
|
79
79
|
"scrolled": false
|
80
80
|
},
|
@@ -82,7 +82,7 @@
|
|
82
82
|
{
|
83
83
|
"data": {
|
84
84
|
"application/vnd.jupyter.widget-view+json": {
|
85
|
-
"model_id": "
|
85
|
+
"model_id": "a5636ca1591943a39bbe131a1cf79eaa",
|
86
86
|
"version_major": 2,
|
87
87
|
"version_minor": 0
|
88
88
|
},
|
@@ -95,7 +95,7 @@
|
|
95
95
|
}
|
96
96
|
],
|
97
97
|
"source": [
|
98
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
98
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
99
99
|
]
|
100
100
|
},
|
101
101
|
{
|
@@ -107,13 +107,13 @@
|
|
107
107
|
},
|
108
108
|
{
|
109
109
|
"cell_type": "code",
|
110
|
-
"execution_count":
|
110
|
+
"execution_count": 11,
|
111
111
|
"metadata": {},
|
112
112
|
"outputs": [
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "3b52fe08cd764b73bad8f2a92477d955",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -131,7 +131,7 @@
|
|
131
131
|
" 'xlim': (0, 15),\n",
|
132
132
|
" 'ylim': (0, 0.4),\n",
|
133
133
|
"}\n",
|
134
|
-
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
134
|
+
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
135
135
|
]
|
136
136
|
},
|
137
137
|
{
|
@@ -149,7 +149,7 @@
|
|
149
149
|
{
|
150
150
|
"data": {
|
151
151
|
"application/vnd.jupyter.widget-view+json": {
|
152
|
-
"model_id": "
|
152
|
+
"model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
|
153
153
|
"version_major": 2,
|
154
154
|
"version_minor": 0
|
155
155
|
},
|
@@ -185,18 +185,18 @@
|
|
185
185
|
},
|
186
186
|
{
|
187
187
|
"cell_type": "code",
|
188
|
-
"execution_count":
|
188
|
+
"execution_count": 14,
|
189
189
|
"metadata": {},
|
190
190
|
"outputs": [
|
191
191
|
{
|
192
192
|
"data": {
|
193
193
|
"application/vnd.jupyter.widget-view+json": {
|
194
|
-
"model_id": "
|
194
|
+
"model_id": "00316ec6767f4b879a61bef75599f78e",
|
195
195
|
"version_major": 2,
|
196
196
|
"version_minor": 0
|
197
197
|
},
|
198
198
|
"text/plain": [
|
199
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
199
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
200
200
|
]
|
201
201
|
},
|
202
202
|
"metadata": {},
|
@@ -214,7 +214,7 @@
|
|
214
214
|
" 'ylim': (0, 20),\n",
|
215
215
|
"}\n",
|
216
216
|
"\n",
|
217
|
-
"nbi.bar(categories, heights, n=(
|
217
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
218
218
|
]
|
219
219
|
},
|
220
220
|
{
|
@@ -245,12 +245,12 @@
|
|
245
245
|
{
|
246
246
|
"data": {
|
247
247
|
"application/vnd.jupyter.widget-view+json": {
|
248
|
-
"model_id": "
|
248
|
+
"model_id": "6b6494e0a17c4e2e8477509d44b1432e",
|
249
249
|
"version_major": 2,
|
250
250
|
"version_minor": 0
|
251
251
|
},
|
252
252
|
"text/plain": [
|
253
|
-
"VBox(children=(Label(value='y = 0.
|
253
|
+
"VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
254
254
|
]
|
255
255
|
},
|
256
256
|
"metadata": {},
|
@@ -285,7 +285,7 @@
|
|
285
285
|
},
|
286
286
|
{
|
287
287
|
"cell_type": "code",
|
288
|
-
"execution_count":
|
288
|
+
"execution_count": 15,
|
289
289
|
"metadata": {
|
290
290
|
"scrolled": false
|
291
291
|
},
|
@@ -293,12 +293,12 @@
|
|
293
293
|
{
|
294
294
|
"data": {
|
295
295
|
"application/vnd.jupyter.widget-view+json": {
|
296
|
-
"model_id": "
|
296
|
+
"model_id": "847b13ca28274786b3209932e3a74f77",
|
297
297
|
"version_major": 2,
|
298
298
|
"version_minor": 0
|
299
299
|
},
|
300
300
|
"text/plain": [
|
301
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
301
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
302
302
|
]
|
303
303
|
},
|
304
304
|
"metadata": {},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
"def x_values(n): return np.random.choice(100, n)\n",
|
310
310
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
311
311
|
"\n",
|
312
|
-
"nbi.scatter(x_values, y_values, n=(
|
312
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
313
313
|
]
|
314
314
|
},
|
315
315
|
{
|
@@ -336,7 +336,7 @@
|
|
336
336
|
{
|
337
337
|
"data": {
|
338
338
|
"application/vnd.jupyter.widget-view+json": {
|
339
|
-
"model_id": "
|
339
|
+
"model_id": "b23113b7d9f54ca0844bc5874ca92137",
|
340
340
|
"version_major": 2,
|
341
341
|
"version_minor": 0
|
342
342
|
},
|
@@ -22,8 +22,7 @@
|
|
22
22
|
"cell_type": "markdown",
|
23
23
|
"metadata": {},
|
24
24
|
"source": [
|
25
|
-
"### The Central Limit Theorem",
|
26
|
-
"\n",
|
25
|
+
"### The Central Limit Theorem\n",
|
27
26
|
"Very few of the data histograms that we have seen in this course have been bell shaped.\n",
|
28
27
|
"When we have come across a bell shaped distribution, it has almost invariably been an\n",
|
29
28
|
"empirical histogram of a statistic based on a random sample.\n"
|
data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb
CHANGED
@@ -74,7 +74,7 @@
|
|
74
74
|
},
|
75
75
|
{
|
76
76
|
"cell_type": "code",
|
77
|
-
"execution_count":
|
77
|
+
"execution_count": 13,
|
78
78
|
"metadata": {
|
79
79
|
"scrolled": false
|
80
80
|
},
|
@@ -82,7 +82,7 @@
|
|
82
82
|
{
|
83
83
|
"data": {
|
84
84
|
"application/vnd.jupyter.widget-view+json": {
|
85
|
-
"model_id": "
|
85
|
+
"model_id": "a5636ca1591943a39bbe131a1cf79eaa",
|
86
86
|
"version_major": 2,
|
87
87
|
"version_minor": 0
|
88
88
|
},
|
@@ -95,7 +95,7 @@
|
|
95
95
|
}
|
96
96
|
],
|
97
97
|
"source": [
|
98
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
98
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
99
99
|
]
|
100
100
|
},
|
101
101
|
{
|
@@ -107,13 +107,13 @@
|
|
107
107
|
},
|
108
108
|
{
|
109
109
|
"cell_type": "code",
|
110
|
-
"execution_count":
|
110
|
+
"execution_count": 11,
|
111
111
|
"metadata": {},
|
112
112
|
"outputs": [
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "3b52fe08cd764b73bad8f2a92477d955",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -131,7 +131,7 @@
|
|
131
131
|
" 'xlim': (0, 15),\n",
|
132
132
|
" 'ylim': (0, 0.4),\n",
|
133
133
|
"}\n",
|
134
|
-
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
134
|
+
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
135
135
|
]
|
136
136
|
},
|
137
137
|
{
|
@@ -149,7 +149,7 @@
|
|
149
149
|
{
|
150
150
|
"data": {
|
151
151
|
"application/vnd.jupyter.widget-view+json": {
|
152
|
-
"model_id": "
|
152
|
+
"model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
|
153
153
|
"version_major": 2,
|
154
154
|
"version_minor": 0
|
155
155
|
},
|
@@ -185,18 +185,18 @@
|
|
185
185
|
},
|
186
186
|
{
|
187
187
|
"cell_type": "code",
|
188
|
-
"execution_count":
|
188
|
+
"execution_count": 14,
|
189
189
|
"metadata": {},
|
190
190
|
"outputs": [
|
191
191
|
{
|
192
192
|
"data": {
|
193
193
|
"application/vnd.jupyter.widget-view+json": {
|
194
|
-
"model_id": "
|
194
|
+
"model_id": "00316ec6767f4b879a61bef75599f78e",
|
195
195
|
"version_major": 2,
|
196
196
|
"version_minor": 0
|
197
197
|
},
|
198
198
|
"text/plain": [
|
199
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
199
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
200
200
|
]
|
201
201
|
},
|
202
202
|
"metadata": {},
|
@@ -214,7 +214,7 @@
|
|
214
214
|
" 'ylim': (0, 20),\n",
|
215
215
|
"}\n",
|
216
216
|
"\n",
|
217
|
-
"nbi.bar(categories, heights, n=(
|
217
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
218
218
|
]
|
219
219
|
},
|
220
220
|
{
|
@@ -245,12 +245,12 @@
|
|
245
245
|
{
|
246
246
|
"data": {
|
247
247
|
"application/vnd.jupyter.widget-view+json": {
|
248
|
-
"model_id": "
|
248
|
+
"model_id": "6b6494e0a17c4e2e8477509d44b1432e",
|
249
249
|
"version_major": 2,
|
250
250
|
"version_minor": 0
|
251
251
|
},
|
252
252
|
"text/plain": [
|
253
|
-
"VBox(children=(Label(value='y = 0.
|
253
|
+
"VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
254
254
|
]
|
255
255
|
},
|
256
256
|
"metadata": {},
|
@@ -285,7 +285,7 @@
|
|
285
285
|
},
|
286
286
|
{
|
287
287
|
"cell_type": "code",
|
288
|
-
"execution_count":
|
288
|
+
"execution_count": 15,
|
289
289
|
"metadata": {
|
290
290
|
"scrolled": false
|
291
291
|
},
|
@@ -293,12 +293,12 @@
|
|
293
293
|
{
|
294
294
|
"data": {
|
295
295
|
"application/vnd.jupyter.widget-view+json": {
|
296
|
-
"model_id": "
|
296
|
+
"model_id": "847b13ca28274786b3209932e3a74f77",
|
297
297
|
"version_major": 2,
|
298
298
|
"version_minor": 0
|
299
299
|
},
|
300
300
|
"text/plain": [
|
301
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
301
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
302
302
|
]
|
303
303
|
},
|
304
304
|
"metadata": {},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
"def x_values(n): return np.random.choice(100, n)\n",
|
310
310
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
311
311
|
"\n",
|
312
|
-
"nbi.scatter(x_values, y_values, n=(
|
312
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
313
313
|
]
|
314
314
|
},
|
315
315
|
{
|
@@ -336,7 +336,7 @@
|
|
336
336
|
{
|
337
337
|
"data": {
|
338
338
|
"application/vnd.jupyter.widget-view+json": {
|
339
|
-
"model_id": "
|
339
|
+
"model_id": "b23113b7d9f54ca0844bc5874ca92137",
|
340
340
|
"version_major": 2,
|
341
341
|
"version_minor": 0
|
342
342
|
},
|