iv-phonic 0.1.1 → 0.1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,117 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #ifndef V8_DIY_FP_H_
29
+ #define V8_DIY_FP_H_
30
+
31
+ namespace v8 {
32
+ namespace internal {
33
+
34
+ // This "Do It Yourself Floating Point" class implements a floating-point number
35
+ // with a uint64 significand and an int exponent. Normalized DiyFp numbers will
36
+ // have the most significant bit of the significand set.
37
+ // Multiplication and Subtraction do not normalize their results.
38
+ // DiyFp are not designed to contain special doubles (NaN and Infinity).
39
+ class DiyFp {
40
+ public:
41
+ static const int kSignificandSize = 64;
42
+
43
+ DiyFp() : f_(0), e_(0) {}
44
+ DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
45
+
46
+ // this = this - other.
47
+ // The exponents of both numbers must be the same and the significand of this
48
+ // must be bigger than the significand of other.
49
+ // The result will not be normalized.
50
+ void Subtract(const DiyFp& other) {
51
+ ASSERT(e_ == other.e_);
52
+ ASSERT(f_ >= other.f_);
53
+ f_ -= other.f_;
54
+ }
55
+
56
+ // Returns a - b.
57
+ // The exponents of both numbers must be the same and this must be bigger
58
+ // than other. The result will not be normalized.
59
+ static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
60
+ DiyFp result = a;
61
+ result.Subtract(b);
62
+ return result;
63
+ }
64
+
65
+
66
+ // this = this * other.
67
+ void Multiply(const DiyFp& other);
68
+
69
+ // returns a * b;
70
+ static DiyFp Times(const DiyFp& a, const DiyFp& b) {
71
+ DiyFp result = a;
72
+ result.Multiply(b);
73
+ return result;
74
+ }
75
+
76
+ void Normalize() {
77
+ ASSERT(f_ != 0);
78
+ uint64_t f = f_;
79
+ int e = e_;
80
+
81
+ // This method is mainly called for normalizing boundaries. In general
82
+ // boundaries need to be shifted by 10 bits. We thus optimize for this case.
83
+ const uint64_t k10MSBits = V8_2PART_UINT64_C(0xFFC00000, 00000000);
84
+ while ((f & k10MSBits) == 0) {
85
+ f <<= 10;
86
+ e -= 10;
87
+ }
88
+ while ((f & kUint64MSB) == 0) {
89
+ f <<= 1;
90
+ e--;
91
+ }
92
+ f_ = f;
93
+ e_ = e;
94
+ }
95
+
96
+ static DiyFp Normalize(const DiyFp& a) {
97
+ DiyFp result = a;
98
+ result.Normalize();
99
+ return result;
100
+ }
101
+
102
+ uint64_t f() const { return f_; }
103
+ int e() const { return e_; }
104
+
105
+ void set_f(uint64_t new_value) { f_ = new_value; }
106
+ void set_e(int new_value) { e_ = new_value; }
107
+
108
+ private:
109
+ static const uint64_t kUint64MSB = V8_2PART_UINT64_C(0x80000000, 00000000);
110
+
111
+ uint64_t f_;
112
+ int e_;
113
+ };
114
+
115
+ } } // namespace v8::internal
116
+
117
+ #endif // V8_DIY_FP_H_
@@ -0,0 +1,169 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #ifndef V8_DOUBLE_H_
29
+ #define V8_DOUBLE_H_
30
+
31
+ #include "diy-fp.h"
32
+
33
+ namespace v8 {
34
+ namespace internal {
35
+
36
+ // We assume that doubles and uint64_t have the same endianness.
37
+ static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
38
+ static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
39
+
40
+ // Helper functions for doubles.
41
+ class Double {
42
+ public:
43
+ static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
44
+ static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
45
+ static const uint64_t kSignificandMask =
46
+ V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
47
+ static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
48
+
49
+ Double() : d64_(0) {}
50
+ explicit Double(double d) : d64_(double_to_uint64(d)) {}
51
+ explicit Double(uint64_t d64) : d64_(d64) {}
52
+
53
+ DiyFp AsDiyFp() const {
54
+ ASSERT(!IsSpecial());
55
+ return DiyFp(Significand(), Exponent());
56
+ }
57
+
58
+ // this->Significand() must not be 0.
59
+ DiyFp AsNormalizedDiyFp() const {
60
+ uint64_t f = Significand();
61
+ int e = Exponent();
62
+
63
+ ASSERT(f != 0);
64
+
65
+ // The current double could be a denormal.
66
+ while ((f & kHiddenBit) == 0) {
67
+ f <<= 1;
68
+ e--;
69
+ }
70
+ // Do the final shifts in one go. Don't forget the hidden bit (the '-1').
71
+ f <<= DiyFp::kSignificandSize - kSignificandSize - 1;
72
+ e -= DiyFp::kSignificandSize - kSignificandSize - 1;
73
+ return DiyFp(f, e);
74
+ }
75
+
76
+ // Returns the double's bit as uint64.
77
+ uint64_t AsUint64() const {
78
+ return d64_;
79
+ }
80
+
81
+ int Exponent() const {
82
+ if (IsDenormal()) return kDenormalExponent;
83
+
84
+ uint64_t d64 = AsUint64();
85
+ int biased_e = static_cast<int>((d64 & kExponentMask) >> kSignificandSize);
86
+ return biased_e - kExponentBias;
87
+ }
88
+
89
+ uint64_t Significand() const {
90
+ uint64_t d64 = AsUint64();
91
+ uint64_t significand = d64 & kSignificandMask;
92
+ if (!IsDenormal()) {
93
+ return significand + kHiddenBit;
94
+ } else {
95
+ return significand;
96
+ }
97
+ }
98
+
99
+ // Returns true if the double is a denormal.
100
+ bool IsDenormal() const {
101
+ uint64_t d64 = AsUint64();
102
+ return (d64 & kExponentMask) == 0;
103
+ }
104
+
105
+ // We consider denormals not to be special.
106
+ // Hence only Infinity and NaN are special.
107
+ bool IsSpecial() const {
108
+ uint64_t d64 = AsUint64();
109
+ return (d64 & kExponentMask) == kExponentMask;
110
+ }
111
+
112
+ bool IsNan() const {
113
+ uint64_t d64 = AsUint64();
114
+ return ((d64 & kExponentMask) == kExponentMask) &&
115
+ ((d64 & kSignificandMask) != 0);
116
+ }
117
+
118
+
119
+ bool IsInfinite() const {
120
+ uint64_t d64 = AsUint64();
121
+ return ((d64 & kExponentMask) == kExponentMask) &&
122
+ ((d64 & kSignificandMask) == 0);
123
+ }
124
+
125
+
126
+ int Sign() const {
127
+ uint64_t d64 = AsUint64();
128
+ return (d64 & kSignMask) == 0? 1: -1;
129
+ }
130
+
131
+
132
+ // Returns the two boundaries of this.
133
+ // The bigger boundary (m_plus) is normalized. The lower boundary has the same
134
+ // exponent as m_plus.
135
+ void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
136
+ DiyFp v = this->AsDiyFp();
137
+ bool significand_is_zero = (v.f() == kHiddenBit);
138
+ DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
139
+ DiyFp m_minus;
140
+ if (significand_is_zero && v.e() != kDenormalExponent) {
141
+ // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
142
+ // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
143
+ // at a distance of 1e8.
144
+ // The only exception is for the smallest normal: the largest denormal is
145
+ // at the same distance as its successor.
146
+ // Note: denormals have the same exponent as the smallest normals.
147
+ m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
148
+ } else {
149
+ m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
150
+ }
151
+ m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
152
+ m_minus.set_e(m_plus.e());
153
+ *out_m_plus = m_plus;
154
+ *out_m_minus = m_minus;
155
+ }
156
+
157
+ double value() const { return uint64_to_double(d64_); }
158
+
159
+ private:
160
+ static const int kSignificandSize = 52; // Excludes the hidden bit.
161
+ static const int kExponentBias = 0x3FF + kSignificandSize;
162
+ static const int kDenormalExponent = -kExponentBias + 1;
163
+
164
+ uint64_t d64_;
165
+ };
166
+
167
+ } } // namespace v8::internal
168
+
169
+ #endif // V8_DOUBLE_H_
@@ -0,0 +1,81 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #ifndef V8_DTOA_H_
29
+ #define V8_DTOA_H_
30
+
31
+ namespace v8 {
32
+ namespace internal {
33
+
34
+ enum DtoaMode {
35
+ // 0.9999999999999999 becomes 0.1
36
+ DTOA_SHORTEST,
37
+ // Fixed number of digits after the decimal point.
38
+ // For instance fixed(0.1, 4) becomes 0.1000
39
+ // If the input number is big, the output will be big.
40
+ DTOA_FIXED,
41
+ // Fixed number of digits (independent of the decimal point).
42
+ DTOA_PRECISION
43
+ };
44
+
45
+ // The maximal length of digits a double can have in base 10.
46
+ // Note that DoubleToAscii null-terminates its input. So the given buffer should
47
+ // be at least kBase10MaximalLength + 1 characters long.
48
+ static const int kBase10MaximalLength = 17;
49
+
50
+ // Converts the given double 'v' to ascii.
51
+ // The result should be interpreted as buffer * 10^(point-length).
52
+ //
53
+ // The output depends on the given mode:
54
+ // - SHORTEST: produce the least amount of digits for which the internal
55
+ // identity requirement is still satisfied. If the digits are printed
56
+ // (together with the correct exponent) then reading this number will give
57
+ // 'v' again. The buffer will choose the representation that is closest to
58
+ // 'v'. If there are two at the same distance, than the one farther away
59
+ // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
60
+ // In this mode the 'requested_digits' parameter is ignored.
61
+ // - FIXED: produces digits necessary to print a given number with
62
+ // 'requested_digits' digits after the decimal point. The produced digits
63
+ // might be too short in which case the caller has to fill the gaps with '0's.
64
+ // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
65
+ // Halfway cases are rounded towards +/-Infinity (away from 0). The call
66
+ // toFixed(0.15, 2) thus returns buffer="2", point=0.
67
+ // The returned buffer may contain digits that would be truncated from the
68
+ // shortest representation of the input.
69
+ // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
70
+ // Even though the length of produced digits usually equals
71
+ // 'requested_digits', the function is allowed to return fewer digits, in
72
+ // which case the caller has to fill the missing digits with '0's.
73
+ // Halfway cases are again rounded away from 0.
74
+ // 'DoubleToAscii' expects the given buffer to be big enough to hold all digits
75
+ // and a terminating null-character.
76
+ bool DoubleToAscii(double v, DtoaMode mode, int requested_digits,
77
+ Vector<char> buffer, int* sign, int* length, int* point);
78
+
79
+ } } // namespace v8::internal
80
+
81
+ #endif // V8_DTOA_H_
@@ -2,4 +2,5 @@ require 'mkmf'
2
2
  $CFLAGS += " -Wall -Werror -Wno-unused-parameter "
3
3
  dir_config('iv', 'ext')
4
4
  $CFLAGS += " -I../../include "
5
+
5
6
  create_makefile('iv/phonic')
@@ -25,10 +25,12 @@ class AstFactory : public core::Space<2> {
25
25
  }
26
26
 
27
27
  template<typename Range>
28
- Identifier* NewIdentifier(const Range& range,
28
+ Identifier* NewIdentifier(core::Token::Type type,
29
+ const Range& range,
29
30
  std::size_t begin,
30
31
  std::size_t end) {
31
32
  Identifier* ident = new(this)Identifier(range, this);
33
+ ident->set_type(type);
32
34
  ident->Location(begin, end);
33
35
  return ident;
34
36
  }
@@ -0,0 +1,505 @@
1
+ // Copyright 2010 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #include "v8.h"
29
+
30
+ #include "fast-dtoa.h"
31
+
32
+ #include "cached-powers.h"
33
+ #include "diy-fp.h"
34
+ #include "double.h"
35
+
36
+ namespace v8 {
37
+ namespace internal {
38
+
39
+ // The minimal and maximal target exponent define the range of w's binary
40
+ // exponent, where 'w' is the result of multiplying the input by a cached power
41
+ // of ten.
42
+ //
43
+ // A different range might be chosen on a different platform, to optimize digit
44
+ // generation, but a smaller range requires more powers of ten to be cached.
45
+ static const int minimal_target_exponent = -60;
46
+ static const int maximal_target_exponent = -32;
47
+
48
+
49
+ // Adjusts the last digit of the generated number, and screens out generated
50
+ // solutions that may be inaccurate. A solution may be inaccurate if it is
51
+ // outside the safe interval, or if we ctannot prove that it is closer to the
52
+ // input than a neighboring representation of the same length.
53
+ //
54
+ // Input: * buffer containing the digits of too_high / 10^kappa
55
+ // * the buffer's length
56
+ // * distance_too_high_w == (too_high - w).f() * unit
57
+ // * unsafe_interval == (too_high - too_low).f() * unit
58
+ // * rest = (too_high - buffer * 10^kappa).f() * unit
59
+ // * ten_kappa = 10^kappa * unit
60
+ // * unit = the common multiplier
61
+ // Output: returns true if the buffer is guaranteed to contain the closest
62
+ // representable number to the input.
63
+ // Modifies the generated digits in the buffer to approach (round towards) w.
64
+ bool RoundWeed(Vector<char> buffer,
65
+ int length,
66
+ uint64_t distance_too_high_w,
67
+ uint64_t unsafe_interval,
68
+ uint64_t rest,
69
+ uint64_t ten_kappa,
70
+ uint64_t unit) {
71
+ uint64_t small_distance = distance_too_high_w - unit;
72
+ uint64_t big_distance = distance_too_high_w + unit;
73
+ // Let w_low = too_high - big_distance, and
74
+ // w_high = too_high - small_distance.
75
+ // Note: w_low < w < w_high
76
+ //
77
+ // The real w (* unit) must lie somewhere inside the interval
78
+ // ]w_low; w_low[ (often written as "(w_low; w_low)")
79
+
80
+ // Basically the buffer currently contains a number in the unsafe interval
81
+ // ]too_low; too_high[ with too_low < w < too_high
82
+ //
83
+ // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
84
+ // ^v 1 unit ^ ^ ^ ^
85
+ // boundary_high --------------------- . . . .
86
+ // ^v 1 unit . . . .
87
+ // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
88
+ // . . ^ . .
89
+ // . big_distance . . .
90
+ // . . . . rest
91
+ // small_distance . . . .
92
+ // v . . . .
93
+ // w_high - - - - - - - - - - - - - - - - - - . . . .
94
+ // ^v 1 unit . . . .
95
+ // w ---------------------------------------- . . . .
96
+ // ^v 1 unit v . . .
97
+ // w_low - - - - - - - - - - - - - - - - - - - - - . . .
98
+ // . . v
99
+ // buffer --------------------------------------------------+-------+--------
100
+ // . .
101
+ // safe_interval .
102
+ // v .
103
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
104
+ // ^v 1 unit .
105
+ // boundary_low ------------------------- unsafe_interval
106
+ // ^v 1 unit v
107
+ // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
108
+ //
109
+ //
110
+ // Note that the value of buffer could lie anywhere inside the range too_low
111
+ // to too_high.
112
+ //
113
+ // boundary_low, boundary_high and w are approximations of the real boundaries
114
+ // and v (the input number). They are guaranteed to be precise up to one unit.
115
+ // In fact the error is guaranteed to be strictly less than one unit.
116
+ //
117
+ // Anything that lies outside the unsafe interval is guaranteed not to round
118
+ // to v when read again.
119
+ // Anything that lies inside the safe interval is guaranteed to round to v
120
+ // when read again.
121
+ // If the number inside the buffer lies inside the unsafe interval but not
122
+ // inside the safe interval then we simply do not know and bail out (returning
123
+ // false).
124
+ //
125
+ // Similarly we have to take into account the imprecision of 'w' when rounding
126
+ // the buffer. If we have two potential representations we need to make sure
127
+ // that the chosen one is closer to w_low and w_high since v can be anywhere
128
+ // between them.
129
+ //
130
+ // By generating the digits of too_high we got the largest (closest to
131
+ // too_high) buffer that is still in the unsafe interval. In the case where
132
+ // w_high < buffer < too_high we try to decrement the buffer.
133
+ // This way the buffer approaches (rounds towards) w.
134
+ // There are 3 conditions that stop the decrementation process:
135
+ // 1) the buffer is already below w_high
136
+ // 2) decrementing the buffer would make it leave the unsafe interval
137
+ // 3) decrementing the buffer would yield a number below w_high and farther
138
+ // away than the current number. In other words:
139
+ // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
140
+ // Instead of using the buffer directly we use its distance to too_high.
141
+ // Conceptually rest ~= too_high - buffer
142
+ while (rest < small_distance && // Negated condition 1
143
+ unsafe_interval - rest >= ten_kappa && // Negated condition 2
144
+ (rest + ten_kappa < small_distance || // buffer{-1} > w_high
145
+ small_distance - rest >= rest + ten_kappa - small_distance)) {
146
+ buffer[length - 1]--;
147
+ rest += ten_kappa;
148
+ }
149
+
150
+ // We have approached w+ as much as possible. We now test if approaching w-
151
+ // would require changing the buffer. If yes, then we have two possible
152
+ // representations close to w, but we cannot decide which one is closer.
153
+ if (rest < big_distance &&
154
+ unsafe_interval - rest >= ten_kappa &&
155
+ (rest + ten_kappa < big_distance ||
156
+ big_distance - rest > rest + ten_kappa - big_distance)) {
157
+ return false;
158
+ }
159
+
160
+ // Weeding test.
161
+ // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162
+ // Since too_low = too_high - unsafe_interval this is equivalent to
163
+ // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164
+ // Conceptually we have: rest ~= too_high - buffer
165
+ return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
166
+ }
167
+
168
+
169
+
170
+ static const uint32_t kTen4 = 10000;
171
+ static const uint32_t kTen5 = 100000;
172
+ static const uint32_t kTen6 = 1000000;
173
+ static const uint32_t kTen7 = 10000000;
174
+ static const uint32_t kTen8 = 100000000;
175
+ static const uint32_t kTen9 = 1000000000;
176
+
177
+ // Returns the biggest power of ten that is less than or equal than the given
178
+ // number. We furthermore receive the maximum number of bits 'number' has.
179
+ // If number_bits == 0 then 0^-1 is returned
180
+ // The number of bits must be <= 32.
181
+ // Precondition: (1 << number_bits) <= number < (1 << (number_bits + 1)).
182
+ static void BiggestPowerTen(uint32_t number,
183
+ int number_bits,
184
+ uint32_t* power,
185
+ int* exponent) {
186
+ switch (number_bits) {
187
+ case 32:
188
+ case 31:
189
+ case 30:
190
+ if (kTen9 <= number) {
191
+ *power = kTen9;
192
+ *exponent = 9;
193
+ break;
194
+ } // else fallthrough
195
+ case 29:
196
+ case 28:
197
+ case 27:
198
+ if (kTen8 <= number) {
199
+ *power = kTen8;
200
+ *exponent = 8;
201
+ break;
202
+ } // else fallthrough
203
+ case 26:
204
+ case 25:
205
+ case 24:
206
+ if (kTen7 <= number) {
207
+ *power = kTen7;
208
+ *exponent = 7;
209
+ break;
210
+ } // else fallthrough
211
+ case 23:
212
+ case 22:
213
+ case 21:
214
+ case 20:
215
+ if (kTen6 <= number) {
216
+ *power = kTen6;
217
+ *exponent = 6;
218
+ break;
219
+ } // else fallthrough
220
+ case 19:
221
+ case 18:
222
+ case 17:
223
+ if (kTen5 <= number) {
224
+ *power = kTen5;
225
+ *exponent = 5;
226
+ break;
227
+ } // else fallthrough
228
+ case 16:
229
+ case 15:
230
+ case 14:
231
+ if (kTen4 <= number) {
232
+ *power = kTen4;
233
+ *exponent = 4;
234
+ break;
235
+ } // else fallthrough
236
+ case 13:
237
+ case 12:
238
+ case 11:
239
+ case 10:
240
+ if (1000 <= number) {
241
+ *power = 1000;
242
+ *exponent = 3;
243
+ break;
244
+ } // else fallthrough
245
+ case 9:
246
+ case 8:
247
+ case 7:
248
+ if (100 <= number) {
249
+ *power = 100;
250
+ *exponent = 2;
251
+ break;
252
+ } // else fallthrough
253
+ case 6:
254
+ case 5:
255
+ case 4:
256
+ if (10 <= number) {
257
+ *power = 10;
258
+ *exponent = 1;
259
+ break;
260
+ } // else fallthrough
261
+ case 3:
262
+ case 2:
263
+ case 1:
264
+ if (1 <= number) {
265
+ *power = 1;
266
+ *exponent = 0;
267
+ break;
268
+ } // else fallthrough
269
+ case 0:
270
+ *power = 0;
271
+ *exponent = -1;
272
+ break;
273
+ default:
274
+ // Following assignments are here to silence compiler warnings.
275
+ *power = 0;
276
+ *exponent = 0;
277
+ UNREACHABLE();
278
+ }
279
+ }
280
+
281
+
282
+ // Generates the digits of input number w.
283
+ // w is a floating-point number (DiyFp), consisting of a significand and an
284
+ // exponent. Its exponent is bounded by minimal_target_exponent and
285
+ // maximal_target_exponent.
286
+ // Hence -60 <= w.e() <= -32.
287
+ //
288
+ // Returns false if it fails, in which case the generated digits in the buffer
289
+ // should not be used.
290
+ // Preconditions:
291
+ // * low, w and high are correct up to 1 ulp (unit in the last place). That
292
+ // is, their error must be less that a unit of their last digits.
293
+ // * low.e() == w.e() == high.e()
294
+ // * low < w < high, and taking into account their error: low~ <= high~
295
+ // * minimal_target_exponent <= w.e() <= maximal_target_exponent
296
+ // Postconditions: returns false if procedure fails.
297
+ // otherwise:
298
+ // * buffer is not null-terminated, but len contains the number of digits.
299
+ // * buffer contains the shortest possible decimal digit-sequence
300
+ // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
301
+ // correct values of low and high (without their error).
302
+ // * if more than one decimal representation gives the minimal number of
303
+ // decimal digits then the one closest to W (where W is the correct value
304
+ // of w) is chosen.
305
+ // Remark: this procedure takes into account the imprecision of its input
306
+ // numbers. If the precision is not enough to guarantee all the postconditions
307
+ // then false is returned. This usually happens rarely (~0.5%).
308
+ //
309
+ // Say, for the sake of example, that
310
+ // w.e() == -48, and w.f() == 0x1234567890abcdef
311
+ // w's value can be computed by w.f() * 2^w.e()
312
+ // We can obtain w's integral digits by simply shifting w.f() by -w.e().
313
+ // -> w's integral part is 0x1234
314
+ // w's fractional part is therefore 0x567890abcdef.
315
+ // Printing w's integral part is easy (simply print 0x1234 in decimal).
316
+ // In order to print its fraction we repeatedly multiply the fraction by 10 and
317
+ // get each digit. Example the first digit after the point would be computed by
318
+ // (0x567890abcdef * 10) >> 48. -> 3
319
+ // The whole thing becomes slightly more complicated because we want to stop
320
+ // once we have enough digits. That is, once the digits inside the buffer
321
+ // represent 'w' we can stop. Everything inside the interval low - high
322
+ // represents w. However we have to pay attention to low, high and w's
323
+ // imprecision.
324
+ bool DigitGen(DiyFp low,
325
+ DiyFp w,
326
+ DiyFp high,
327
+ Vector<char> buffer,
328
+ int* length,
329
+ int* kappa) {
330
+ ASSERT(low.e() == w.e() && w.e() == high.e());
331
+ ASSERT(low.f() + 1 <= high.f() - 1);
332
+ ASSERT(minimal_target_exponent <= w.e() && w.e() <= maximal_target_exponent);
333
+ // low, w and high are imprecise, but by less than one ulp (unit in the last
334
+ // place).
335
+ // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
336
+ // the new numbers are outside of the interval we want the final
337
+ // representation to lie in.
338
+ // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
339
+ // numbers that are certain to lie in the interval. We will use this fact
340
+ // later on.
341
+ // We will now start by generating the digits within the uncertain
342
+ // interval. Later we will weed out representations that lie outside the safe
343
+ // interval and thus _might_ lie outside the correct interval.
344
+ uint64_t unit = 1;
345
+ DiyFp too_low = DiyFp(low.f() - unit, low.e());
346
+ DiyFp too_high = DiyFp(high.f() + unit, high.e());
347
+ // too_low and too_high are guaranteed to lie outside the interval we want the
348
+ // generated number in.
349
+ DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
350
+ // We now cut the input number into two parts: the integral digits and the
351
+ // fractionals. We will not write any decimal separator though, but adapt
352
+ // kappa instead.
353
+ // Reminder: we are currently computing the digits (stored inside the buffer)
354
+ // such that: too_low < buffer * 10^kappa < too_high
355
+ // We use too_high for the digit_generation and stop as soon as possible.
356
+ // If we stop early we effectively round down.
357
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
358
+ // Division by one is a shift.
359
+ uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
360
+ // Modulo by one is an and.
361
+ uint64_t fractionals = too_high.f() & (one.f() - 1);
362
+ uint32_t divider;
363
+ int divider_exponent;
364
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
365
+ &divider, &divider_exponent);
366
+ *kappa = divider_exponent + 1;
367
+ *length = 0;
368
+ // Loop invariant: buffer = too_high / 10^kappa (integer division)
369
+ // The invariant holds for the first iteration: kappa has been initialized
370
+ // with the divider exponent + 1. And the divider is the biggest power of ten
371
+ // that is smaller than integrals.
372
+ while (*kappa > 0) {
373
+ int digit = integrals / divider;
374
+ buffer[*length] = '0' + digit;
375
+ (*length)++;
376
+ integrals %= divider;
377
+ (*kappa)--;
378
+ // Note that kappa now equals the exponent of the divider and that the
379
+ // invariant thus holds again.
380
+ uint64_t rest =
381
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
382
+ // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
383
+ // Reminder: unsafe_interval.e() == one.e()
384
+ if (rest < unsafe_interval.f()) {
385
+ // Rounding down (by not emitting the remaining digits) yields a number
386
+ // that lies within the unsafe interval.
387
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
388
+ unsafe_interval.f(), rest,
389
+ static_cast<uint64_t>(divider) << -one.e(), unit);
390
+ }
391
+ divider /= 10;
392
+ }
393
+
394
+ // The integrals have been generated. We are at the point of the decimal
395
+ // separator. In the following loop we simply multiply the remaining digits by
396
+ // 10 and divide by one. We just need to pay attention to multiply associated
397
+ // data (like the interval or 'unit'), too.
398
+ // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
399
+ // increase its (imaginary) exponent. At the same time we decrease the
400
+ // divider's (one's) exponent and shift its significand.
401
+ // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
402
+ // fractionals.f *= 10;
403
+ // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
404
+ // one.f >>= 1; one.e++; // value remains unchanged.
405
+ // and we have again fractionals.e == one.e which allows us to divide
406
+ // fractionals.f() by one.f()
407
+ // We simply combine the *= 10 and the >>= 1.
408
+ while (true) {
409
+ fractionals *= 5;
410
+ unit *= 5;
411
+ unsafe_interval.set_f(unsafe_interval.f() * 5);
412
+ unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
413
+ one.set_f(one.f() >> 1);
414
+ one.set_e(one.e() + 1);
415
+ // Integer division by one.
416
+ int digit = static_cast<int>(fractionals >> -one.e());
417
+ buffer[*length] = '0' + digit;
418
+ (*length)++;
419
+ fractionals &= one.f() - 1; // Modulo by one.
420
+ (*kappa)--;
421
+ if (fractionals < unsafe_interval.f()) {
422
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
423
+ unsafe_interval.f(), fractionals, one.f(), unit);
424
+ }
425
+ }
426
+ }
427
+
428
+
429
+ // Provides a decimal representation of v.
430
+ // Returns true if it succeeds, otherwise the result cannot be trusted.
431
+ // There will be *length digits inside the buffer (not null-terminated).
432
+ // If the function returns true then
433
+ // v == (double) (buffer * 10^decimal_exponent).
434
+ // The digits in the buffer are the shortest representation possible: no
435
+ // 0.09999999999999999 instead of 0.1. The shorter representation will even be
436
+ // chosen even if the longer one would be closer to v.
437
+ // The last digit will be closest to the actual v. That is, even if several
438
+ // digits might correctly yield 'v' when read again, the closest will be
439
+ // computed.
440
+ bool grisu3(double v, Vector<char> buffer, int* length, int* decimal_exponent) {
441
+ DiyFp w = Double(v).AsNormalizedDiyFp();
442
+ // boundary_minus and boundary_plus are the boundaries between v and its
443
+ // closest floating-point neighbors. Any number strictly between
444
+ // boundary_minus and boundary_plus will round to v when convert to a double.
445
+ // Grisu3 will never output representations that lie exactly on a boundary.
446
+ DiyFp boundary_minus, boundary_plus;
447
+ Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
448
+ ASSERT(boundary_plus.e() == w.e());
449
+ DiyFp ten_mk; // Cached power of ten: 10^-k
450
+ int mk; // -k
451
+ GetCachedPower(w.e() + DiyFp::kSignificandSize, minimal_target_exponent,
452
+ maximal_target_exponent, &mk, &ten_mk);
453
+ ASSERT(minimal_target_exponent <= w.e() + ten_mk.e() +
454
+ DiyFp::kSignificandSize &&
455
+ maximal_target_exponent >= w.e() + ten_mk.e() +
456
+ DiyFp::kSignificandSize);
457
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
458
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
459
+
460
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
461
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
462
+ // off by a small amount.
463
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
464
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
465
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
466
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
467
+ ASSERT(scaled_w.e() ==
468
+ boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
469
+ // In theory it would be possible to avoid some recomputations by computing
470
+ // the difference between w and boundary_minus/plus (a power of 2) and to
471
+ // compute scaled_boundary_minus/plus by subtracting/adding from
472
+ // scaled_w. However the code becomes much less readable and the speed
473
+ // enhancements are not terriffic.
474
+ DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
475
+ DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
476
+
477
+ // DigitGen will generate the digits of scaled_w. Therefore we have
478
+ // v == (double) (scaled_w * 10^-mk).
479
+ // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
480
+ // integer than it will be updated. For instance if scaled_w == 1.23 then
481
+ // the buffer will be filled with "123" und the decimal_exponent will be
482
+ // decreased by 2.
483
+ int kappa;
484
+ bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
485
+ buffer, length, &kappa);
486
+ *decimal_exponent = -mk + kappa;
487
+ return result;
488
+ }
489
+
490
+
491
+ bool FastDtoa(double v,
492
+ Vector<char> buffer,
493
+ int* length,
494
+ int* point) {
495
+ ASSERT(v > 0);
496
+ ASSERT(!Double(v).IsSpecial());
497
+
498
+ int decimal_exponent;
499
+ bool result = grisu3(v, buffer, length, &decimal_exponent);
500
+ *point = *length + decimal_exponent;
501
+ buffer[*length] = '\0';
502
+ return result;
503
+ }
504
+
505
+ } } // namespace v8::internal