iv-phonic 0.1.1 → 0.1.2
Sign up to get free protection for your applications and to get access to all the features.
- data/Manifest.txt +45 -0
- data/Rakefile +6 -1
- data/ext/include/iv/about.h +7 -0
- data/ext/include/iv/ast_factory.h +2 -1
- data/ext/include/iv/byteorder.h +20 -0
- data/ext/include/iv/dtoa.h +83 -2
- data/ext/include/iv/netlib-dtoa.h +4320 -0
- data/ext/include/iv/parser.h +35 -4
- data/ext/iv/phonic/README +34 -0
- data/ext/iv/phonic/SConscript +8 -0
- data/ext/iv/phonic/ast_fwd.h +16 -2
- data/ext/iv/phonic/cached-powers.h +119 -0
- data/ext/iv/phonic/checks.cc +57 -0
- data/ext/iv/phonic/checks.h +93 -0
- data/ext/iv/phonic/conversions.cc +123 -0
- data/ext/iv/phonic/conversions.h +41 -0
- data/ext/iv/phonic/creator.h +55 -53
- data/ext/iv/phonic/diy-fp.cc +58 -0
- data/ext/iv/phonic/diy-fp.h +117 -0
- data/ext/iv/phonic/double.h +169 -0
- data/ext/iv/phonic/dtoa.h +81 -0
- data/ext/iv/phonic/extconf.rb +1 -0
- data/ext/iv/phonic/factory.h +3 -1
- data/ext/iv/phonic/fast-dtoa.cc +505 -0
- data/ext/iv/phonic/fast-dtoa.h +58 -0
- data/ext/iv/phonic/globals.h +69 -0
- data/ext/iv/phonic/include-v8.h +59 -0
- data/ext/iv/phonic/platform.cc +111 -0
- data/ext/iv/phonic/platform.h +100 -0
- data/ext/iv/phonic/powers-ten.h +2461 -0
- data/ext/iv/phonic/utils.cc +91 -0
- data/ext/iv/phonic/utils.h +165 -0
- data/ext/iv/phonic/v8-dtoa.cc +79 -0
- data/ext/iv/phonic/v8.h +51 -0
- data/test/test_iv_phonic.rb +1 -1
- metadata +26 -1
@@ -0,0 +1,117 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef V8_DIY_FP_H_
|
29
|
+
#define V8_DIY_FP_H_
|
30
|
+
|
31
|
+
namespace v8 {
|
32
|
+
namespace internal {
|
33
|
+
|
34
|
+
// This "Do It Yourself Floating Point" class implements a floating-point number
|
35
|
+
// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
|
36
|
+
// have the most significant bit of the significand set.
|
37
|
+
// Multiplication and Subtraction do not normalize their results.
|
38
|
+
// DiyFp are not designed to contain special doubles (NaN and Infinity).
|
39
|
+
class DiyFp {
|
40
|
+
public:
|
41
|
+
static const int kSignificandSize = 64;
|
42
|
+
|
43
|
+
DiyFp() : f_(0), e_(0) {}
|
44
|
+
DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
|
45
|
+
|
46
|
+
// this = this - other.
|
47
|
+
// The exponents of both numbers must be the same and the significand of this
|
48
|
+
// must be bigger than the significand of other.
|
49
|
+
// The result will not be normalized.
|
50
|
+
void Subtract(const DiyFp& other) {
|
51
|
+
ASSERT(e_ == other.e_);
|
52
|
+
ASSERT(f_ >= other.f_);
|
53
|
+
f_ -= other.f_;
|
54
|
+
}
|
55
|
+
|
56
|
+
// Returns a - b.
|
57
|
+
// The exponents of both numbers must be the same and this must be bigger
|
58
|
+
// than other. The result will not be normalized.
|
59
|
+
static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
|
60
|
+
DiyFp result = a;
|
61
|
+
result.Subtract(b);
|
62
|
+
return result;
|
63
|
+
}
|
64
|
+
|
65
|
+
|
66
|
+
// this = this * other.
|
67
|
+
void Multiply(const DiyFp& other);
|
68
|
+
|
69
|
+
// returns a * b;
|
70
|
+
static DiyFp Times(const DiyFp& a, const DiyFp& b) {
|
71
|
+
DiyFp result = a;
|
72
|
+
result.Multiply(b);
|
73
|
+
return result;
|
74
|
+
}
|
75
|
+
|
76
|
+
void Normalize() {
|
77
|
+
ASSERT(f_ != 0);
|
78
|
+
uint64_t f = f_;
|
79
|
+
int e = e_;
|
80
|
+
|
81
|
+
// This method is mainly called for normalizing boundaries. In general
|
82
|
+
// boundaries need to be shifted by 10 bits. We thus optimize for this case.
|
83
|
+
const uint64_t k10MSBits = V8_2PART_UINT64_C(0xFFC00000, 00000000);
|
84
|
+
while ((f & k10MSBits) == 0) {
|
85
|
+
f <<= 10;
|
86
|
+
e -= 10;
|
87
|
+
}
|
88
|
+
while ((f & kUint64MSB) == 0) {
|
89
|
+
f <<= 1;
|
90
|
+
e--;
|
91
|
+
}
|
92
|
+
f_ = f;
|
93
|
+
e_ = e;
|
94
|
+
}
|
95
|
+
|
96
|
+
static DiyFp Normalize(const DiyFp& a) {
|
97
|
+
DiyFp result = a;
|
98
|
+
result.Normalize();
|
99
|
+
return result;
|
100
|
+
}
|
101
|
+
|
102
|
+
uint64_t f() const { return f_; }
|
103
|
+
int e() const { return e_; }
|
104
|
+
|
105
|
+
void set_f(uint64_t new_value) { f_ = new_value; }
|
106
|
+
void set_e(int new_value) { e_ = new_value; }
|
107
|
+
|
108
|
+
private:
|
109
|
+
static const uint64_t kUint64MSB = V8_2PART_UINT64_C(0x80000000, 00000000);
|
110
|
+
|
111
|
+
uint64_t f_;
|
112
|
+
int e_;
|
113
|
+
};
|
114
|
+
|
115
|
+
} } // namespace v8::internal
|
116
|
+
|
117
|
+
#endif // V8_DIY_FP_H_
|
@@ -0,0 +1,169 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef V8_DOUBLE_H_
|
29
|
+
#define V8_DOUBLE_H_
|
30
|
+
|
31
|
+
#include "diy-fp.h"
|
32
|
+
|
33
|
+
namespace v8 {
|
34
|
+
namespace internal {
|
35
|
+
|
36
|
+
// We assume that doubles and uint64_t have the same endianness.
|
37
|
+
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
|
38
|
+
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
|
39
|
+
|
40
|
+
// Helper functions for doubles.
|
41
|
+
class Double {
|
42
|
+
public:
|
43
|
+
static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
|
44
|
+
static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
|
45
|
+
static const uint64_t kSignificandMask =
|
46
|
+
V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
47
|
+
static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
|
48
|
+
|
49
|
+
Double() : d64_(0) {}
|
50
|
+
explicit Double(double d) : d64_(double_to_uint64(d)) {}
|
51
|
+
explicit Double(uint64_t d64) : d64_(d64) {}
|
52
|
+
|
53
|
+
DiyFp AsDiyFp() const {
|
54
|
+
ASSERT(!IsSpecial());
|
55
|
+
return DiyFp(Significand(), Exponent());
|
56
|
+
}
|
57
|
+
|
58
|
+
// this->Significand() must not be 0.
|
59
|
+
DiyFp AsNormalizedDiyFp() const {
|
60
|
+
uint64_t f = Significand();
|
61
|
+
int e = Exponent();
|
62
|
+
|
63
|
+
ASSERT(f != 0);
|
64
|
+
|
65
|
+
// The current double could be a denormal.
|
66
|
+
while ((f & kHiddenBit) == 0) {
|
67
|
+
f <<= 1;
|
68
|
+
e--;
|
69
|
+
}
|
70
|
+
// Do the final shifts in one go. Don't forget the hidden bit (the '-1').
|
71
|
+
f <<= DiyFp::kSignificandSize - kSignificandSize - 1;
|
72
|
+
e -= DiyFp::kSignificandSize - kSignificandSize - 1;
|
73
|
+
return DiyFp(f, e);
|
74
|
+
}
|
75
|
+
|
76
|
+
// Returns the double's bit as uint64.
|
77
|
+
uint64_t AsUint64() const {
|
78
|
+
return d64_;
|
79
|
+
}
|
80
|
+
|
81
|
+
int Exponent() const {
|
82
|
+
if (IsDenormal()) return kDenormalExponent;
|
83
|
+
|
84
|
+
uint64_t d64 = AsUint64();
|
85
|
+
int biased_e = static_cast<int>((d64 & kExponentMask) >> kSignificandSize);
|
86
|
+
return biased_e - kExponentBias;
|
87
|
+
}
|
88
|
+
|
89
|
+
uint64_t Significand() const {
|
90
|
+
uint64_t d64 = AsUint64();
|
91
|
+
uint64_t significand = d64 & kSignificandMask;
|
92
|
+
if (!IsDenormal()) {
|
93
|
+
return significand + kHiddenBit;
|
94
|
+
} else {
|
95
|
+
return significand;
|
96
|
+
}
|
97
|
+
}
|
98
|
+
|
99
|
+
// Returns true if the double is a denormal.
|
100
|
+
bool IsDenormal() const {
|
101
|
+
uint64_t d64 = AsUint64();
|
102
|
+
return (d64 & kExponentMask) == 0;
|
103
|
+
}
|
104
|
+
|
105
|
+
// We consider denormals not to be special.
|
106
|
+
// Hence only Infinity and NaN are special.
|
107
|
+
bool IsSpecial() const {
|
108
|
+
uint64_t d64 = AsUint64();
|
109
|
+
return (d64 & kExponentMask) == kExponentMask;
|
110
|
+
}
|
111
|
+
|
112
|
+
bool IsNan() const {
|
113
|
+
uint64_t d64 = AsUint64();
|
114
|
+
return ((d64 & kExponentMask) == kExponentMask) &&
|
115
|
+
((d64 & kSignificandMask) != 0);
|
116
|
+
}
|
117
|
+
|
118
|
+
|
119
|
+
bool IsInfinite() const {
|
120
|
+
uint64_t d64 = AsUint64();
|
121
|
+
return ((d64 & kExponentMask) == kExponentMask) &&
|
122
|
+
((d64 & kSignificandMask) == 0);
|
123
|
+
}
|
124
|
+
|
125
|
+
|
126
|
+
int Sign() const {
|
127
|
+
uint64_t d64 = AsUint64();
|
128
|
+
return (d64 & kSignMask) == 0? 1: -1;
|
129
|
+
}
|
130
|
+
|
131
|
+
|
132
|
+
// Returns the two boundaries of this.
|
133
|
+
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
134
|
+
// exponent as m_plus.
|
135
|
+
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
136
|
+
DiyFp v = this->AsDiyFp();
|
137
|
+
bool significand_is_zero = (v.f() == kHiddenBit);
|
138
|
+
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
139
|
+
DiyFp m_minus;
|
140
|
+
if (significand_is_zero && v.e() != kDenormalExponent) {
|
141
|
+
// The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
|
142
|
+
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
143
|
+
// at a distance of 1e8.
|
144
|
+
// The only exception is for the smallest normal: the largest denormal is
|
145
|
+
// at the same distance as its successor.
|
146
|
+
// Note: denormals have the same exponent as the smallest normals.
|
147
|
+
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
148
|
+
} else {
|
149
|
+
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
150
|
+
}
|
151
|
+
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
152
|
+
m_minus.set_e(m_plus.e());
|
153
|
+
*out_m_plus = m_plus;
|
154
|
+
*out_m_minus = m_minus;
|
155
|
+
}
|
156
|
+
|
157
|
+
double value() const { return uint64_to_double(d64_); }
|
158
|
+
|
159
|
+
private:
|
160
|
+
static const int kSignificandSize = 52; // Excludes the hidden bit.
|
161
|
+
static const int kExponentBias = 0x3FF + kSignificandSize;
|
162
|
+
static const int kDenormalExponent = -kExponentBias + 1;
|
163
|
+
|
164
|
+
uint64_t d64_;
|
165
|
+
};
|
166
|
+
|
167
|
+
} } // namespace v8::internal
|
168
|
+
|
169
|
+
#endif // V8_DOUBLE_H_
|
@@ -0,0 +1,81 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#ifndef V8_DTOA_H_
|
29
|
+
#define V8_DTOA_H_
|
30
|
+
|
31
|
+
namespace v8 {
|
32
|
+
namespace internal {
|
33
|
+
|
34
|
+
enum DtoaMode {
|
35
|
+
// 0.9999999999999999 becomes 0.1
|
36
|
+
DTOA_SHORTEST,
|
37
|
+
// Fixed number of digits after the decimal point.
|
38
|
+
// For instance fixed(0.1, 4) becomes 0.1000
|
39
|
+
// If the input number is big, the output will be big.
|
40
|
+
DTOA_FIXED,
|
41
|
+
// Fixed number of digits (independent of the decimal point).
|
42
|
+
DTOA_PRECISION
|
43
|
+
};
|
44
|
+
|
45
|
+
// The maximal length of digits a double can have in base 10.
|
46
|
+
// Note that DoubleToAscii null-terminates its input. So the given buffer should
|
47
|
+
// be at least kBase10MaximalLength + 1 characters long.
|
48
|
+
static const int kBase10MaximalLength = 17;
|
49
|
+
|
50
|
+
// Converts the given double 'v' to ascii.
|
51
|
+
// The result should be interpreted as buffer * 10^(point-length).
|
52
|
+
//
|
53
|
+
// The output depends on the given mode:
|
54
|
+
// - SHORTEST: produce the least amount of digits for which the internal
|
55
|
+
// identity requirement is still satisfied. If the digits are printed
|
56
|
+
// (together with the correct exponent) then reading this number will give
|
57
|
+
// 'v' again. The buffer will choose the representation that is closest to
|
58
|
+
// 'v'. If there are two at the same distance, than the one farther away
|
59
|
+
// from 0 is chosen (halfway cases - ending with 5 - are rounded up).
|
60
|
+
// In this mode the 'requested_digits' parameter is ignored.
|
61
|
+
// - FIXED: produces digits necessary to print a given number with
|
62
|
+
// 'requested_digits' digits after the decimal point. The produced digits
|
63
|
+
// might be too short in which case the caller has to fill the gaps with '0's.
|
64
|
+
// Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
|
65
|
+
// Halfway cases are rounded towards +/-Infinity (away from 0). The call
|
66
|
+
// toFixed(0.15, 2) thus returns buffer="2", point=0.
|
67
|
+
// The returned buffer may contain digits that would be truncated from the
|
68
|
+
// shortest representation of the input.
|
69
|
+
// - PRECISION: produces 'requested_digits' where the first digit is not '0'.
|
70
|
+
// Even though the length of produced digits usually equals
|
71
|
+
// 'requested_digits', the function is allowed to return fewer digits, in
|
72
|
+
// which case the caller has to fill the missing digits with '0's.
|
73
|
+
// Halfway cases are again rounded away from 0.
|
74
|
+
// 'DoubleToAscii' expects the given buffer to be big enough to hold all digits
|
75
|
+
// and a terminating null-character.
|
76
|
+
bool DoubleToAscii(double v, DtoaMode mode, int requested_digits,
|
77
|
+
Vector<char> buffer, int* sign, int* length, int* point);
|
78
|
+
|
79
|
+
} } // namespace v8::internal
|
80
|
+
|
81
|
+
#endif // V8_DTOA_H_
|
data/ext/iv/phonic/extconf.rb
CHANGED
data/ext/iv/phonic/factory.h
CHANGED
@@ -25,10 +25,12 @@ class AstFactory : public core::Space<2> {
|
|
25
25
|
}
|
26
26
|
|
27
27
|
template<typename Range>
|
28
|
-
Identifier* NewIdentifier(
|
28
|
+
Identifier* NewIdentifier(core::Token::Type type,
|
29
|
+
const Range& range,
|
29
30
|
std::size_t begin,
|
30
31
|
std::size_t end) {
|
31
32
|
Identifier* ident = new(this)Identifier(range, this);
|
33
|
+
ident->set_type(type);
|
32
34
|
ident->Location(begin, end);
|
33
35
|
return ident;
|
34
36
|
}
|
@@ -0,0 +1,505 @@
|
|
1
|
+
// Copyright 2010 the V8 project authors. All rights reserved.
|
2
|
+
// Redistribution and use in source and binary forms, with or without
|
3
|
+
// modification, are permitted provided that the following conditions are
|
4
|
+
// met:
|
5
|
+
//
|
6
|
+
// * Redistributions of source code must retain the above copyright
|
7
|
+
// notice, this list of conditions and the following disclaimer.
|
8
|
+
// * Redistributions in binary form must reproduce the above
|
9
|
+
// copyright notice, this list of conditions and the following
|
10
|
+
// disclaimer in the documentation and/or other materials provided
|
11
|
+
// with the distribution.
|
12
|
+
// * Neither the name of Google Inc. nor the names of its
|
13
|
+
// contributors may be used to endorse or promote products derived
|
14
|
+
// from this software without specific prior written permission.
|
15
|
+
//
|
16
|
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
17
|
+
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
18
|
+
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
19
|
+
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
20
|
+
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
21
|
+
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
22
|
+
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
23
|
+
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
24
|
+
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
25
|
+
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
|
28
|
+
#include "v8.h"
|
29
|
+
|
30
|
+
#include "fast-dtoa.h"
|
31
|
+
|
32
|
+
#include "cached-powers.h"
|
33
|
+
#include "diy-fp.h"
|
34
|
+
#include "double.h"
|
35
|
+
|
36
|
+
namespace v8 {
|
37
|
+
namespace internal {
|
38
|
+
|
39
|
+
// The minimal and maximal target exponent define the range of w's binary
|
40
|
+
// exponent, where 'w' is the result of multiplying the input by a cached power
|
41
|
+
// of ten.
|
42
|
+
//
|
43
|
+
// A different range might be chosen on a different platform, to optimize digit
|
44
|
+
// generation, but a smaller range requires more powers of ten to be cached.
|
45
|
+
static const int minimal_target_exponent = -60;
|
46
|
+
static const int maximal_target_exponent = -32;
|
47
|
+
|
48
|
+
|
49
|
+
// Adjusts the last digit of the generated number, and screens out generated
|
50
|
+
// solutions that may be inaccurate. A solution may be inaccurate if it is
|
51
|
+
// outside the safe interval, or if we ctannot prove that it is closer to the
|
52
|
+
// input than a neighboring representation of the same length.
|
53
|
+
//
|
54
|
+
// Input: * buffer containing the digits of too_high / 10^kappa
|
55
|
+
// * the buffer's length
|
56
|
+
// * distance_too_high_w == (too_high - w).f() * unit
|
57
|
+
// * unsafe_interval == (too_high - too_low).f() * unit
|
58
|
+
// * rest = (too_high - buffer * 10^kappa).f() * unit
|
59
|
+
// * ten_kappa = 10^kappa * unit
|
60
|
+
// * unit = the common multiplier
|
61
|
+
// Output: returns true if the buffer is guaranteed to contain the closest
|
62
|
+
// representable number to the input.
|
63
|
+
// Modifies the generated digits in the buffer to approach (round towards) w.
|
64
|
+
bool RoundWeed(Vector<char> buffer,
|
65
|
+
int length,
|
66
|
+
uint64_t distance_too_high_w,
|
67
|
+
uint64_t unsafe_interval,
|
68
|
+
uint64_t rest,
|
69
|
+
uint64_t ten_kappa,
|
70
|
+
uint64_t unit) {
|
71
|
+
uint64_t small_distance = distance_too_high_w - unit;
|
72
|
+
uint64_t big_distance = distance_too_high_w + unit;
|
73
|
+
// Let w_low = too_high - big_distance, and
|
74
|
+
// w_high = too_high - small_distance.
|
75
|
+
// Note: w_low < w < w_high
|
76
|
+
//
|
77
|
+
// The real w (* unit) must lie somewhere inside the interval
|
78
|
+
// ]w_low; w_low[ (often written as "(w_low; w_low)")
|
79
|
+
|
80
|
+
// Basically the buffer currently contains a number in the unsafe interval
|
81
|
+
// ]too_low; too_high[ with too_low < w < too_high
|
82
|
+
//
|
83
|
+
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
84
|
+
// ^v 1 unit ^ ^ ^ ^
|
85
|
+
// boundary_high --------------------- . . . .
|
86
|
+
// ^v 1 unit . . . .
|
87
|
+
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
88
|
+
// . . ^ . .
|
89
|
+
// . big_distance . . .
|
90
|
+
// . . . . rest
|
91
|
+
// small_distance . . . .
|
92
|
+
// v . . . .
|
93
|
+
// w_high - - - - - - - - - - - - - - - - - - . . . .
|
94
|
+
// ^v 1 unit . . . .
|
95
|
+
// w ---------------------------------------- . . . .
|
96
|
+
// ^v 1 unit v . . .
|
97
|
+
// w_low - - - - - - - - - - - - - - - - - - - - - . . .
|
98
|
+
// . . v
|
99
|
+
// buffer --------------------------------------------------+-------+--------
|
100
|
+
// . .
|
101
|
+
// safe_interval .
|
102
|
+
// v .
|
103
|
+
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
104
|
+
// ^v 1 unit .
|
105
|
+
// boundary_low ------------------------- unsafe_interval
|
106
|
+
// ^v 1 unit v
|
107
|
+
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
108
|
+
//
|
109
|
+
//
|
110
|
+
// Note that the value of buffer could lie anywhere inside the range too_low
|
111
|
+
// to too_high.
|
112
|
+
//
|
113
|
+
// boundary_low, boundary_high and w are approximations of the real boundaries
|
114
|
+
// and v (the input number). They are guaranteed to be precise up to one unit.
|
115
|
+
// In fact the error is guaranteed to be strictly less than one unit.
|
116
|
+
//
|
117
|
+
// Anything that lies outside the unsafe interval is guaranteed not to round
|
118
|
+
// to v when read again.
|
119
|
+
// Anything that lies inside the safe interval is guaranteed to round to v
|
120
|
+
// when read again.
|
121
|
+
// If the number inside the buffer lies inside the unsafe interval but not
|
122
|
+
// inside the safe interval then we simply do not know and bail out (returning
|
123
|
+
// false).
|
124
|
+
//
|
125
|
+
// Similarly we have to take into account the imprecision of 'w' when rounding
|
126
|
+
// the buffer. If we have two potential representations we need to make sure
|
127
|
+
// that the chosen one is closer to w_low and w_high since v can be anywhere
|
128
|
+
// between them.
|
129
|
+
//
|
130
|
+
// By generating the digits of too_high we got the largest (closest to
|
131
|
+
// too_high) buffer that is still in the unsafe interval. In the case where
|
132
|
+
// w_high < buffer < too_high we try to decrement the buffer.
|
133
|
+
// This way the buffer approaches (rounds towards) w.
|
134
|
+
// There are 3 conditions that stop the decrementation process:
|
135
|
+
// 1) the buffer is already below w_high
|
136
|
+
// 2) decrementing the buffer would make it leave the unsafe interval
|
137
|
+
// 3) decrementing the buffer would yield a number below w_high and farther
|
138
|
+
// away than the current number. In other words:
|
139
|
+
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
|
140
|
+
// Instead of using the buffer directly we use its distance to too_high.
|
141
|
+
// Conceptually rest ~= too_high - buffer
|
142
|
+
while (rest < small_distance && // Negated condition 1
|
143
|
+
unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
144
|
+
(rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
145
|
+
small_distance - rest >= rest + ten_kappa - small_distance)) {
|
146
|
+
buffer[length - 1]--;
|
147
|
+
rest += ten_kappa;
|
148
|
+
}
|
149
|
+
|
150
|
+
// We have approached w+ as much as possible. We now test if approaching w-
|
151
|
+
// would require changing the buffer. If yes, then we have two possible
|
152
|
+
// representations close to w, but we cannot decide which one is closer.
|
153
|
+
if (rest < big_distance &&
|
154
|
+
unsafe_interval - rest >= ten_kappa &&
|
155
|
+
(rest + ten_kappa < big_distance ||
|
156
|
+
big_distance - rest > rest + ten_kappa - big_distance)) {
|
157
|
+
return false;
|
158
|
+
}
|
159
|
+
|
160
|
+
// Weeding test.
|
161
|
+
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
|
162
|
+
// Since too_low = too_high - unsafe_interval this is equivalent to
|
163
|
+
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
|
164
|
+
// Conceptually we have: rest ~= too_high - buffer
|
165
|
+
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
|
166
|
+
}
|
167
|
+
|
168
|
+
|
169
|
+
|
170
|
+
static const uint32_t kTen4 = 10000;
|
171
|
+
static const uint32_t kTen5 = 100000;
|
172
|
+
static const uint32_t kTen6 = 1000000;
|
173
|
+
static const uint32_t kTen7 = 10000000;
|
174
|
+
static const uint32_t kTen8 = 100000000;
|
175
|
+
static const uint32_t kTen9 = 1000000000;
|
176
|
+
|
177
|
+
// Returns the biggest power of ten that is less than or equal than the given
|
178
|
+
// number. We furthermore receive the maximum number of bits 'number' has.
|
179
|
+
// If number_bits == 0 then 0^-1 is returned
|
180
|
+
// The number of bits must be <= 32.
|
181
|
+
// Precondition: (1 << number_bits) <= number < (1 << (number_bits + 1)).
|
182
|
+
static void BiggestPowerTen(uint32_t number,
|
183
|
+
int number_bits,
|
184
|
+
uint32_t* power,
|
185
|
+
int* exponent) {
|
186
|
+
switch (number_bits) {
|
187
|
+
case 32:
|
188
|
+
case 31:
|
189
|
+
case 30:
|
190
|
+
if (kTen9 <= number) {
|
191
|
+
*power = kTen9;
|
192
|
+
*exponent = 9;
|
193
|
+
break;
|
194
|
+
} // else fallthrough
|
195
|
+
case 29:
|
196
|
+
case 28:
|
197
|
+
case 27:
|
198
|
+
if (kTen8 <= number) {
|
199
|
+
*power = kTen8;
|
200
|
+
*exponent = 8;
|
201
|
+
break;
|
202
|
+
} // else fallthrough
|
203
|
+
case 26:
|
204
|
+
case 25:
|
205
|
+
case 24:
|
206
|
+
if (kTen7 <= number) {
|
207
|
+
*power = kTen7;
|
208
|
+
*exponent = 7;
|
209
|
+
break;
|
210
|
+
} // else fallthrough
|
211
|
+
case 23:
|
212
|
+
case 22:
|
213
|
+
case 21:
|
214
|
+
case 20:
|
215
|
+
if (kTen6 <= number) {
|
216
|
+
*power = kTen6;
|
217
|
+
*exponent = 6;
|
218
|
+
break;
|
219
|
+
} // else fallthrough
|
220
|
+
case 19:
|
221
|
+
case 18:
|
222
|
+
case 17:
|
223
|
+
if (kTen5 <= number) {
|
224
|
+
*power = kTen5;
|
225
|
+
*exponent = 5;
|
226
|
+
break;
|
227
|
+
} // else fallthrough
|
228
|
+
case 16:
|
229
|
+
case 15:
|
230
|
+
case 14:
|
231
|
+
if (kTen4 <= number) {
|
232
|
+
*power = kTen4;
|
233
|
+
*exponent = 4;
|
234
|
+
break;
|
235
|
+
} // else fallthrough
|
236
|
+
case 13:
|
237
|
+
case 12:
|
238
|
+
case 11:
|
239
|
+
case 10:
|
240
|
+
if (1000 <= number) {
|
241
|
+
*power = 1000;
|
242
|
+
*exponent = 3;
|
243
|
+
break;
|
244
|
+
} // else fallthrough
|
245
|
+
case 9:
|
246
|
+
case 8:
|
247
|
+
case 7:
|
248
|
+
if (100 <= number) {
|
249
|
+
*power = 100;
|
250
|
+
*exponent = 2;
|
251
|
+
break;
|
252
|
+
} // else fallthrough
|
253
|
+
case 6:
|
254
|
+
case 5:
|
255
|
+
case 4:
|
256
|
+
if (10 <= number) {
|
257
|
+
*power = 10;
|
258
|
+
*exponent = 1;
|
259
|
+
break;
|
260
|
+
} // else fallthrough
|
261
|
+
case 3:
|
262
|
+
case 2:
|
263
|
+
case 1:
|
264
|
+
if (1 <= number) {
|
265
|
+
*power = 1;
|
266
|
+
*exponent = 0;
|
267
|
+
break;
|
268
|
+
} // else fallthrough
|
269
|
+
case 0:
|
270
|
+
*power = 0;
|
271
|
+
*exponent = -1;
|
272
|
+
break;
|
273
|
+
default:
|
274
|
+
// Following assignments are here to silence compiler warnings.
|
275
|
+
*power = 0;
|
276
|
+
*exponent = 0;
|
277
|
+
UNREACHABLE();
|
278
|
+
}
|
279
|
+
}
|
280
|
+
|
281
|
+
|
282
|
+
// Generates the digits of input number w.
|
283
|
+
// w is a floating-point number (DiyFp), consisting of a significand and an
|
284
|
+
// exponent. Its exponent is bounded by minimal_target_exponent and
|
285
|
+
// maximal_target_exponent.
|
286
|
+
// Hence -60 <= w.e() <= -32.
|
287
|
+
//
|
288
|
+
// Returns false if it fails, in which case the generated digits in the buffer
|
289
|
+
// should not be used.
|
290
|
+
// Preconditions:
|
291
|
+
// * low, w and high are correct up to 1 ulp (unit in the last place). That
|
292
|
+
// is, their error must be less that a unit of their last digits.
|
293
|
+
// * low.e() == w.e() == high.e()
|
294
|
+
// * low < w < high, and taking into account their error: low~ <= high~
|
295
|
+
// * minimal_target_exponent <= w.e() <= maximal_target_exponent
|
296
|
+
// Postconditions: returns false if procedure fails.
|
297
|
+
// otherwise:
|
298
|
+
// * buffer is not null-terminated, but len contains the number of digits.
|
299
|
+
// * buffer contains the shortest possible decimal digit-sequence
|
300
|
+
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
|
301
|
+
// correct values of low and high (without their error).
|
302
|
+
// * if more than one decimal representation gives the minimal number of
|
303
|
+
// decimal digits then the one closest to W (where W is the correct value
|
304
|
+
// of w) is chosen.
|
305
|
+
// Remark: this procedure takes into account the imprecision of its input
|
306
|
+
// numbers. If the precision is not enough to guarantee all the postconditions
|
307
|
+
// then false is returned. This usually happens rarely (~0.5%).
|
308
|
+
//
|
309
|
+
// Say, for the sake of example, that
|
310
|
+
// w.e() == -48, and w.f() == 0x1234567890abcdef
|
311
|
+
// w's value can be computed by w.f() * 2^w.e()
|
312
|
+
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
313
|
+
// -> w's integral part is 0x1234
|
314
|
+
// w's fractional part is therefore 0x567890abcdef.
|
315
|
+
// Printing w's integral part is easy (simply print 0x1234 in decimal).
|
316
|
+
// In order to print its fraction we repeatedly multiply the fraction by 10 and
|
317
|
+
// get each digit. Example the first digit after the point would be computed by
|
318
|
+
// (0x567890abcdef * 10) >> 48. -> 3
|
319
|
+
// The whole thing becomes slightly more complicated because we want to stop
|
320
|
+
// once we have enough digits. That is, once the digits inside the buffer
|
321
|
+
// represent 'w' we can stop. Everything inside the interval low - high
|
322
|
+
// represents w. However we have to pay attention to low, high and w's
|
323
|
+
// imprecision.
|
324
|
+
bool DigitGen(DiyFp low,
|
325
|
+
DiyFp w,
|
326
|
+
DiyFp high,
|
327
|
+
Vector<char> buffer,
|
328
|
+
int* length,
|
329
|
+
int* kappa) {
|
330
|
+
ASSERT(low.e() == w.e() && w.e() == high.e());
|
331
|
+
ASSERT(low.f() + 1 <= high.f() - 1);
|
332
|
+
ASSERT(minimal_target_exponent <= w.e() && w.e() <= maximal_target_exponent);
|
333
|
+
// low, w and high are imprecise, but by less than one ulp (unit in the last
|
334
|
+
// place).
|
335
|
+
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
336
|
+
// the new numbers are outside of the interval we want the final
|
337
|
+
// representation to lie in.
|
338
|
+
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
|
339
|
+
// numbers that are certain to lie in the interval. We will use this fact
|
340
|
+
// later on.
|
341
|
+
// We will now start by generating the digits within the uncertain
|
342
|
+
// interval. Later we will weed out representations that lie outside the safe
|
343
|
+
// interval and thus _might_ lie outside the correct interval.
|
344
|
+
uint64_t unit = 1;
|
345
|
+
DiyFp too_low = DiyFp(low.f() - unit, low.e());
|
346
|
+
DiyFp too_high = DiyFp(high.f() + unit, high.e());
|
347
|
+
// too_low and too_high are guaranteed to lie outside the interval we want the
|
348
|
+
// generated number in.
|
349
|
+
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
|
350
|
+
// We now cut the input number into two parts: the integral digits and the
|
351
|
+
// fractionals. We will not write any decimal separator though, but adapt
|
352
|
+
// kappa instead.
|
353
|
+
// Reminder: we are currently computing the digits (stored inside the buffer)
|
354
|
+
// such that: too_low < buffer * 10^kappa < too_high
|
355
|
+
// We use too_high for the digit_generation and stop as soon as possible.
|
356
|
+
// If we stop early we effectively round down.
|
357
|
+
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
358
|
+
// Division by one is a shift.
|
359
|
+
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
|
360
|
+
// Modulo by one is an and.
|
361
|
+
uint64_t fractionals = too_high.f() & (one.f() - 1);
|
362
|
+
uint32_t divider;
|
363
|
+
int divider_exponent;
|
364
|
+
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
365
|
+
÷r, ÷r_exponent);
|
366
|
+
*kappa = divider_exponent + 1;
|
367
|
+
*length = 0;
|
368
|
+
// Loop invariant: buffer = too_high / 10^kappa (integer division)
|
369
|
+
// The invariant holds for the first iteration: kappa has been initialized
|
370
|
+
// with the divider exponent + 1. And the divider is the biggest power of ten
|
371
|
+
// that is smaller than integrals.
|
372
|
+
while (*kappa > 0) {
|
373
|
+
int digit = integrals / divider;
|
374
|
+
buffer[*length] = '0' + digit;
|
375
|
+
(*length)++;
|
376
|
+
integrals %= divider;
|
377
|
+
(*kappa)--;
|
378
|
+
// Note that kappa now equals the exponent of the divider and that the
|
379
|
+
// invariant thus holds again.
|
380
|
+
uint64_t rest =
|
381
|
+
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
382
|
+
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
|
383
|
+
// Reminder: unsafe_interval.e() == one.e()
|
384
|
+
if (rest < unsafe_interval.f()) {
|
385
|
+
// Rounding down (by not emitting the remaining digits) yields a number
|
386
|
+
// that lies within the unsafe interval.
|
387
|
+
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
|
388
|
+
unsafe_interval.f(), rest,
|
389
|
+
static_cast<uint64_t>(divider) << -one.e(), unit);
|
390
|
+
}
|
391
|
+
divider /= 10;
|
392
|
+
}
|
393
|
+
|
394
|
+
// The integrals have been generated. We are at the point of the decimal
|
395
|
+
// separator. In the following loop we simply multiply the remaining digits by
|
396
|
+
// 10 and divide by one. We just need to pay attention to multiply associated
|
397
|
+
// data (like the interval or 'unit'), too.
|
398
|
+
// Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
|
399
|
+
// increase its (imaginary) exponent. At the same time we decrease the
|
400
|
+
// divider's (one's) exponent and shift its significand.
|
401
|
+
// Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
|
402
|
+
// fractionals.f *= 10;
|
403
|
+
// fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
|
404
|
+
// one.f >>= 1; one.e++; // value remains unchanged.
|
405
|
+
// and we have again fractionals.e == one.e which allows us to divide
|
406
|
+
// fractionals.f() by one.f()
|
407
|
+
// We simply combine the *= 10 and the >>= 1.
|
408
|
+
while (true) {
|
409
|
+
fractionals *= 5;
|
410
|
+
unit *= 5;
|
411
|
+
unsafe_interval.set_f(unsafe_interval.f() * 5);
|
412
|
+
unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
|
413
|
+
one.set_f(one.f() >> 1);
|
414
|
+
one.set_e(one.e() + 1);
|
415
|
+
// Integer division by one.
|
416
|
+
int digit = static_cast<int>(fractionals >> -one.e());
|
417
|
+
buffer[*length] = '0' + digit;
|
418
|
+
(*length)++;
|
419
|
+
fractionals &= one.f() - 1; // Modulo by one.
|
420
|
+
(*kappa)--;
|
421
|
+
if (fractionals < unsafe_interval.f()) {
|
422
|
+
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
|
423
|
+
unsafe_interval.f(), fractionals, one.f(), unit);
|
424
|
+
}
|
425
|
+
}
|
426
|
+
}
|
427
|
+
|
428
|
+
|
429
|
+
// Provides a decimal representation of v.
|
430
|
+
// Returns true if it succeeds, otherwise the result cannot be trusted.
|
431
|
+
// There will be *length digits inside the buffer (not null-terminated).
|
432
|
+
// If the function returns true then
|
433
|
+
// v == (double) (buffer * 10^decimal_exponent).
|
434
|
+
// The digits in the buffer are the shortest representation possible: no
|
435
|
+
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
|
436
|
+
// chosen even if the longer one would be closer to v.
|
437
|
+
// The last digit will be closest to the actual v. That is, even if several
|
438
|
+
// digits might correctly yield 'v' when read again, the closest will be
|
439
|
+
// computed.
|
440
|
+
bool grisu3(double v, Vector<char> buffer, int* length, int* decimal_exponent) {
|
441
|
+
DiyFp w = Double(v).AsNormalizedDiyFp();
|
442
|
+
// boundary_minus and boundary_plus are the boundaries between v and its
|
443
|
+
// closest floating-point neighbors. Any number strictly between
|
444
|
+
// boundary_minus and boundary_plus will round to v when convert to a double.
|
445
|
+
// Grisu3 will never output representations that lie exactly on a boundary.
|
446
|
+
DiyFp boundary_minus, boundary_plus;
|
447
|
+
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
448
|
+
ASSERT(boundary_plus.e() == w.e());
|
449
|
+
DiyFp ten_mk; // Cached power of ten: 10^-k
|
450
|
+
int mk; // -k
|
451
|
+
GetCachedPower(w.e() + DiyFp::kSignificandSize, minimal_target_exponent,
|
452
|
+
maximal_target_exponent, &mk, &ten_mk);
|
453
|
+
ASSERT(minimal_target_exponent <= w.e() + ten_mk.e() +
|
454
|
+
DiyFp::kSignificandSize &&
|
455
|
+
maximal_target_exponent >= w.e() + ten_mk.e() +
|
456
|
+
DiyFp::kSignificandSize);
|
457
|
+
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
458
|
+
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
459
|
+
|
460
|
+
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
461
|
+
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
462
|
+
// off by a small amount.
|
463
|
+
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
464
|
+
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
465
|
+
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
466
|
+
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
467
|
+
ASSERT(scaled_w.e() ==
|
468
|
+
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
469
|
+
// In theory it would be possible to avoid some recomputations by computing
|
470
|
+
// the difference between w and boundary_minus/plus (a power of 2) and to
|
471
|
+
// compute scaled_boundary_minus/plus by subtracting/adding from
|
472
|
+
// scaled_w. However the code becomes much less readable and the speed
|
473
|
+
// enhancements are not terriffic.
|
474
|
+
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
|
475
|
+
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
|
476
|
+
|
477
|
+
// DigitGen will generate the digits of scaled_w. Therefore we have
|
478
|
+
// v == (double) (scaled_w * 10^-mk).
|
479
|
+
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
|
480
|
+
// integer than it will be updated. For instance if scaled_w == 1.23 then
|
481
|
+
// the buffer will be filled with "123" und the decimal_exponent will be
|
482
|
+
// decreased by 2.
|
483
|
+
int kappa;
|
484
|
+
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
|
485
|
+
buffer, length, &kappa);
|
486
|
+
*decimal_exponent = -mk + kappa;
|
487
|
+
return result;
|
488
|
+
}
|
489
|
+
|
490
|
+
|
491
|
+
bool FastDtoa(double v,
|
492
|
+
Vector<char> buffer,
|
493
|
+
int* length,
|
494
|
+
int* point) {
|
495
|
+
ASSERT(v > 0);
|
496
|
+
ASSERT(!Double(v).IsSpecial());
|
497
|
+
|
498
|
+
int decimal_exponent;
|
499
|
+
bool result = grisu3(v, buffer, length, &decimal_exponent);
|
500
|
+
*point = *length + decimal_exponent;
|
501
|
+
buffer[*length] = '\0';
|
502
|
+
return result;
|
503
|
+
}
|
504
|
+
|
505
|
+
} } // namespace v8::internal
|