integration 0.1.3 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +4 -0
- data/.yardopts +4 -0
- data/CONTRIBUTING.md +61 -0
- data/Gemfile +2 -0
- data/History.txt +5 -0
- data/integration.gemspec +14 -7
- data/lib/integration.rb +124 -500
- data/lib/integration/methods.rb +394 -0
- data/lib/integration/version.rb +1 -1
- data/spec/integration_spec.rb +45 -56
- data/spec/spec_helper.rb +7 -7
- metadata +25 -16
@@ -0,0 +1,394 @@
|
|
1
|
+
class Integration
|
2
|
+
class << self
|
3
|
+
|
4
|
+
# Rectangle method
|
5
|
+
# +n+ implies number of subdivisions
|
6
|
+
# Source:
|
7
|
+
# * Ayres : Outline of calculus
|
8
|
+
def rectangle(t1, t2, n, &f)
|
9
|
+
d = (t2 - t1) / n.to_f
|
10
|
+
n.times.inject(0) do|ac, i|
|
11
|
+
ac + f[t1 + d * (i + 0.5)]
|
12
|
+
end * d
|
13
|
+
end
|
14
|
+
|
15
|
+
alias_method :midpoint, :rectangle
|
16
|
+
|
17
|
+
# Trapezoid method
|
18
|
+
# +n+ implies number of subdivisions
|
19
|
+
# Source:
|
20
|
+
# * Ayres : Outline of calculus
|
21
|
+
def trapezoid(t1, t2, n, &f)
|
22
|
+
d = (t2 - t1) / n.to_f
|
23
|
+
(d / 2.0) * (f[t1] + 2 * (1..(n - 1)).inject(0) do|ac, i|
|
24
|
+
ac + f[t1 + d * i]
|
25
|
+
end + f[t2])
|
26
|
+
end
|
27
|
+
|
28
|
+
# Simpson's rule
|
29
|
+
# +n+ implies number of subdivisions
|
30
|
+
# Source:
|
31
|
+
# * Ayres : Outline of calculus
|
32
|
+
def simpson(t1, t2, n, &f)
|
33
|
+
n += 1 unless n.even?
|
34
|
+
d = (t2 - t1) / n.to_f
|
35
|
+
out = (d / 3.0) * (f[t1.to_f].to_f + ((1..(n - 1)).inject(0) do|ac, i|
|
36
|
+
ac + ((i.even?) ? 2 : 4) * f[t1 + d * i]
|
37
|
+
end) + f[t2.to_f].to_f)
|
38
|
+
out
|
39
|
+
end
|
40
|
+
|
41
|
+
# Simpson's 3/8 Rule
|
42
|
+
# +n+ implies number of subdivisions
|
43
|
+
# Source:
|
44
|
+
# * Burden, Richard L. and Faires, J. Douglas (2000): Numerical Analysis (7th ed.). Brooks/Cole
|
45
|
+
def simpson3by8(t1, t2, n, &f)
|
46
|
+
d = (t2 - t1) / n.to_f
|
47
|
+
ac = 0
|
48
|
+
(0..n - 1).each do |i|
|
49
|
+
ac += (d / 8.0) * (f[t1 + i * d] + 3 * f[t1 + i * d + d / 3] + 3 * f[t1 + i * d + 2 * d / 3] + f[t1 + (i + 1) * d])
|
50
|
+
end
|
51
|
+
ac
|
52
|
+
end
|
53
|
+
|
54
|
+
# Boole's Rule
|
55
|
+
# +n+ implies number of subdivisions
|
56
|
+
# Source:
|
57
|
+
# Weisstein, Eric W. "Boole's Rule." From MathWorld—A Wolfram Web Resource
|
58
|
+
def boole(t1, t2, n, &f)
|
59
|
+
d = (t2 - t1) / n.to_f
|
60
|
+
ac = 0
|
61
|
+
(0..n - 1).each do |i|
|
62
|
+
ac += (d / 90.0) * (7 * f[t1 + i * d] + 32 * f[t1 + i * d + d / 4] + 12 * f[t1 + i * d + d / 2] + 32 * f[t1 + i * d + 3 * d / 4] + 7 * f[t1 + (i + 1) * d])
|
63
|
+
end
|
64
|
+
ac
|
65
|
+
end
|
66
|
+
|
67
|
+
# Open Trapezoid method
|
68
|
+
# +n+ implies number of subdivisions
|
69
|
+
# Values computed at mid point and end point instead of starting points
|
70
|
+
def open_trapezoid(t1, t2, n, &f)
|
71
|
+
d = (t2 - t1) / n.to_f
|
72
|
+
ac = 0
|
73
|
+
(0..n - 1).each do |i|
|
74
|
+
ac += (d / 2.0) * (f[t1 + i * d + d / 3] + f[t1 + i * d + 2 * d / 3])
|
75
|
+
end
|
76
|
+
ac
|
77
|
+
end
|
78
|
+
|
79
|
+
# Milne's Method
|
80
|
+
# +n+ implies number of subdivisions
|
81
|
+
# Source:
|
82
|
+
# Abramowitz, M. and Stegun, I. A. (Eds.).
|
83
|
+
# Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
|
84
|
+
# 9th printing. New York: Dover, pp. 896-897, 1972.
|
85
|
+
def milne(t1, t2, n, &f)
|
86
|
+
d = (t2 - t1) / n.to_f
|
87
|
+
ac = 0
|
88
|
+
(0..n - 1).each do |i|
|
89
|
+
ac += (d / 3.0) * (2 * f[t1 + i * d + d / 4] - f[t1 + i * d + d / 2] + 2 * f[t1 + i * d + 3 * d / 4])
|
90
|
+
end
|
91
|
+
ac
|
92
|
+
end
|
93
|
+
|
94
|
+
# Adaptive Quadrature
|
95
|
+
# Calls the Simpson's rule recursively on subintervals
|
96
|
+
# in case the error exceeds the desired tolerance
|
97
|
+
# +tolerance+ is the desired tolerance of error
|
98
|
+
def adaptive_quadrature(a, b, tolerance)
|
99
|
+
h = (b.to_f - a) / 2
|
100
|
+
fa = yield(a)
|
101
|
+
fc = yield(a + h)
|
102
|
+
fb = yield(b)
|
103
|
+
s = h * (fa + (4 * fc) + fb) / 3
|
104
|
+
|
105
|
+
helper = proc do |_a, _b, _fa, _fb, _fc, _h, _s, level|
|
106
|
+
if level < 1 / tolerance.to_f
|
107
|
+
fd = yield(_a + (_h / 2))
|
108
|
+
fe = yield(_a + (3 * (_h / 2)))
|
109
|
+
s1 = _h * (_fa + (4.0 * fd) + _fc) / 6
|
110
|
+
s2 = _h * (_fc + (4.0 * fe) + _fb) / 6
|
111
|
+
if ((s1 + s2) - _s).abs <= tolerance
|
112
|
+
s1 + s2
|
113
|
+
else
|
114
|
+
helper.call(_a, _a + _h, _fa, _fc, fd, _h / 2, s1, level + 1) +
|
115
|
+
helper.call(_a + _h, _b, _fc, _fb, fe, _h / 2, s2, level + 1)
|
116
|
+
end
|
117
|
+
else
|
118
|
+
fail 'Integral did not converge'
|
119
|
+
end
|
120
|
+
|
121
|
+
end
|
122
|
+
helper.call(a, b, fa, fb, fc, h, s, 1)
|
123
|
+
end
|
124
|
+
|
125
|
+
# Gaussian Quadrature
|
126
|
+
# n-point Gaussian quadrature rule gives an exact result for polynomials of degree 2n − 1 or less
|
127
|
+
def gauss(t1, t2, n)
|
128
|
+
case n
|
129
|
+
when 1
|
130
|
+
z = [0.0]
|
131
|
+
w = [2.0]
|
132
|
+
when 2
|
133
|
+
z = [-0.57735026919, 0.57735026919]
|
134
|
+
w = [1.0, 1.0]
|
135
|
+
when 3
|
136
|
+
z = [-0.774596669241, 0.0, 0.774596669241]
|
137
|
+
w = [0.555555555556, 0.888888888889, 0.555555555556]
|
138
|
+
when 4
|
139
|
+
z = [-0.861136311594, -0.339981043585, 0.339981043585, 0.861136311594]
|
140
|
+
w = [0.347854845137, 0.652145154863, 0.652145154863, 0.347854845137]
|
141
|
+
when 5
|
142
|
+
z = [-0.906179845939, -0.538469310106, 0.0, 0.538469310106, 0.906179845939]
|
143
|
+
w = [0.236926885056, 0.478628670499, 0.568888888889, 0.478628670499, 0.236926885056]
|
144
|
+
when 6
|
145
|
+
z = [-0.932469514203, -0.661209386466, -0.238619186083, 0.238619186083, 0.661209386466, 0.932469514203]
|
146
|
+
w = [0.171324492379, 0.360761573048, 0.467913934573, 0.467913934573, 0.360761573048, 0.171324492379]
|
147
|
+
when 7
|
148
|
+
z = [-0.949107912343, -0.741531185599, -0.405845151377, 0.0, 0.405845151377, 0.741531185599, 0.949107912343]
|
149
|
+
w = [0.129484966169, 0.279705391489, 0.381830050505, 0.417959183673, 0.381830050505, 0.279705391489, 0.129484966169]
|
150
|
+
when 8
|
151
|
+
z = [-0.960289856498, -0.796666477414, -0.525532409916, -0.183434642496, 0.183434642496, 0.525532409916, 0.796666477414, 0.960289856498]
|
152
|
+
w = [0.10122853629, 0.222381034453, 0.313706645878, 0.362683783378, 0.362683783378, 0.313706645878, 0.222381034453, 0.10122853629]
|
153
|
+
when 9
|
154
|
+
z = [-0.968160239508, -0.836031107327, -0.613371432701, -0.324253423404, 0.0, 0.324253423404, 0.613371432701, 0.836031107327, 0.968160239508]
|
155
|
+
w = [0.0812743883616, 0.180648160695, 0.260610696403, 0.31234707704, 0.330239355001, 0.31234707704, 0.260610696403, 0.180648160695, 0.0812743883616]
|
156
|
+
when 10
|
157
|
+
z = [-0.973906528517, -0.865063366689, -0.679409568299, -0.433395394129, -0.148874338982, 0.148874338982, 0.433395394129, 0.679409568299, 0.865063366689, 0.973906528517]
|
158
|
+
w = [0.0666713443087, 0.149451349151, 0.219086362516, 0.26926671931, 0.295524224715, 0.295524224715, 0.26926671931, 0.219086362516, 0.149451349151, 0.0666713443087]
|
159
|
+
else
|
160
|
+
fail "Invalid number of spaced abscissas #{n}, should be 1-10"
|
161
|
+
end
|
162
|
+
|
163
|
+
sum = 0
|
164
|
+
(0...n).each do |i|
|
165
|
+
t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])
|
166
|
+
sum += w[i] * yield(t)
|
167
|
+
end
|
168
|
+
((t2 - t1) / 2.0) * sum
|
169
|
+
end
|
170
|
+
|
171
|
+
# Gauss Kronrod Rule:
|
172
|
+
# Provides a 3n+1 order estimate while re-using the function values of a lower-order(n order) estimate
|
173
|
+
# Source:
|
174
|
+
# "Gauss–Kronrod quadrature formula", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
|
175
|
+
def gauss_kronrod(t1, t2, n, points)
|
176
|
+
# g7k15
|
177
|
+
case points
|
178
|
+
when 15
|
179
|
+
|
180
|
+
z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691,
|
181
|
+
-0.7415311855993945, -0.5860872354676911, -0.4058451513773972,
|
182
|
+
-0.20778495500789848, 0.0, 0.20778495500789848,
|
183
|
+
0.4058451513773972, 0.5860872354676911, 0.7415311855993945,
|
184
|
+
0.8648644233597691, 0.9491079123427585, 0.9914553711208126]
|
185
|
+
|
186
|
+
w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019,
|
187
|
+
0.14065325971552592, 0.1690047266392679, 0.19035057806478542,
|
188
|
+
0.20443294007529889, 0.20948214108472782, 0.20443294007529889,
|
189
|
+
0.19035057806478542, 0.1690047266392679, 0.14065325971552592,
|
190
|
+
0.10479001032225019, 0.06309209262997856, 0.022935322010529224]
|
191
|
+
|
192
|
+
when 21
|
193
|
+
# g10k21
|
194
|
+
|
195
|
+
z = [-0.9956571630258081, -0.9739065285171717, -0.9301574913557082,
|
196
|
+
-0.8650633666889845, -0.7808177265864169, -0.6794095682990244,
|
197
|
+
-0.5627571346686047, -0.4333953941292472, -0.2943928627014602,
|
198
|
+
-0.14887433898163122, 0.0, 0.14887433898163122,
|
199
|
+
0.2943928627014602, 0.4333953941292472, 0.5627571346686047,
|
200
|
+
0.6794095682990244, 0.7808177265864169, 0.8650633666889845,
|
201
|
+
0.9301574913557082, 0.9739065285171717, 0.9956571630258081]
|
202
|
+
|
203
|
+
w = [0.011694638867371874, 0.032558162307964725,
|
204
|
+
0.054755896574351995, 0.07503967481091996, 0.0931254545836976,
|
205
|
+
0.10938715880229764, 0.12349197626206584, 0.13470921731147334,
|
206
|
+
0.14277593857706009, 0.14773910490133849, 0.1494455540029169,
|
207
|
+
0.14773910490133849, 0.14277593857706009, 0.13470921731147334,
|
208
|
+
0.12349197626206584, 0.10938715880229764, 0.0931254545836976,
|
209
|
+
0.07503967481091996, 0.054755896574351995, 0.032558162307964725,
|
210
|
+
0.011694638867371874]
|
211
|
+
|
212
|
+
when 31
|
213
|
+
# g15k31
|
214
|
+
|
215
|
+
z = [-0.9980022986933971, -0.9879925180204854, -0.9677390756791391,
|
216
|
+
-0.937273392400706, -0.8972645323440819, -0.8482065834104272,
|
217
|
+
-0.790418501442466, -0.7244177313601701, -0.650996741297417,
|
218
|
+
-0.5709721726085388, -0.4850818636402397, -0.3941513470775634,
|
219
|
+
-0.29918000715316884, -0.20119409399743451, -0.1011420669187175,
|
220
|
+
0.0, 0.1011420669187175, 0.20119409399743451,
|
221
|
+
0.29918000715316884, 0.3941513470775634, 0.4850818636402397,
|
222
|
+
0.5709721726085388, 0.650996741297417, 0.7244177313601701,
|
223
|
+
0.790418501442466, 0.8482065834104272, 0.8972645323440819,
|
224
|
+
0.937273392400706, 0.9677390756791391, 0.9879925180204854,
|
225
|
+
0.9980022986933971]
|
226
|
+
|
227
|
+
w = [0.005377479872923349, 0.015007947329316122, 0.02546084732671532,
|
228
|
+
0.03534636079137585, 0.04458975132476488, 0.05348152469092809,
|
229
|
+
0.06200956780067064, 0.06985412131872826, 0.07684968075772038,
|
230
|
+
0.08308050282313302, 0.08856444305621176, 0.09312659817082532,
|
231
|
+
0.09664272698362368, 0.09917359872179196, 0.10076984552387559,
|
232
|
+
0.10133000701479154, 0.10076984552387559, 0.09917359872179196,
|
233
|
+
0.09664272698362368, 0.09312659817082532, 0.08856444305621176,
|
234
|
+
0.08308050282313302, 0.07684968075772038, 0.06985412131872826,
|
235
|
+
0.06200956780067064, 0.05348152469092809, 0.04458975132476488,
|
236
|
+
0.03534636079137585, 0.02546084732671532, 0.015007947329316122,
|
237
|
+
0.005377479872923349]
|
238
|
+
|
239
|
+
when 41
|
240
|
+
# g20k41
|
241
|
+
|
242
|
+
z = [-0.9988590315882777, -0.9931285991850949, -0.9815078774502503,
|
243
|
+
-0.9639719272779138, -0.9408226338317548, -0.912234428251326,
|
244
|
+
-0.878276811252282, -0.8391169718222188, -0.7950414288375512,
|
245
|
+
-0.7463319064601508, -0.6932376563347514, -0.636053680726515,
|
246
|
+
-0.5751404468197103, -0.5108670019508271, -0.4435931752387251,
|
247
|
+
-0.37370608871541955, -0.301627868114913, -0.22778585114164507,
|
248
|
+
-0.15260546524092267, -0.07652652113349734, 0.0,
|
249
|
+
0.07652652113349734, 0.15260546524092267, 0.22778585114164507,
|
250
|
+
0.301627868114913, 0.37370608871541955, 0.4435931752387251,
|
251
|
+
0.5108670019508271, 0.5751404468197103, 0.636053680726515,
|
252
|
+
0.6932376563347514, 0.7463319064601508, 0.7950414288375512,
|
253
|
+
0.8391169718222188, 0.878276811252282, 0.912234428251326,
|
254
|
+
0.9408226338317548, 0.9639719272779138, 0.9815078774502503,
|
255
|
+
0.9931285991850949, 0.9988590315882777]
|
256
|
+
|
257
|
+
w = [0.0030735837185205317, 0.008600269855642943,
|
258
|
+
0.014626169256971253, 0.020388373461266523, 0.02588213360495116,
|
259
|
+
0.0312873067770328, 0.036600169758200796, 0.041668873327973685,
|
260
|
+
0.04643482186749767, 0.05094457392372869, 0.05519510534828599,
|
261
|
+
0.05911140088063957, 0.06265323755478117, 0.06583459713361842,
|
262
|
+
0.06864867292852161, 0.07105442355344407, 0.07303069033278667,
|
263
|
+
0.07458287540049918, 0.07570449768455667, 0.07637786767208074,
|
264
|
+
0.07660071191799965, 0.07637786767208074, 0.07570449768455667,
|
265
|
+
0.07458287540049918, 0.07303069033278667, 0.07105442355344407,
|
266
|
+
0.06864867292852161, 0.06583459713361842, 0.06265323755478117,
|
267
|
+
0.05911140088063957, 0.05519510534828599, 0.05094457392372869,
|
268
|
+
0.04643482186749767, 0.041668873327973685, 0.036600169758200796,
|
269
|
+
0.0312873067770328, 0.02588213360495116, 0.020388373461266523,
|
270
|
+
0.014626169256971253, 0.008600269855642943,
|
271
|
+
0.0030735837185205317]
|
272
|
+
|
273
|
+
when 61
|
274
|
+
# g30k61
|
275
|
+
|
276
|
+
z = [-0.9994844100504906, -0.9968934840746495, -0.9916309968704046,
|
277
|
+
-0.9836681232797472, -0.9731163225011262, -0.9600218649683075,
|
278
|
+
-0.94437444474856, -0.9262000474292743, -0.9055733076999078,
|
279
|
+
-0.8825605357920527, -0.8572052335460612, -0.8295657623827684,
|
280
|
+
-0.799727835821839, -0.7677774321048262, -0.7337900624532268,
|
281
|
+
-0.6978504947933158, -0.6600610641266269, -0.6205261829892429,
|
282
|
+
-0.5793452358263617, -0.5366241481420199, -0.49248046786177857,
|
283
|
+
-0.44703376953808915, -0.4004012548303944, -0.3527047255308781,
|
284
|
+
-0.30407320227362505, -0.25463692616788985,
|
285
|
+
-0.20452511668230988, -0.15386991360858354,
|
286
|
+
-0.10280693796673702, -0.0514718425553177, 0.0,
|
287
|
+
0.0514718425553177, 0.10280693796673702, 0.15386991360858354,
|
288
|
+
0.20452511668230988, 0.25463692616788985, 0.30407320227362505,
|
289
|
+
0.3527047255308781, 0.4004012548303944, 0.44703376953808915,
|
290
|
+
0.49248046786177857, 0.5366241481420199, 0.5793452358263617,
|
291
|
+
0.6205261829892429, 0.6600610641266269, 0.6978504947933158,
|
292
|
+
0.7337900624532268, 0.7677774321048262, 0.799727835821839,
|
293
|
+
0.8295657623827684, 0.8572052335460612, 0.8825605357920527,
|
294
|
+
0.9055733076999078, 0.9262000474292743, 0.94437444474856,
|
295
|
+
0.9600218649683075, 0.9731163225011262, 0.9836681232797472,
|
296
|
+
0.9916309968704046, 0.9968934840746495, 0.9994844100504906]
|
297
|
+
|
298
|
+
w = [0.0013890136986770077, 0.003890461127099884,
|
299
|
+
0.0066307039159312926, 0.009273279659517764,
|
300
|
+
0.011823015253496341, 0.014369729507045804, 0.01692088918905327,
|
301
|
+
0.019414141193942382, 0.021828035821609193, 0.0241911620780806,
|
302
|
+
0.0265099548823331, 0.02875404876504129, 0.030907257562387762,
|
303
|
+
0.03298144705748372, 0.034979338028060025, 0.03688236465182123,
|
304
|
+
0.038678945624727595, 0.040374538951535956,
|
305
|
+
0.041969810215164244, 0.04345253970135607, 0.04481480013316266,
|
306
|
+
0.04605923827100699, 0.04718554656929915, 0.04818586175708713,
|
307
|
+
0.04905543455502978, 0.04979568342707421, 0.05040592140278235,
|
308
|
+
0.05088179589874961, 0.051221547849258774, 0.05142612853745902,
|
309
|
+
0.05149472942945157, 0.05142612853745902, 0.051221547849258774,
|
310
|
+
0.05088179589874961, 0.05040592140278235, 0.04979568342707421,
|
311
|
+
0.04905543455502978, 0.04818586175708713, 0.04718554656929915,
|
312
|
+
0.04605923827100699, 0.04481480013316266, 0.04345253970135607,
|
313
|
+
0.041969810215164244, 0.040374538951535956,
|
314
|
+
0.038678945624727595, 0.03688236465182123, 0.034979338028060025,
|
315
|
+
0.03298144705748372, 0.030907257562387762, 0.02875404876504129,
|
316
|
+
0.0265099548823331, 0.0241911620780806, 0.021828035821609193,
|
317
|
+
0.019414141193942382, 0.01692088918905327, 0.014369729507045804,
|
318
|
+
0.011823015253496341, 0.009273279659517764,
|
319
|
+
0.0066307039159312926, 0.003890461127099884,
|
320
|
+
0.0013890136986770077]
|
321
|
+
|
322
|
+
else # using 15 point quadrature
|
323
|
+
|
324
|
+
n = 15
|
325
|
+
|
326
|
+
z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691,
|
327
|
+
-0.7415311855993945, -0.5860872354676911, -0.4058451513773972,
|
328
|
+
-0.20778495500789848, 0.0, 0.20778495500789848,
|
329
|
+
0.4058451513773972, 0.5860872354676911, 0.7415311855993945,
|
330
|
+
0.8648644233597691, 0.9491079123427585, 0.9914553711208126]
|
331
|
+
|
332
|
+
w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019,
|
333
|
+
0.14065325971552592, 0.1690047266392679, 0.19035057806478542,
|
334
|
+
0.20443294007529889, 0.20948214108472782, 0.20443294007529889,
|
335
|
+
0.19035057806478542, 0.1690047266392679, 0.14065325971552592,
|
336
|
+
0.10479001032225019, 0.06309209262997856, 0.022935322010529224]
|
337
|
+
|
338
|
+
end
|
339
|
+
|
340
|
+
sum = 0
|
341
|
+
(0...n).each do |i|
|
342
|
+
t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])
|
343
|
+
sum += w[i] * yield(t)
|
344
|
+
end
|
345
|
+
|
346
|
+
((t2 - t1) / 2.0) * sum
|
347
|
+
end
|
348
|
+
|
349
|
+
# Romberg Method:
|
350
|
+
# It is obtained by applying extrapolation techniques repeatedly on the trapezoidal rule
|
351
|
+
def romberg(a, b, tolerance, max_iter = 20)
|
352
|
+
# NOTE one-based arrays are used for convenience
|
353
|
+
h = b.to_f - a
|
354
|
+
close = 1
|
355
|
+
r = [[(h / 2) * (yield(a) + yield(b))]]
|
356
|
+
j = 0
|
357
|
+
hn = ->(n) { h / (2**n) }
|
358
|
+
while j <= max_iter && tolerance < close
|
359
|
+
j += 1
|
360
|
+
r.push((j + 1).times.map { [] })
|
361
|
+
ul = 2**(j - 1)
|
362
|
+
r[j][0] = r[j - 1][0] / 2.0 + hn[j] * (1..ul).inject(0) { |ac, k| ac + yield(a + (2 * k - 1) * hn[j]) }
|
363
|
+
(1..j).each do |k|
|
364
|
+
r[j][k] = ((4**k) * r[j][k - 1] - r[j - 1][k - 1]) / ((4**k) - 1)
|
365
|
+
end
|
366
|
+
close = (r[j][j] - r[j - 1][j - 1])
|
367
|
+
end
|
368
|
+
r[j][j]
|
369
|
+
end
|
370
|
+
|
371
|
+
# Monte Carlo
|
372
|
+
#
|
373
|
+
# Uses a non-deterministic approach for calculation of definite integrals.
|
374
|
+
# Estimates the integral by randomly choosing points in a set and then
|
375
|
+
# calculating the number of points that fall in the desired area.
|
376
|
+
def monte_carlo(t1, t2, n)
|
377
|
+
width = (t2 - t1).to_f
|
378
|
+
height = nil
|
379
|
+
vals = []
|
380
|
+
n.times do
|
381
|
+
t = t1 + (rand * width)
|
382
|
+
ft = yield(t)
|
383
|
+
height = ft if height.nil? || ft > height
|
384
|
+
vals << ft
|
385
|
+
end
|
386
|
+
area_ratio = 0
|
387
|
+
vals.each do |ft|
|
388
|
+
area_ratio += (ft / height.to_f) / n.to_f
|
389
|
+
end
|
390
|
+
(width * height) * area_ratio
|
391
|
+
end
|
392
|
+
|
393
|
+
end
|
394
|
+
end
|
data/lib/integration/version.rb
CHANGED
data/spec/integration_spec.rb
CHANGED
@@ -1,77 +1,66 @@
|
|
1
|
-
|
1
|
+
$LOAD_PATH.unshift File.expand_path('../spec', __FILE__)
|
2
|
+
|
3
|
+
require 'spec_helper'
|
4
|
+
|
2
5
|
describe Integration do
|
3
|
-
a=lambda {|x| x**2}
|
4
|
-
b=lambda {|x| Math.log(x)/x**2}
|
5
|
-
b2=lambda {|x| -(Math.log(x)+1)/x}
|
6
|
+
a = lambda { |x| x**2 }
|
7
|
+
b = lambda { |x| Math.log(x) / x**2 }
|
8
|
+
b2 = lambda { |x| -(Math.log(x) + 1) / x }
|
9
|
+
|
6
10
|
# Integration over [1,2]=x^3/3=7/3
|
7
|
-
methods=[:rectangle
|
11
|
+
methods = [:rectangle, :trapezoid, :simpson, :adaptive_quadrature, :romberg,
|
12
|
+
:gauss, :gauss_kronrod, :simpson3by8, :boole, :open_trapezoid,
|
13
|
+
:milne]
|
14
|
+
|
8
15
|
methods.each do |m|
|
9
16
|
it "should integrate int_{1}^2{2} x^2 correctly with ruby method #{m}" do
|
10
|
-
Integration.integrate(1,2,{:
|
17
|
+
Integration.integrate(1, 2, { method: m, tolerance: 1e-8 }, &a).should be_within(1e-6).of(7.0 / 3)
|
11
18
|
end
|
19
|
+
|
12
20
|
it "should integrate int_{1}^2{2} log(x)/x^2 correctly with ruby method #{m}" do
|
13
|
-
Integration.integrate(1,2,{:
|
14
|
-
b2[2]-b2[1]
|
15
|
-
|
21
|
+
Integration.integrate(1, 2, { method: m, tolerance: 1e-8 }, &b).should be_within(1e-6).of(
|
22
|
+
b2[2] - b2[1]
|
23
|
+
)
|
16
24
|
end
|
17
|
-
|
18
25
|
end
|
19
26
|
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
f
|
25
|
-
Integration.trapezoid(0,b,2,&f).should be_within(1e-14).of((a*b**2) / 2.0)
|
26
|
-
end
|
27
|
-
it "should return a correct value for a complex integration with ruby methods" do
|
28
|
-
normal_pdf=lambda {|x| (1/Math.sqrt(2*Math::PI))*Math.exp(-(x**2/2))}
|
29
|
-
Integration.integrate(0,1,{:tolerance=>1e-12,:method=>:simpson},&normal_pdf).should be_within(1e-11).of(0.341344746068)
|
30
|
-
Integration.integrate(0,1,{:tolerance=>1e-12,:method=>:adaptive_quadrature},&normal_pdf).should be_within(1e-11).of(0.341344746068)
|
31
|
-
end
|
32
|
-
it "should return a correct value for a complex integration with gsl methods" do
|
33
|
-
if Integration.has_gsl?
|
34
|
-
normal_pdf=lambda {|x| (1/Math.sqrt(2*Math::PI))*Math.exp(-(x**2/2))}
|
35
|
-
Integration.integrate(0,1,{:tolerance=>1e-12,:method=>:qng},&normal_pdf).should be_within(1e-11).of(0.341344746068)
|
36
|
-
Integration.integrate(0,1,{:tolerance=>1e-12,:method=>:qag},&normal_pdf).should be_within(1e-11).of(0.341344746068)
|
37
|
-
else
|
38
|
-
skip("GSL not available")
|
39
|
-
end
|
27
|
+
it 'should return correct for trapezoid' do
|
28
|
+
a = rand
|
29
|
+
b = rand * 10
|
30
|
+
f = lambda { |x| x * a }
|
31
|
+
Integration.trapezoid(0, b, 2, &f).should be_within(1e-14).of((a * b**2) / 2.0)
|
40
32
|
end
|
41
33
|
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
34
|
+
it 'should return a correct value for a complex integration with ruby methods' do
|
35
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
36
|
+
Integration.integrate(0, 1, { tolerance: 1e-12, method: :simpson }, &normal_pdf).should be_within(1e-11).of(0.341344746068)
|
37
|
+
Integration.integrate(0, 1, { tolerance: 1e-12, method: :adaptive_quadrature }, &normal_pdf).should be_within(1e-11).of(0.341344746068)
|
38
|
+
end
|
46
39
|
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
40
|
+
it 'should return a correct value for a complex integration with gsl methods' do
|
41
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
42
|
+
Integration.integrate(0, 1, { tolerance: 1e-12, method: :qng }, &normal_pdf).should be_within(1e-11).of(0.341344746068)
|
43
|
+
Integration.integrate(0, 1, { tolerance: 1e-12, method: :qag }, &normal_pdf).should be_within(1e-11).of(0.341344746068)
|
51
44
|
end
|
52
|
-
it "should return correct integration for infinity lower bound" do
|
53
|
-
if Integration.has_gsl?
|
54
|
-
normal_pdf=lambda {|x| (1/Math.sqrt(2*Math::PI))*Math.exp(-(x**2/2))}
|
55
45
|
|
56
|
-
|
46
|
+
it 'should return correct integration for infinity bounds' do
|
47
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
57
48
|
|
58
|
-
|
59
|
-
skip("GSL not available")
|
60
|
-
end
|
49
|
+
Integration.integrate(Integration::MInfinity, Integration::Infinity, { tolerance: 1e-10 }, &normal_pdf).should be_within(1e-09).of(1)
|
61
50
|
end
|
62
|
-
it "should return correct integration for infinity upper bound" do
|
63
|
-
if Integration.has_gsl?
|
64
51
|
|
65
|
-
|
66
|
-
|
52
|
+
it 'should return correct integration for infinity lower bound' do
|
53
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
54
|
+
Integration.integrate(Integration::MInfinity, 0, { tolerance: 1e-10 }, &normal_pdf).should be_within(1e-09).of(0.5)
|
55
|
+
end
|
67
56
|
|
68
|
-
|
69
|
-
|
70
|
-
|
57
|
+
it 'should return correct integration for infinity upper bound' do
|
58
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
59
|
+
Integration.integrate(0, Integration::Infinity, { tolerance: 1e-10 }, &normal_pdf).should be_within(1e-09).of(0.5)
|
71
60
|
end
|
72
|
-
|
73
|
-
|
74
|
-
lambda {
|
61
|
+
|
62
|
+
it 'should raise an error if a ruby methods is called with infinite bounds' do
|
63
|
+
normal_pdf = lambda { |x| (1 / Math.sqrt(2 * Math::PI)) * Math.exp(-(x**2 / 2)) }
|
64
|
+
lambda { Integration.integrate(0, Integration::Infinity, { method: :simpson }, &normal_pdf).should be_within(1e-09).of(0.5) }.should raise_exception
|
75
65
|
end
|
76
66
|
end
|
77
|
-
|