irt_ruby 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/lib/irt_ruby/rasch_model.rb +59 -0
- data/lib/irt_ruby/three_parameter_model.rb +74 -0
- data/lib/irt_ruby/two_parameter_model.rb +65 -0
- data/lib/irt_ruby/version.rb +5 -0
- data/lib/irt_ruby.rb +10 -0
- metadata +97 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 3864e3faec7cbf0a1d96649b1493a843df0fcb029a2106b99e682f1770b9f499
|
4
|
+
data.tar.gz: e6901babf0c08c5de4e8d644ee4c5e8607f1213a965864874455af2e1ea5ead5
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 519eb1b5d1e5c74234482b83d72faacb85445b5259860278512a49f3212ce62840a8db8c801d6873be377b7b6cf808693af4456185bf2a64a679b20b6f21a33b
|
7
|
+
data.tar.gz: c6f4d4e13582c15045bc040815f88c5d07562ecbb1554daccd6ea6383462ff7c56f3c0adeecc8c4eb29f800faf865a896f0edba4a80979f35c5d46fd897ba72d
|
@@ -0,0 +1,59 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "matrix"
|
4
|
+
|
5
|
+
module IrtRuby
|
6
|
+
# A class representing the Rasch model for Item Response Theory.
|
7
|
+
class RaschModel
|
8
|
+
def initialize(data, max_iter: 1000, tolerance: 1e-6, learning_rate: 0.01)
|
9
|
+
@data = data
|
10
|
+
@abilities = Array.new(data.row_count) { rand }
|
11
|
+
@difficulties = Array.new(data.column_count) { rand }
|
12
|
+
@max_iter = max_iter
|
13
|
+
@tolerance = tolerance
|
14
|
+
@learning_rate = learning_rate
|
15
|
+
end
|
16
|
+
|
17
|
+
# Sigmoid function to calculate probability
|
18
|
+
def sigmoid(x)
|
19
|
+
1.0 / (1.0 + Math.exp(-x))
|
20
|
+
end
|
21
|
+
|
22
|
+
# Calculate the log-likelihood of the data given the current parameters
|
23
|
+
def likelihood
|
24
|
+
likelihood = 0
|
25
|
+
@data.row_vectors.each_with_index do |row, i|
|
26
|
+
row.to_a.each_with_index do |response, j|
|
27
|
+
prob = sigmoid(@abilities[i] - @difficulties[j])
|
28
|
+
likelihood += response == 1 ? Math.log(prob) : Math.log(1 - prob)
|
29
|
+
end
|
30
|
+
end
|
31
|
+
likelihood
|
32
|
+
end
|
33
|
+
|
34
|
+
# Update parameters using gradient ascent
|
35
|
+
def update_parameters
|
36
|
+
last_likelihood = likelihood
|
37
|
+
@max_iter.times do |_iter|
|
38
|
+
@data.row_vectors.each_with_index do |row, i|
|
39
|
+
row.to_a.each_with_index do |response, j|
|
40
|
+
prob = sigmoid(@abilities[i] - @difficulties[j])
|
41
|
+
error = response - prob
|
42
|
+
@abilities[i] += @learning_rate * error
|
43
|
+
@difficulties[j] -= @learning_rate * error
|
44
|
+
end
|
45
|
+
end
|
46
|
+
current_likelihood = likelihood
|
47
|
+
break if (last_likelihood - current_likelihood).abs < @tolerance
|
48
|
+
|
49
|
+
last_likelihood = current_likelihood
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
# Fit the model to the data
|
54
|
+
def fit
|
55
|
+
update_parameters
|
56
|
+
{ abilities: @abilities, difficulties: @difficulties }
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
@@ -0,0 +1,74 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "matrix"
|
4
|
+
|
5
|
+
module IrtRuby
|
6
|
+
# A class representing the Three-Parameter model for Item Response Theory.
|
7
|
+
class ThreeParameterModel
|
8
|
+
def initialize(data, max_iter: 1000, tolerance: 1e-6, learning_rate: 0.01)
|
9
|
+
@data = data
|
10
|
+
@abilities = Array.new(data.row_count) { rand }
|
11
|
+
@difficulties = Array.new(data.column_count) { rand }
|
12
|
+
@discriminations = Array.new(data.column_count) { rand }
|
13
|
+
@guessings = Array.new(data.column_count) { rand * 0.3 }
|
14
|
+
@max_iter = max_iter
|
15
|
+
@tolerance = tolerance
|
16
|
+
@learning_rate = learning_rate
|
17
|
+
end
|
18
|
+
|
19
|
+
# Sigmoid function to calculate probability
|
20
|
+
def sigmoid(x)
|
21
|
+
1.0 / (1.0 + Math.exp(-x))
|
22
|
+
end
|
23
|
+
|
24
|
+
# Probability function for the 3PL model
|
25
|
+
def probability(theta, a, b, c)
|
26
|
+
c + (1 - c) * sigmoid(a * (theta - b))
|
27
|
+
end
|
28
|
+
|
29
|
+
# Calculate the log-likelihood of the data given the current parameters
|
30
|
+
def likelihood
|
31
|
+
likelihood = 0
|
32
|
+
@data.row_vectors.each_with_index do |row, i|
|
33
|
+
row.to_a.each_with_index do |response, j|
|
34
|
+
prob = probability(@abilities[i], @discriminations[j], @difficulties[j], @guessings[j])
|
35
|
+
likelihood += response == 1 ? Math.log(prob) : Math.log(1 - prob)
|
36
|
+
end
|
37
|
+
end
|
38
|
+
likelihood
|
39
|
+
end
|
40
|
+
|
41
|
+
# Update parameters using gradient ascent
|
42
|
+
def update_parameters
|
43
|
+
last_likelihood = likelihood
|
44
|
+
@max_iter.times do |_iter|
|
45
|
+
@data.row_vectors.each_with_index do |row, i|
|
46
|
+
row.to_a.each_with_index do |response, j|
|
47
|
+
prob = probability(@abilities[i], @discriminations[j], @difficulties[j], @guessings[j])
|
48
|
+
error = response - prob
|
49
|
+
@abilities[i] += @learning_rate * error * @discriminations[j]
|
50
|
+
@difficulties[j] -= @learning_rate * error * @discriminations[j]
|
51
|
+
@discriminations[j] += @learning_rate * error * (@abilities[i] - @difficulties[j])
|
52
|
+
@guessings[j] += @learning_rate * error * (1 - prob)
|
53
|
+
@guessings[j] = [[@guessings[j], 0].max, 1].min # Keep guessings within [0, 1]
|
54
|
+
end
|
55
|
+
end
|
56
|
+
current_likelihood = likelihood
|
57
|
+
break if (last_likelihood - current_likelihood).abs < @tolerance
|
58
|
+
|
59
|
+
last_likelihood = current_likelihood
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
# Fit the model to the data
|
64
|
+
def fit
|
65
|
+
update_parameters
|
66
|
+
{
|
67
|
+
abilities: @abilities,
|
68
|
+
difficulties: @difficulties,
|
69
|
+
discriminations: @discriminations,
|
70
|
+
guessings: @guessings
|
71
|
+
}
|
72
|
+
end
|
73
|
+
end
|
74
|
+
end
|
@@ -0,0 +1,65 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "matrix"
|
4
|
+
|
5
|
+
module IrtRuby
|
6
|
+
# A class representing the Two-Parameter model for Item Response Theory.
|
7
|
+
class TwoParameterModel
|
8
|
+
def initialize(data, max_iter: 1000, tolerance: 1e-6, learning_rate: 0.01)
|
9
|
+
@data = data
|
10
|
+
@abilities = Array.new(data.row_count) { rand }
|
11
|
+
@difficulties = Array.new(data.column_count) { rand }
|
12
|
+
@discriminations = Array.new(data.column_count) { rand }
|
13
|
+
@max_iter = max_iter
|
14
|
+
@tolerance = tolerance
|
15
|
+
@learning_rate = learning_rate
|
16
|
+
end
|
17
|
+
|
18
|
+
# Sigmoid function
|
19
|
+
def sigmoid(x)
|
20
|
+
1.0 / (1.0 + Math.exp(-x))
|
21
|
+
end
|
22
|
+
|
23
|
+
# Calculate the log-likelihood of the data given the current parameters
|
24
|
+
def likelihood
|
25
|
+
likelihood = 0
|
26
|
+
@data.row_vectors.each_with_index do |row, i|
|
27
|
+
row.to_a.each_with_index do |response, j|
|
28
|
+
prob = sigmoid(@discriminations[j] * (@abilities[i] - @difficulties[j]))
|
29
|
+
if response == 1
|
30
|
+
likelihood += Math.log(prob)
|
31
|
+
elsif response.zero?
|
32
|
+
likelihood += Math.log(1 - prob)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
likelihood
|
37
|
+
end
|
38
|
+
|
39
|
+
# Update parameters using gradient ascent
|
40
|
+
def update_parameters
|
41
|
+
last_likelihood = likelihood
|
42
|
+
@max_iter.times do |_iter|
|
43
|
+
@data.row_vectors.each_with_index do |row, i|
|
44
|
+
row.to_a.each_with_index do |response, j|
|
45
|
+
prob = sigmoid(@discriminations[j] * (@abilities[i] - @difficulties[j]))
|
46
|
+
error = response - prob
|
47
|
+
@abilities[i] += @learning_rate * error * @discriminations[j]
|
48
|
+
@difficulties[j] -= @learning_rate * error * @discriminations[j]
|
49
|
+
@discriminations[j] += @learning_rate * error * (@abilities[i] - @difficulties[j])
|
50
|
+
end
|
51
|
+
end
|
52
|
+
current_likelihood = likelihood
|
53
|
+
break if (last_likelihood - current_likelihood).abs < @tolerance
|
54
|
+
|
55
|
+
last_likelihood = current_likelihood
|
56
|
+
end
|
57
|
+
end
|
58
|
+
|
59
|
+
# Fit the model to the data
|
60
|
+
def fit
|
61
|
+
update_parameters
|
62
|
+
{ abilities: @abilities, difficulties: @difficulties, discriminations: @discriminations }
|
63
|
+
end
|
64
|
+
end
|
65
|
+
end
|
data/lib/irt_ruby.rb
ADDED
metadata
ADDED
@@ -0,0 +1,97 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: irt_ruby
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Alex Kholodniak
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2024-06-09 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: bundler
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '2.0'
|
20
|
+
type: :development
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '2.0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rake
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '13.0'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '13.0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rspec
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '3.0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '3.0'
|
55
|
+
description: IrtRuby is a Ruby gem that provides implementations of the Rasch model,
|
56
|
+
Two-Parameter model, and Three-Parameter model for Item Response Theory (IRT). It
|
57
|
+
allows you to estimate the abilities of individuals and the difficulties, discriminations,
|
58
|
+
and guessing parameters of items based on their responses to a set of items.
|
59
|
+
email:
|
60
|
+
- alexandrkholodniak@gmail.com
|
61
|
+
executables: []
|
62
|
+
extensions: []
|
63
|
+
extra_rdoc_files: []
|
64
|
+
files:
|
65
|
+
- lib/irt_ruby.rb
|
66
|
+
- lib/irt_ruby/rasch_model.rb
|
67
|
+
- lib/irt_ruby/three_parameter_model.rb
|
68
|
+
- lib/irt_ruby/two_parameter_model.rb
|
69
|
+
- lib/irt_ruby/version.rb
|
70
|
+
homepage: https://github.com/SyntaxSpirits/irt_ruby
|
71
|
+
licenses:
|
72
|
+
- MIT
|
73
|
+
metadata:
|
74
|
+
homepage_uri: https://github.com/SyntaxSpirits/irt_ruby
|
75
|
+
source_code_uri: https://github.com/SyntaxSpirits/irt_ruby
|
76
|
+
changelog_uri: https://github.com/SyntaxSpirits/irt_ruby/CHANGELOG.md
|
77
|
+
post_install_message:
|
78
|
+
rdoc_options: []
|
79
|
+
require_paths:
|
80
|
+
- lib
|
81
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
82
|
+
requirements:
|
83
|
+
- - ">="
|
84
|
+
- !ruby/object:Gem::Version
|
85
|
+
version: '2.6'
|
86
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
87
|
+
requirements:
|
88
|
+
- - ">="
|
89
|
+
- !ruby/object:Gem::Version
|
90
|
+
version: '0'
|
91
|
+
requirements: []
|
92
|
+
rubygems_version: 3.4.16
|
93
|
+
signing_key:
|
94
|
+
specification_version: 4
|
95
|
+
summary: A Ruby gem that provides implementations of Rasch, Two-Parameter, and Three-Parameter
|
96
|
+
models for Item Response Theory (IRT).
|
97
|
+
test_files: []
|