j1-template 2022.3.1 → 2022.3.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (44) hide show
  1. checksums.yaml +4 -4
  2. data/_includes/themes/j1/modules/navigator/generator.html +1 -1
  3. data/assets/data/cookieconsent.html +4 -4
  4. data/assets/data/nbinteract.html +128 -0
  5. data/assets/data/quicklinks.html +15 -0
  6. data/assets/data/translator.html +15 -15
  7. data/assets/themes/j1/adapter/js/mmenu.js +25 -3
  8. data/assets/themes/j1/adapter/js/navigator.js +2 -2
  9. data/assets/themes/j1/adapter/js/nbinteract.js +230 -34
  10. data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
  11. data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
  12. data/assets/themes/j1/core/js/template.js +14 -3
  13. data/assets/themes/j1/core/js/template.min.js +1 -1
  14. data/assets/themes/j1/core/js/template.min.js.map +1 -1
  15. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
  16. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
  17. data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
  18. data/lib/j1/version.rb +3 -3
  19. data/lib/starter_web/Gemfile +1 -1
  20. data/lib/starter_web/_config.yml +1 -1
  21. data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
  22. data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
  23. data/lib/starter_web/_data/modules/defaults/nbinteract.yml +95 -1
  24. data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
  25. data/lib/starter_web/_plugins/lunr_index.rb +1 -1
  26. data/lib/starter_web/package.json +1 -1
  27. data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
  28. data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
  29. data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
  30. data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
  31. data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
  32. data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
  33. data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
  34. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
  35. data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
  36. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
  37. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
  38. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
  39. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
  40. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +919 -919
  41. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +473 -473
  42. data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
  43. data/lib/starter_web/utilsrv/package.json +1 -1
  44. metadata +4 -2
@@ -74,7 +74,7 @@
74
74
  },
75
75
  {
76
76
  "cell_type": "code",
77
- "execution_count": 4,
77
+ "execution_count": 13,
78
78
  "metadata": {
79
79
  "scrolled": false
80
80
  },
@@ -82,7 +82,7 @@
82
82
  {
83
83
  "data": {
84
84
  "application/vnd.jupyter.widget-view+json": {
85
- "model_id": "749b9aab6e1947d8934f06b45825dbdb",
85
+ "model_id": "a5636ca1591943a39bbe131a1cf79eaa",
86
86
  "version_major": 2,
87
87
  "version_minor": 0
88
88
  },
@@ -95,7 +95,7 @@
95
95
  }
96
96
  ],
97
97
  "source": [
98
- "nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
98
+ "nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
99
99
  ]
100
100
  },
101
101
  {
@@ -107,13 +107,13 @@
107
107
  },
108
108
  {
109
109
  "cell_type": "code",
110
- "execution_count": 5,
110
+ "execution_count": 11,
111
111
  "metadata": {},
112
112
  "outputs": [
113
113
  {
114
114
  "data": {
115
115
  "application/vnd.jupyter.widget-view+json": {
116
- "model_id": "d937484a6c874c248224ae1a07be0222",
116
+ "model_id": "3b52fe08cd764b73bad8f2a92477d955",
117
117
  "version_major": 2,
118
118
  "version_minor": 0
119
119
  },
@@ -131,7 +131,7 @@
131
131
  " 'xlim': (0, 15),\n",
132
132
  " 'ylim': (0, 0.4),\n",
133
133
  "}\n",
134
- "nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
134
+ "nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
135
135
  ]
136
136
  },
137
137
  {
@@ -149,7 +149,7 @@
149
149
  {
150
150
  "data": {
151
151
  "application/vnd.jupyter.widget-view+json": {
152
- "model_id": "dd38adef9d944bc692ab821c5fd9ce8e",
152
+ "model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
153
153
  "version_major": 2,
154
154
  "version_minor": 0
155
155
  },
@@ -185,18 +185,18 @@
185
185
  },
186
186
  {
187
187
  "cell_type": "code",
188
- "execution_count": 7,
188
+ "execution_count": 14,
189
189
  "metadata": {},
190
190
  "outputs": [
191
191
  {
192
192
  "data": {
193
193
  "application/vnd.jupyter.widget-view+json": {
194
- "model_id": "f0cd2c3db7754af293d9d5bd60f348fa",
194
+ "model_id": "00316ec6767f4b879a61bef75599f78e",
195
195
  "version_major": 2,
196
196
  "version_minor": 0
197
197
  },
198
198
  "text/plain": [
199
- "VBox(children=(interactive(children=(IntSlider(value=5, description='n', max=10), IntSlider(value=5, descripti…"
199
+ "VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
200
200
  ]
201
201
  },
202
202
  "metadata": {},
@@ -214,7 +214,7 @@
214
214
  " 'ylim': (0, 20),\n",
215
215
  "}\n",
216
216
  "\n",
217
- "nbi.bar(categories, heights, n=(0, 10), offset=(1, 10), options=opts)"
217
+ "nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
218
218
  ]
219
219
  },
220
220
  {
@@ -245,12 +245,12 @@
245
245
  {
246
246
  "data": {
247
247
  "application/vnd.jupyter.widget-view+json": {
248
- "model_id": "ddff91ef6f6048a19b4b605feda4c5f1",
248
+ "model_id": "6b6494e0a17c4e2e8477509d44b1432e",
249
249
  "version_major": 2,
250
250
  "version_minor": 0
251
251
  },
252
252
  "text/plain": [
253
- "VBox(children=(Label(value='y = 0.99x + 0.54'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
253
+ "VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
254
254
  ]
255
255
  },
256
256
  "metadata": {},
@@ -285,7 +285,7 @@
285
285
  },
286
286
  {
287
287
  "cell_type": "code",
288
- "execution_count": 9,
288
+ "execution_count": 15,
289
289
  "metadata": {
290
290
  "scrolled": false
291
291
  },
@@ -293,12 +293,12 @@
293
293
  {
294
294
  "data": {
295
295
  "application/vnd.jupyter.widget-view+json": {
296
- "model_id": "c3d2e8896c424020b49d2e774d4c3b3e",
296
+ "model_id": "847b13ca28274786b3209932e3a74f77",
297
297
  "version_major": 2,
298
298
  "version_minor": 0
299
299
  },
300
300
  "text/plain": [
301
- "VBox(children=(interactive(children=(IntSlider(value=100, description='n', max=200), Output()), _dom_classes=(…"
301
+ "VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
302
302
  ]
303
303
  },
304
304
  "metadata": {},
@@ -309,7 +309,7 @@
309
309
  "def x_values(n): return np.random.choice(100, n)\n",
310
310
  "def y_values(xs): return np.random.choice(100, len(xs))\n",
311
311
  "\n",
312
- "nbi.scatter(x_values, y_values, n=(0,200))"
312
+ "nbi.scatter(x_values, y_values, n=(10,200))"
313
313
  ]
314
314
  },
315
315
  {
@@ -336,7 +336,7 @@
336
336
  {
337
337
  "data": {
338
338
  "application/vnd.jupyter.widget-view+json": {
339
- "model_id": "17d1cc84daf9467f97e504d484e24485",
339
+ "model_id": "b23113b7d9f54ca0844bc5874ca92137",
340
340
  "version_major": 2,
341
341
  "version_minor": 0
342
342
  },
@@ -22,8 +22,7 @@
22
22
  "cell_type": "markdown",
23
23
  "metadata": {},
24
24
  "source": [
25
- "### The Central Limit Theorem",
26
- "\n",
25
+ "### The Central Limit Theorem\n",
27
26
  "Very few of the data histograms that we have seen in this course have been bell shaped.\n",
28
27
  "When we have come across a bell shaped distribution, it has almost invariably been an\n",
29
28
  "empirical histogram of a statistic based on a random sample.\n"
@@ -74,7 +74,7 @@
74
74
  },
75
75
  {
76
76
  "cell_type": "code",
77
- "execution_count": 4,
77
+ "execution_count": 13,
78
78
  "metadata": {
79
79
  "scrolled": false
80
80
  },
@@ -82,7 +82,7 @@
82
82
  {
83
83
  "data": {
84
84
  "application/vnd.jupyter.widget-view+json": {
85
- "model_id": "749b9aab6e1947d8934f06b45825dbdb",
85
+ "model_id": "a5636ca1591943a39bbe131a1cf79eaa",
86
86
  "version_major": 2,
87
87
  "version_minor": 0
88
88
  },
@@ -95,7 +95,7 @@
95
95
  }
96
96
  ],
97
97
  "source": [
98
- "nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
98
+ "nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
99
99
  ]
100
100
  },
101
101
  {
@@ -107,13 +107,13 @@
107
107
  },
108
108
  {
109
109
  "cell_type": "code",
110
- "execution_count": 5,
110
+ "execution_count": 11,
111
111
  "metadata": {},
112
112
  "outputs": [
113
113
  {
114
114
  "data": {
115
115
  "application/vnd.jupyter.widget-view+json": {
116
- "model_id": "d937484a6c874c248224ae1a07be0222",
116
+ "model_id": "3b52fe08cd764b73bad8f2a92477d955",
117
117
  "version_major": 2,
118
118
  "version_minor": 0
119
119
  },
@@ -131,7 +131,7 @@
131
131
  " 'xlim': (0, 15),\n",
132
132
  " 'ylim': (0, 0.4),\n",
133
133
  "}\n",
134
- "nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
134
+ "nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
135
135
  ]
136
136
  },
137
137
  {
@@ -149,7 +149,7 @@
149
149
  {
150
150
  "data": {
151
151
  "application/vnd.jupyter.widget-view+json": {
152
- "model_id": "dd38adef9d944bc692ab821c5fd9ce8e",
152
+ "model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
153
153
  "version_major": 2,
154
154
  "version_minor": 0
155
155
  },
@@ -185,18 +185,18 @@
185
185
  },
186
186
  {
187
187
  "cell_type": "code",
188
- "execution_count": 7,
188
+ "execution_count": 14,
189
189
  "metadata": {},
190
190
  "outputs": [
191
191
  {
192
192
  "data": {
193
193
  "application/vnd.jupyter.widget-view+json": {
194
- "model_id": "f0cd2c3db7754af293d9d5bd60f348fa",
194
+ "model_id": "00316ec6767f4b879a61bef75599f78e",
195
195
  "version_major": 2,
196
196
  "version_minor": 0
197
197
  },
198
198
  "text/plain": [
199
- "VBox(children=(interactive(children=(IntSlider(value=5, description='n', max=10), IntSlider(value=5, descripti…"
199
+ "VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
200
200
  ]
201
201
  },
202
202
  "metadata": {},
@@ -214,7 +214,7 @@
214
214
  " 'ylim': (0, 20),\n",
215
215
  "}\n",
216
216
  "\n",
217
- "nbi.bar(categories, heights, n=(0, 10), offset=(1, 10), options=opts)"
217
+ "nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
218
218
  ]
219
219
  },
220
220
  {
@@ -245,12 +245,12 @@
245
245
  {
246
246
  "data": {
247
247
  "application/vnd.jupyter.widget-view+json": {
248
- "model_id": "ddff91ef6f6048a19b4b605feda4c5f1",
248
+ "model_id": "6b6494e0a17c4e2e8477509d44b1432e",
249
249
  "version_major": 2,
250
250
  "version_minor": 0
251
251
  },
252
252
  "text/plain": [
253
- "VBox(children=(Label(value='y = 0.99x + 0.54'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
253
+ "VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
254
254
  ]
255
255
  },
256
256
  "metadata": {},
@@ -285,7 +285,7 @@
285
285
  },
286
286
  {
287
287
  "cell_type": "code",
288
- "execution_count": 9,
288
+ "execution_count": 15,
289
289
  "metadata": {
290
290
  "scrolled": false
291
291
  },
@@ -293,12 +293,12 @@
293
293
  {
294
294
  "data": {
295
295
  "application/vnd.jupyter.widget-view+json": {
296
- "model_id": "c3d2e8896c424020b49d2e774d4c3b3e",
296
+ "model_id": "847b13ca28274786b3209932e3a74f77",
297
297
  "version_major": 2,
298
298
  "version_minor": 0
299
299
  },
300
300
  "text/plain": [
301
- "VBox(children=(interactive(children=(IntSlider(value=100, description='n', max=200), Output()), _dom_classes=(…"
301
+ "VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
302
302
  ]
303
303
  },
304
304
  "metadata": {},
@@ -309,7 +309,7 @@
309
309
  "def x_values(n): return np.random.choice(100, n)\n",
310
310
  "def y_values(xs): return np.random.choice(100, len(xs))\n",
311
311
  "\n",
312
- "nbi.scatter(x_values, y_values, n=(0,200))"
312
+ "nbi.scatter(x_values, y_values, n=(10,200))"
313
313
  ]
314
314
  },
315
315
  {
@@ -336,7 +336,7 @@
336
336
  {
337
337
  "data": {
338
338
  "application/vnd.jupyter.widget-view+json": {
339
- "model_id": "17d1cc84daf9467f97e504d484e24485",
339
+ "model_id": "b23113b7d9f54ca0844bc5874ca92137",
340
340
  "version_major": 2,
341
341
  "version_minor": 0
342
342
  },