j1-template 2022.3.1 → 2022.3.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/_includes/themes/j1/modules/navigator/generator.html +1 -1
- data/assets/data/cookieconsent.html +4 -4
- data/assets/data/nbinteract.html +128 -0
- data/assets/data/quicklinks.html +15 -0
- data/assets/data/translator.html +15 -15
- data/assets/themes/j1/adapter/js/mmenu.js +25 -3
- data/assets/themes/j1/adapter/js/navigator.js +2 -2
- data/assets/themes/j1/adapter/js/nbinteract.js +230 -34
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +27 -54
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +1 -1
- data/assets/themes/j1/core/js/template.js +14 -3
- data/assets/themes/j1/core/js/template.min.js +1 -1
- data/assets/themes/j1/core/js/template.min.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.js.map +1 -1
- data/assets/themes/j1/modules/nbInteract/js/nbinteract/nbinteract-core.min.js +1 -1
- data/lib/j1/version.rb +3 -3
- data/lib/starter_web/Gemfile +1 -1
- data/lib/starter_web/_config.yml +1 -1
- data/lib/starter_web/_data/modules/defaults/cookieconsent.yml +51 -41
- data/lib/starter_web/_data/modules/defaults/navigator.yml +4 -0
- data/lib/starter_web/_data/modules/defaults/nbinteract.yml +95 -1
- data/lib/starter_web/_data/modules/defaults/translator.yml +24 -12
- data/lib/starter_web/_plugins/lunr_index.rb +1 -1
- data/lib/starter_web/package.json +1 -1
- data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +2 -3
- data/lib/starter_web/pages/public/jupyter/docs/nbinteract-doc.adoc +17 -17
- data/lib/starter_web/pages/public/jupyter/examples/j1-circular-times-table.adoc +7 -8
- data/lib/starter_web/pages/public/jupyter/examples/j1-interactive-widgets.adoc +4 -5
- data/lib/starter_web/pages/public/jupyter/examples/j1-odes-in-python.adoc +5 -6
- data/lib/starter_web/pages/public/jupyter/examples/j1-testing-plotly.adoc +3 -4
- data/lib/starter_web/pages/public/jupyter/examples/j1_climate-change-forecast.adoc +4 -4
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +26 -26
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_central_limit_theorem-checkpoint.ipynb +247 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_examples_central_limit_theorem.ipynb +1 -2
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb +18 -18
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +919 -919
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_graphing.html +473 -473
- data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
- data/lib/starter_web/utilsrv/package.json +1 -1
- metadata +4 -2
@@ -74,7 +74,7 @@
|
|
74
74
|
},
|
75
75
|
{
|
76
76
|
"cell_type": "code",
|
77
|
-
"execution_count":
|
77
|
+
"execution_count": 13,
|
78
78
|
"metadata": {
|
79
79
|
"scrolled": false
|
80
80
|
},
|
@@ -82,7 +82,7 @@
|
|
82
82
|
{
|
83
83
|
"data": {
|
84
84
|
"application/vnd.jupyter.widget-view+json": {
|
85
|
-
"model_id": "
|
85
|
+
"model_id": "a5636ca1591943a39bbe131a1cf79eaa",
|
86
86
|
"version_major": 2,
|
87
87
|
"version_minor": 0
|
88
88
|
},
|
@@ -95,7 +95,7 @@
|
|
95
95
|
}
|
96
96
|
],
|
97
97
|
"source": [
|
98
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
98
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
99
99
|
]
|
100
100
|
},
|
101
101
|
{
|
@@ -107,13 +107,13 @@
|
|
107
107
|
},
|
108
108
|
{
|
109
109
|
"cell_type": "code",
|
110
|
-
"execution_count":
|
110
|
+
"execution_count": 11,
|
111
111
|
"metadata": {},
|
112
112
|
"outputs": [
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "3b52fe08cd764b73bad8f2a92477d955",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -131,7 +131,7 @@
|
|
131
131
|
" 'xlim': (0, 15),\n",
|
132
132
|
" 'ylim': (0, 0.4),\n",
|
133
133
|
"}\n",
|
134
|
-
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
134
|
+
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
135
135
|
]
|
136
136
|
},
|
137
137
|
{
|
@@ -149,7 +149,7 @@
|
|
149
149
|
{
|
150
150
|
"data": {
|
151
151
|
"application/vnd.jupyter.widget-view+json": {
|
152
|
-
"model_id": "
|
152
|
+
"model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
|
153
153
|
"version_major": 2,
|
154
154
|
"version_minor": 0
|
155
155
|
},
|
@@ -185,18 +185,18 @@
|
|
185
185
|
},
|
186
186
|
{
|
187
187
|
"cell_type": "code",
|
188
|
-
"execution_count":
|
188
|
+
"execution_count": 14,
|
189
189
|
"metadata": {},
|
190
190
|
"outputs": [
|
191
191
|
{
|
192
192
|
"data": {
|
193
193
|
"application/vnd.jupyter.widget-view+json": {
|
194
|
-
"model_id": "
|
194
|
+
"model_id": "00316ec6767f4b879a61bef75599f78e",
|
195
195
|
"version_major": 2,
|
196
196
|
"version_minor": 0
|
197
197
|
},
|
198
198
|
"text/plain": [
|
199
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
199
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
200
200
|
]
|
201
201
|
},
|
202
202
|
"metadata": {},
|
@@ -214,7 +214,7 @@
|
|
214
214
|
" 'ylim': (0, 20),\n",
|
215
215
|
"}\n",
|
216
216
|
"\n",
|
217
|
-
"nbi.bar(categories, heights, n=(
|
217
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
218
218
|
]
|
219
219
|
},
|
220
220
|
{
|
@@ -245,12 +245,12 @@
|
|
245
245
|
{
|
246
246
|
"data": {
|
247
247
|
"application/vnd.jupyter.widget-view+json": {
|
248
|
-
"model_id": "
|
248
|
+
"model_id": "6b6494e0a17c4e2e8477509d44b1432e",
|
249
249
|
"version_major": 2,
|
250
250
|
"version_minor": 0
|
251
251
|
},
|
252
252
|
"text/plain": [
|
253
|
-
"VBox(children=(Label(value='y = 0.
|
253
|
+
"VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
254
254
|
]
|
255
255
|
},
|
256
256
|
"metadata": {},
|
@@ -285,7 +285,7 @@
|
|
285
285
|
},
|
286
286
|
{
|
287
287
|
"cell_type": "code",
|
288
|
-
"execution_count":
|
288
|
+
"execution_count": 15,
|
289
289
|
"metadata": {
|
290
290
|
"scrolled": false
|
291
291
|
},
|
@@ -293,12 +293,12 @@
|
|
293
293
|
{
|
294
294
|
"data": {
|
295
295
|
"application/vnd.jupyter.widget-view+json": {
|
296
|
-
"model_id": "
|
296
|
+
"model_id": "847b13ca28274786b3209932e3a74f77",
|
297
297
|
"version_major": 2,
|
298
298
|
"version_minor": 0
|
299
299
|
},
|
300
300
|
"text/plain": [
|
301
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
301
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
302
302
|
]
|
303
303
|
},
|
304
304
|
"metadata": {},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
"def x_values(n): return np.random.choice(100, n)\n",
|
310
310
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
311
311
|
"\n",
|
312
|
-
"nbi.scatter(x_values, y_values, n=(
|
312
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
313
313
|
]
|
314
314
|
},
|
315
315
|
{
|
@@ -336,7 +336,7 @@
|
|
336
336
|
{
|
337
337
|
"data": {
|
338
338
|
"application/vnd.jupyter.widget-view+json": {
|
339
|
-
"model_id": "
|
339
|
+
"model_id": "b23113b7d9f54ca0844bc5874ca92137",
|
340
340
|
"version_major": 2,
|
341
341
|
"version_minor": 0
|
342
342
|
},
|
@@ -22,8 +22,7 @@
|
|
22
22
|
"cell_type": "markdown",
|
23
23
|
"metadata": {},
|
24
24
|
"source": [
|
25
|
-
"### The Central Limit Theorem",
|
26
|
-
"\n",
|
25
|
+
"### The Central Limit Theorem\n",
|
27
26
|
"Very few of the data histograms that we have seen in this course have been bell shaped.\n",
|
28
27
|
"When we have come across a bell shaped distribution, it has almost invariably been an\n",
|
29
28
|
"empirical histogram of a statistic based on a random sample.\n"
|
data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_graphing.ipynb
CHANGED
@@ -74,7 +74,7 @@
|
|
74
74
|
},
|
75
75
|
{
|
76
76
|
"cell_type": "code",
|
77
|
-
"execution_count":
|
77
|
+
"execution_count": 13,
|
78
78
|
"metadata": {
|
79
79
|
"scrolled": false
|
80
80
|
},
|
@@ -82,7 +82,7 @@
|
|
82
82
|
{
|
83
83
|
"data": {
|
84
84
|
"application/vnd.jupyter.widget-view+json": {
|
85
|
-
"model_id": "
|
85
|
+
"model_id": "a5636ca1591943a39bbe131a1cf79eaa",
|
86
86
|
"version_major": 2,
|
87
87
|
"version_minor": 0
|
88
88
|
},
|
@@ -95,7 +95,7 @@
|
|
95
95
|
}
|
96
96
|
],
|
97
97
|
"source": [
|
98
|
-
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
98
|
+
"nbi.hist(hist_response_function, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
99
99
|
]
|
100
100
|
},
|
101
101
|
{
|
@@ -107,13 +107,13 @@
|
|
107
107
|
},
|
108
108
|
{
|
109
109
|
"cell_type": "code",
|
110
|
-
"execution_count":
|
110
|
+
"execution_count": 11,
|
111
111
|
"metadata": {},
|
112
112
|
"outputs": [
|
113
113
|
{
|
114
114
|
"data": {
|
115
115
|
"application/vnd.jupyter.widget-view+json": {
|
116
|
-
"model_id": "
|
116
|
+
"model_id": "3b52fe08cd764b73bad8f2a92477d955",
|
117
117
|
"version_major": 2,
|
118
118
|
"version_minor": 0
|
119
119
|
},
|
@@ -131,7 +131,7 @@
|
|
131
131
|
" 'xlim': (0, 15),\n",
|
132
132
|
" 'ylim': (0, 0.4),\n",
|
133
133
|
"}\n",
|
134
|
-
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0, 2.0, 0.2))"
|
134
|
+
"nbi.hist(hist_response_function, options=options, mean=(0, 10), sd=(0.2, 2.0, 0.2))"
|
135
135
|
]
|
136
136
|
},
|
137
137
|
{
|
@@ -149,7 +149,7 @@
|
|
149
149
|
{
|
150
150
|
"data": {
|
151
151
|
"application/vnd.jupyter.widget-view+json": {
|
152
|
-
"model_id": "
|
152
|
+
"model_id": "f86ec97cd7ca493280a1815edd8f0ae9",
|
153
153
|
"version_major": 2,
|
154
154
|
"version_minor": 0
|
155
155
|
},
|
@@ -185,18 +185,18 @@
|
|
185
185
|
},
|
186
186
|
{
|
187
187
|
"cell_type": "code",
|
188
|
-
"execution_count":
|
188
|
+
"execution_count": 14,
|
189
189
|
"metadata": {},
|
190
190
|
"outputs": [
|
191
191
|
{
|
192
192
|
"data": {
|
193
193
|
"application/vnd.jupyter.widget-view+json": {
|
194
|
-
"model_id": "
|
194
|
+
"model_id": "00316ec6767f4b879a61bef75599f78e",
|
195
195
|
"version_major": 2,
|
196
196
|
"version_minor": 0
|
197
197
|
},
|
198
198
|
"text/plain": [
|
199
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
199
|
+
"VBox(children=(interactive(children=(IntSlider(value=6, description='n', max=10, min=3), IntSlider(value=5, de…"
|
200
200
|
]
|
201
201
|
},
|
202
202
|
"metadata": {},
|
@@ -214,7 +214,7 @@
|
|
214
214
|
" 'ylim': (0, 20),\n",
|
215
215
|
"}\n",
|
216
216
|
"\n",
|
217
|
-
"nbi.bar(categories, heights, n=(
|
217
|
+
"nbi.bar(categories, heights, n=(3, 10), offset=(1, 10), options=opts)"
|
218
218
|
]
|
219
219
|
},
|
220
220
|
{
|
@@ -245,12 +245,12 @@
|
|
245
245
|
{
|
246
246
|
"data": {
|
247
247
|
"application/vnd.jupyter.widget-view+json": {
|
248
|
-
"model_id": "
|
248
|
+
"model_id": "6b6494e0a17c4e2e8477509d44b1432e",
|
249
249
|
"version_major": 2,
|
250
250
|
"version_minor": 0
|
251
251
|
},
|
252
252
|
"text/plain": [
|
253
|
-
"VBox(children=(Label(value='y = 0.
|
253
|
+
"VBox(children=(Label(value='y = 0.94x + 0.66'), Figure(animation_duration=250, axes=[Axis(scale=LinearScale(ma…"
|
254
254
|
]
|
255
255
|
},
|
256
256
|
"metadata": {},
|
@@ -285,7 +285,7 @@
|
|
285
285
|
},
|
286
286
|
{
|
287
287
|
"cell_type": "code",
|
288
|
-
"execution_count":
|
288
|
+
"execution_count": 15,
|
289
289
|
"metadata": {
|
290
290
|
"scrolled": false
|
291
291
|
},
|
@@ -293,12 +293,12 @@
|
|
293
293
|
{
|
294
294
|
"data": {
|
295
295
|
"application/vnd.jupyter.widget-view+json": {
|
296
|
-
"model_id": "
|
296
|
+
"model_id": "847b13ca28274786b3209932e3a74f77",
|
297
297
|
"version_major": 2,
|
298
298
|
"version_minor": 0
|
299
299
|
},
|
300
300
|
"text/plain": [
|
301
|
-
"VBox(children=(interactive(children=(IntSlider(value=
|
301
|
+
"VBox(children=(interactive(children=(IntSlider(value=105, description='n', max=200, min=10), Output()), _dom_c…"
|
302
302
|
]
|
303
303
|
},
|
304
304
|
"metadata": {},
|
@@ -309,7 +309,7 @@
|
|
309
309
|
"def x_values(n): return np.random.choice(100, n)\n",
|
310
310
|
"def y_values(xs): return np.random.choice(100, len(xs))\n",
|
311
311
|
"\n",
|
312
|
-
"nbi.scatter(x_values, y_values, n=(
|
312
|
+
"nbi.scatter(x_values, y_values, n=(10,200))"
|
313
313
|
]
|
314
314
|
},
|
315
315
|
{
|
@@ -336,7 +336,7 @@
|
|
336
336
|
{
|
337
337
|
"data": {
|
338
338
|
"application/vnd.jupyter.widget-view+json": {
|
339
|
-
"model_id": "
|
339
|
+
"model_id": "b23113b7d9f54ca0844bc5874ca92137",
|
340
340
|
"version_major": 2,
|
341
341
|
"version_minor": 0
|
342
342
|
},
|