informers 1.0.3 → 1.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/README.md +123 -0
- data/lib/informers/configs.rb +10 -8
- data/lib/informers/model.rb +2 -9
- data/lib/informers/models.rb +997 -12
- data/lib/informers/pipelines.rb +768 -8
- data/lib/informers/processors.rb +796 -0
- data/lib/informers/tokenizers.rb +154 -4
- data/lib/informers/utils/core.rb +4 -0
- data/lib/informers/utils/generation.rb +294 -0
- data/lib/informers/utils/image.rb +116 -0
- data/lib/informers/utils/math.rb +73 -0
- data/lib/informers/utils/tensor.rb +46 -0
- data/lib/informers/version.rb +1 -1
- data/lib/informers.rb +3 -0
- metadata +8 -5
data/lib/informers/models.rb
CHANGED
@@ -44,7 +44,7 @@ module Informers
|
|
44
44
|
end
|
45
45
|
|
46
46
|
const_get(:MODEL_CLASS_MAPPINGS).each do |model_class_mapping|
|
47
|
-
model_info = model_class_mapping[config
|
47
|
+
model_info = model_class_mapping[config[:model_type]]
|
48
48
|
if !model_info
|
49
49
|
next # Item not found in this mapping
|
50
50
|
end
|
@@ -52,15 +52,17 @@ module Informers
|
|
52
52
|
end
|
53
53
|
|
54
54
|
if const_defined?(:BASE_IF_FAIL)
|
55
|
-
warn "Unknown model class #{config
|
55
|
+
warn "Unknown model class #{config[:model_type].inspect}, attempting to construct from base class."
|
56
56
|
PreTrainedModel.from_pretrained(pretrained_model_name_or_path, **options)
|
57
57
|
else
|
58
|
-
raise Error, "Unsupported model type: #{config
|
58
|
+
raise Error, "Unsupported model type: #{config[:model_type]}"
|
59
59
|
end
|
60
60
|
end
|
61
61
|
end
|
62
62
|
|
63
63
|
class PreTrainedModel
|
64
|
+
MAIN_INPUT_NAME = :input_ids
|
65
|
+
|
64
66
|
attr_reader :config
|
65
67
|
|
66
68
|
def initialize(config, session)
|
@@ -76,9 +78,19 @@ module Informers
|
|
76
78
|
|
77
79
|
case model_type
|
78
80
|
when MODEL_TYPES[:DecoderOnly]
|
79
|
-
|
81
|
+
@can_generate = true
|
82
|
+
|
83
|
+
@run_beam = method(:decoder_run_beam)
|
84
|
+
@get_start_beams = method(:decoder_start_beams)
|
85
|
+
@update_beam = method(:decoder_update_beam)
|
86
|
+
@forward = method(:decoder_forward)
|
80
87
|
when MODEL_TYPES[:Seq2Seq], MODEL_TYPES[:Vision2Seq]
|
81
|
-
|
88
|
+
@can_generate = true
|
89
|
+
|
90
|
+
@run_beam = method(:seq2seq_run_beam)
|
91
|
+
@get_start_beams = method(:seq2seq_start_beams)
|
92
|
+
@update_beam = method(:seq2seq_update_beam)
|
93
|
+
@forward = method(:seq2seq_forward)
|
82
94
|
when MODEL_TYPES[:EncoderDecoder]
|
83
95
|
raise Todo
|
84
96
|
else
|
@@ -110,10 +122,19 @@ module Informers
|
|
110
122
|
model_type = MODEL_TYPE_MAPPING[model_name]
|
111
123
|
|
112
124
|
if model_type == MODEL_TYPES[:DecoderOnly]
|
113
|
-
|
125
|
+
info = [
|
126
|
+
AutoConfig.from_pretrained(pretrained_model_name_or_path, **options),
|
127
|
+
construct_session(pretrained_model_name_or_path, options[:model_file_name] || "decoder_model_merged", **options),
|
128
|
+
Utils::Hub.get_model_json(pretrained_model_name_or_path, "generation_config.json", false, **options)
|
129
|
+
]
|
114
130
|
|
115
131
|
elsif model_type == MODEL_TYPES[:Seq2Seq] || model_type == MODEL_TYPES[:Vision2Seq]
|
116
|
-
|
132
|
+
info = [
|
133
|
+
AutoConfig.from_pretrained(pretrained_model_name_or_path, **options),
|
134
|
+
construct_session(pretrained_model_name_or_path, "encoder_model", **options),
|
135
|
+
construct_session(pretrained_model_name_or_path, "decoder_model_merged", **options),
|
136
|
+
Utils::Hub.get_model_json(pretrained_model_name_or_path, "generation_config.json", false, **options)
|
137
|
+
]
|
117
138
|
|
118
139
|
elsif model_type == MODEL_TYPES[:MaskGeneration]
|
119
140
|
raise Todo
|
@@ -123,7 +144,7 @@ module Informers
|
|
123
144
|
|
124
145
|
else
|
125
146
|
if model_type != MODEL_TYPES[:EncoderOnly]
|
126
|
-
warn "Model type for '#{model_name || config
|
147
|
+
warn "Model type for '#{model_name || config[:model_type]}' not found, assuming encoder-only architecture. Please report this."
|
127
148
|
end
|
128
149
|
info = [
|
129
150
|
AutoConfig.from_pretrained(pretrained_model_name_or_path, **options),
|
@@ -153,8 +174,445 @@ module Informers
|
|
153
174
|
@forward.(model_inputs, **kwargs)
|
154
175
|
end
|
155
176
|
|
177
|
+
def generate(inputs, generation_config = nil, logits_processor = nil, inputs_attention_mask: nil)
|
178
|
+
if !@can_generate
|
179
|
+
model_name = MODEL_CLASS_TO_NAME_MAPPING[self.class]
|
180
|
+
error_message = "The current model class (#{model_name}) is not compatible with `.generate()`, as it doesn't have a language model head."
|
181
|
+
raise Error, error_message
|
182
|
+
end
|
183
|
+
|
184
|
+
if !inputs.is_a?(Array)
|
185
|
+
raise ArgumentError, "`inputs` must be an Array, but is #{inputs.class.name}"
|
186
|
+
end
|
187
|
+
|
188
|
+
if @config[:is_encoder_decoder]
|
189
|
+
# Generating from the encoder outputs
|
190
|
+
input_ids_seq_length = 0
|
191
|
+
else
|
192
|
+
input_ids_seq_length = inputs.length
|
193
|
+
|
194
|
+
# decoder-only
|
195
|
+
if input_ids_seq_length == 0
|
196
|
+
raise Error, "Must supply a non-empty array of input token ids."
|
197
|
+
end
|
198
|
+
end
|
199
|
+
|
200
|
+
# Update generation config with defaults
|
201
|
+
generation_config = get_generation_config(generation_config)
|
202
|
+
|
203
|
+
logits_processor ||= Utils::LogitsProcessorList.new
|
204
|
+
|
205
|
+
# Update logits processor
|
206
|
+
logits_processor = get_logits_processor(
|
207
|
+
generation_config,
|
208
|
+
input_ids_seq_length,
|
209
|
+
logits_processor
|
210
|
+
)
|
211
|
+
|
212
|
+
eos_token_ids = generation_config[:eos_token_id]
|
213
|
+
if !eos_token_ids.nil? && !eos_token_ids.is_a?(Array)
|
214
|
+
eos_token_ids = [eos_token_ids]
|
215
|
+
end
|
216
|
+
|
217
|
+
num_output_tokens = 1
|
218
|
+
max_output_tokens = num_output_tokens + (generation_config[:max_new_tokens] || Float::INFINITY)
|
219
|
+
|
220
|
+
# Only use max length if max_new_tokens is not provided
|
221
|
+
use_max_length = generation_config[:max_length].is_a?(Integer) && generation_config[:max_new_tokens].nil?
|
222
|
+
sampler = Utils::Sampler.get_sampler(generation_config)
|
223
|
+
|
224
|
+
beams = get_start_beams(inputs, generation_config, num_output_tokens, inputs_attention_mask)
|
225
|
+
|
226
|
+
while beams.any? { |x| !x[:done] } && num_output_tokens < max_output_tokens
|
227
|
+
newest_beams = []
|
228
|
+
beams.each do |beam|
|
229
|
+
if beam[:done]
|
230
|
+
# Add this beam back into the pool
|
231
|
+
newest_beams << beam
|
232
|
+
next
|
233
|
+
end
|
234
|
+
if use_max_length && beam[:output_token_ids].length >= generation_config["max_length"]
|
235
|
+
# Set this beam to done and add it back into the pool
|
236
|
+
beam[:done] = true
|
237
|
+
newest_beams << beam
|
238
|
+
next
|
239
|
+
end
|
240
|
+
|
241
|
+
output = run_beam(beam)
|
242
|
+
|
243
|
+
# add attentions/scores to beam only if user requested
|
244
|
+
if generation_config["output_attentions"]
|
245
|
+
add_attentions_to_beam(beam, output)
|
246
|
+
end
|
247
|
+
|
248
|
+
# Logits are of the form [batch_size, out_seq_length, vocab_size]
|
249
|
+
# In most cases, this will be [batch_size, 1, vocab_size]
|
250
|
+
# So, we select the last token's logits:
|
251
|
+
# (equivalent to `logits = outputs.logits[:, -1, :]`)
|
252
|
+
logits = output["logits"].map { |v| v[-1] }
|
253
|
+
|
254
|
+
# Apply logits processor
|
255
|
+
logits_processor.(beam[:output_token_ids], logits)
|
256
|
+
|
257
|
+
sampled_tokens = sampler.(logits)
|
258
|
+
sampled_tokens.each do |new_token_id, log_prob|
|
259
|
+
# use previous beam as a starting point
|
260
|
+
new_beam = beam.dup
|
261
|
+
|
262
|
+
# update new beam
|
263
|
+
update_beam(new_beam, new_token_id)
|
264
|
+
|
265
|
+
new_beam[:score] += log_prob
|
266
|
+
|
267
|
+
if eos_token_ids && eos_token_ids.include?(new_token_id)
|
268
|
+
new_beam[:done] = true
|
269
|
+
end
|
270
|
+
|
271
|
+
newest_beams << new_beam
|
272
|
+
end
|
273
|
+
end
|
274
|
+
num_output_tokens += 1
|
275
|
+
|
276
|
+
# Next, we get the best beams, per ID
|
277
|
+
newest_beams =
|
278
|
+
group_beams(newest_beams).map do |group|
|
279
|
+
group.sort_by { |v| -v[:score] }[0...generation_config["num_beams"]]
|
280
|
+
end
|
281
|
+
|
282
|
+
# Flatten beams
|
283
|
+
beams = newest_beams.flatten(1)
|
284
|
+
|
285
|
+
# Run callback
|
286
|
+
if generation_config["callback_function"]
|
287
|
+
generation_config["callback_function"].(beams)
|
288
|
+
end
|
289
|
+
end
|
290
|
+
|
291
|
+
# TODO: Ensure that we can return non-batched outputs
|
292
|
+
|
293
|
+
grouped_beams = group_beams(beams)
|
294
|
+
|
295
|
+
get_flattened = lambda do |key|
|
296
|
+
grouped_beams.map do |batch|
|
297
|
+
if generation_config["num_return_sequences"] > 1
|
298
|
+
raise Todo
|
299
|
+
else
|
300
|
+
[batch[0][key]]
|
301
|
+
end
|
302
|
+
end.flatten(1)
|
303
|
+
end
|
304
|
+
|
305
|
+
sequences = get_flattened.(:output_token_ids) # [1, seqLength]
|
306
|
+
|
307
|
+
if generation_config["return_dict_in_generate"]
|
308
|
+
raise Todo
|
309
|
+
else
|
310
|
+
sequences
|
311
|
+
end
|
312
|
+
end
|
313
|
+
|
156
314
|
private
|
157
315
|
|
316
|
+
def get_logits_processor(
|
317
|
+
generation_config,
|
318
|
+
input_ids_seq_length,
|
319
|
+
logits_processor = nil
|
320
|
+
)
|
321
|
+
processors = Utils::LogitsProcessorList.new
|
322
|
+
|
323
|
+
if !generation_config["repetition_penalty"].nil? && generation_config["repetition_penalty"] != 1.0
|
324
|
+
processors.push(Utils::RepetitionPenaltyLogitsProcessor.new(generation_config["repetition_penalty"]))
|
325
|
+
end
|
326
|
+
|
327
|
+
if !generation_config["no_repeat_ngram_size"].nil? && generation_config["no_repeat_ngram_size"] > 0
|
328
|
+
processors.push(Utils::NoRepeatNGramLogitsProcessor.new(generation_config["no_repeat_ngram_size"]))
|
329
|
+
end
|
330
|
+
|
331
|
+
if !generation_config["bad_words_ids"].nil?
|
332
|
+
processors.push(Utils::NoBadWordsLogitsProcessor.new(generation_config["bad_words_ids"], generation_config["eos_token_id"]))
|
333
|
+
end
|
334
|
+
|
335
|
+
if !generation_config["min_length"].nil? && !generation_config["eos_token_id"].nil? && generation_config["min_length"] > 0
|
336
|
+
processors.push(Utils::MinLengthLogitsProcessor.new(generation_config["min_length"], generation_config["eos_token_id"]))
|
337
|
+
end
|
338
|
+
|
339
|
+
if !generation_config["min_new_tokens"].nil? && !generation_config["eos_token_id"].nil? && generation_config["min_new_tokens"] > 0
|
340
|
+
processors.push(Utils::MinNewTokensLengthLogitsProcessor.new(
|
341
|
+
input_ids_seq_length,
|
342
|
+
generation_config["min_new_tokens"],
|
343
|
+
generation_config["eos_token_id"]
|
344
|
+
))
|
345
|
+
end
|
346
|
+
|
347
|
+
if !generation_config["forced_bos_token_id"].nil?
|
348
|
+
processors.push(Utils::ForcedBOSTokenLogitsProcessor.new(generation_config["forced_bos_token_id"]))
|
349
|
+
end
|
350
|
+
|
351
|
+
if !generation_config["forced_eos_token_id"].nil?
|
352
|
+
processors.push(Utils::ForcedEOSTokenLogitsProcessor.new(
|
353
|
+
generation_config["max_length"],
|
354
|
+
generation_config["forced_eos_token_id"]
|
355
|
+
))
|
356
|
+
end
|
357
|
+
|
358
|
+
if !generation_config["begin_suppress_tokens"].nil?
|
359
|
+
raise Todo
|
360
|
+
end
|
361
|
+
|
362
|
+
if !generation_config["forced_decoder_ids"].nil?
|
363
|
+
processors.push(Utils::ForceTokensLogitsProcessor.new(generation_config["forced_decoder_ids"]))
|
364
|
+
end
|
365
|
+
|
366
|
+
if !logits_processor.nil?
|
367
|
+
processors.concat(logits_processor)
|
368
|
+
end
|
369
|
+
|
370
|
+
processors
|
371
|
+
end
|
372
|
+
|
373
|
+
def get_generation_config(generation_config)
|
374
|
+
# Create empty generation config (contains defaults)
|
375
|
+
# We pass `@config` so that if `eos_token_id` or `bos_token_id` exist in the model's config, we will use them
|
376
|
+
gen_config = Utils::GenerationConfig.new(@config.to_h)
|
377
|
+
|
378
|
+
# Apply model's generation config, if it exists
|
379
|
+
if @generation_config
|
380
|
+
gen_config.merge!(@generation_config)
|
381
|
+
end
|
382
|
+
|
383
|
+
# Finally, use any generation config specified by the user
|
384
|
+
# when calling `generate`
|
385
|
+
if !generation_config.nil?
|
386
|
+
gen_config.merge!(generation_config)
|
387
|
+
end
|
388
|
+
|
389
|
+
gen_config
|
390
|
+
end
|
391
|
+
|
392
|
+
def seq2seq_forward(model_inputs)
|
393
|
+
encoder_outputs = model_inputs[:encoder_outputs]
|
394
|
+
past_key_values = model_inputs[:past_key_values]
|
395
|
+
|
396
|
+
if !encoder_outputs
|
397
|
+
# Encoder outputs are not given, so we must compute them.
|
398
|
+
encoder_outputs = encoder_forward(model_inputs)[0]
|
399
|
+
end
|
400
|
+
decoder_feeds = {
|
401
|
+
input_ids: model_inputs[:decoder_input_ids],
|
402
|
+
encoder_hidden_states: encoder_outputs
|
403
|
+
}
|
404
|
+
use_cache_branch = !!past_key_values
|
405
|
+
|
406
|
+
if @decoder_merged_session.inputs.map { |v| v[:name] }.include?("use_cache_branch")
|
407
|
+
decoder_feeds[:use_cache_branch] = [use_cache_branch]
|
408
|
+
end
|
409
|
+
|
410
|
+
if @decoder_merged_session.inputs.map { |v| v[:name] }.include?("encoder_attention_mask")
|
411
|
+
decoder_feeds[:encoder_attention_mask] = model_inputs[:attention_mask]
|
412
|
+
end
|
413
|
+
|
414
|
+
prepare_position_ids(@decoder_merged_session, decoder_feeds, use_cache_branch)
|
415
|
+
add_past_key_values(decoder_feeds, past_key_values)
|
416
|
+
|
417
|
+
decoder_results = session_run(@decoder_merged_session, decoder_feeds)
|
418
|
+
decoder_results = @decoder_merged_session.outputs.map { |v| v[:name] }.zip(decoder_results).to_h
|
419
|
+
logits = decoder_results["logits"]
|
420
|
+
past_key_values = get_past_key_values(decoder_results, past_key_values)
|
421
|
+
|
422
|
+
# Get cross attention and/or decoder attentions if they are present
|
423
|
+
attns = get_attentions(decoder_results)
|
424
|
+
|
425
|
+
Seq2SeqLMOutput.new(logits, past_key_values, encoder_outputs, attns["decoder_attentions"], attns["cross_attentions"])
|
426
|
+
end
|
427
|
+
|
428
|
+
def prepare_position_ids(session, feeds, use_cache_branch)
|
429
|
+
if !session.inputs.map { |v| v[:name] }.include?("position_ids")
|
430
|
+
return
|
431
|
+
end
|
432
|
+
|
433
|
+
raise Todo
|
434
|
+
end
|
435
|
+
|
436
|
+
def get_past_key_values(decoder_results, past_key_values)
|
437
|
+
pkvs = {}
|
438
|
+
|
439
|
+
decoder_results.each_key do |name|
|
440
|
+
if name.start_with?("present")
|
441
|
+
new_name = name.sub("present", "past_key_values")
|
442
|
+
|
443
|
+
if past_key_values && name.include?("encoder")
|
444
|
+
# Optimization introduced by optimum to reuse past key values. So, we just replace the constant
|
445
|
+
# outputs with the previous past key values.
|
446
|
+
# https://github.com/huggingface/optimum/blob/0bf2c05fb7e1182b52d21b703cfc95fd9e4ea3dc/optimum/onnxruntime/base.py#L677-L704
|
447
|
+
pkvs[new_name] = past_key_values[new_name]
|
448
|
+
else
|
449
|
+
pkvs[new_name] = decoder_results[name]
|
450
|
+
end
|
451
|
+
end
|
452
|
+
end
|
453
|
+
pkvs
|
454
|
+
end
|
455
|
+
|
456
|
+
def get_attentions(decoder_results)
|
457
|
+
attns = {}
|
458
|
+
|
459
|
+
["cross_attentions", "decoder_attentions"].each do |attn_name|
|
460
|
+
result = []
|
461
|
+
decoder_results.each_key do |name|
|
462
|
+
if name.start_with?(attn_name)
|
463
|
+
index = name.split(".").pop
|
464
|
+
result[index] = decoder_results[name]
|
465
|
+
end
|
466
|
+
end
|
467
|
+
attns[attn_name] = result
|
468
|
+
end
|
469
|
+
attns
|
470
|
+
end
|
471
|
+
|
472
|
+
def add_past_key_values(decoder_feeds, past_key_values)
|
473
|
+
if past_key_values
|
474
|
+
decoder_feeds.merge!(past_key_values)
|
475
|
+
else
|
476
|
+
# TODO support batches (i.e., batch_size > 1)
|
477
|
+
batch_size = 1
|
478
|
+
|
479
|
+
if @config[:is_encoder_decoder] && (!@add_encoder_pkv.nil? ? @add_encoder_pkv : true)
|
480
|
+
_encoder_dims = [batch_size, @num_encoder_heads, 0, @encoder_dim_kv]
|
481
|
+
_decoder_dims = [batch_size, @num_decoder_heads, 0, @decoder_dim_kv]
|
482
|
+
@num_decoder_layers.times do |i|
|
483
|
+
# decoder_feeds["past_key_values.#{i}.encoder.key"] = OnnxRuntime::OrtValue.from_shape_and_type(encoder_dims, :float)
|
484
|
+
# decoder_feeds["past_key_values.#{i}.encoder.value"] = OnnxRuntime::OrtValue.from_shape_and_type(encoder_dims, :float)
|
485
|
+
# decoder_feeds["past_key_values.#{i}.decoder.key"] = OnnxRuntime::OrtValue.from_shape_and_type(decoder_dims, :float)
|
486
|
+
# decoder_feeds["past_key_values.#{i}.decoder.value"] = OnnxRuntime::OrtValue.from_shape_and_type(decoder_dims, :float)
|
487
|
+
end
|
488
|
+
elsif @config[:model_type] == "falcon"
|
489
|
+
raise Todo
|
490
|
+
elsif @config[:multi_query]
|
491
|
+
raise Todo
|
492
|
+
elsif @config[:model_type] == "bloom"
|
493
|
+
raise Todo
|
494
|
+
else
|
495
|
+
_dims = [batch_size, @num_heads, 0, @dim_kv]
|
496
|
+
@num_layers.times do |i|
|
497
|
+
# decoder_feeds["past_key_values.#{i}.key"] = OnnxRuntime::OrtValue.from_shape_and_type(dims, :float)
|
498
|
+
# decoder_feeds["past_key_values.#{i}.value"] = OnnxRuntime::OrtValue.from_shape_and_type(dims, :float)
|
499
|
+
end
|
500
|
+
end
|
501
|
+
end
|
502
|
+
end
|
503
|
+
|
504
|
+
def seq2seq_start_beams(input_token_ids, generation_config, num_output_tokens, inputs_attention_mask = nil)
|
505
|
+
beams = []
|
506
|
+
beam_id = 0
|
507
|
+
|
508
|
+
requires_attention_mask = !@requires_attention_mask.nil? ? @requires_attention_mask : true
|
509
|
+
|
510
|
+
# decoder_input_ids == output_token_ids
|
511
|
+
decoder_input_ids =
|
512
|
+
generation_config["decoder_input_ids"] ||
|
513
|
+
generation_config["decoder_start_token_id"] ||
|
514
|
+
generation_config["bos_token_id"] ||
|
515
|
+
generation_config["eos_token_id"]
|
516
|
+
|
517
|
+
if !decoder_input_ids.is_a?(Array)
|
518
|
+
decoder_input_ids = [decoder_input_ids]
|
519
|
+
end
|
520
|
+
|
521
|
+
input_token_ids.each do |tokens|
|
522
|
+
# TODO: Improve
|
523
|
+
# Currently, just add back batch dimension.
|
524
|
+
# In future, allow for true parallel execution
|
525
|
+
tokens = [tokens]
|
526
|
+
|
527
|
+
# Create beam
|
528
|
+
start = {
|
529
|
+
inputs: tokens,
|
530
|
+
encoder_outputs: nil,
|
531
|
+
prev_model_outputs: nil,
|
532
|
+
|
533
|
+
output_token_ids: decoder_input_ids,
|
534
|
+
done: false,
|
535
|
+
score: 0,
|
536
|
+
id: beam_id # assign unique id to beams
|
537
|
+
}
|
538
|
+
beam_id += 1
|
539
|
+
|
540
|
+
if requires_attention_mask
|
541
|
+
start[:attention_mask] = prepare_attention_mask(tokens)
|
542
|
+
end
|
543
|
+
|
544
|
+
beams << start
|
545
|
+
end
|
546
|
+
|
547
|
+
beams
|
548
|
+
end
|
549
|
+
|
550
|
+
def prepare_attention_mask(tokens)
|
551
|
+
# Prepare attention mask
|
552
|
+
pad_token_id = @config["pad_token_id"]
|
553
|
+
eos_token_id = @config["eos_token_id"]
|
554
|
+
if eos_token_id.is_a?(Integer)
|
555
|
+
eos_token_id = [eos_token_id]
|
556
|
+
end
|
557
|
+
|
558
|
+
is_pad_token_in_inputs = !tokens.index(pad_token_id).nil?
|
559
|
+
is_pad_token_not_equal_to_eos_token_id = eos_token_id.nil? || !eos_token_id.include?(pad_token_id)
|
560
|
+
|
561
|
+
if is_pad_token_in_inputs && is_pad_token_not_equal_to_eos_token_id
|
562
|
+
raise Todo
|
563
|
+
else
|
564
|
+
Utils.ones_like(tokens)
|
565
|
+
end
|
566
|
+
end
|
567
|
+
|
568
|
+
def seq2seq_run_beam(beam)
|
569
|
+
input_name = self.class.const_get(:MAIN_INPUT_NAME)
|
570
|
+
|
571
|
+
decoder_input_ids = beam[:output_token_ids]
|
572
|
+
if beam[:prev_model_outputs]
|
573
|
+
# After the first step, `prev_model_outputs` won't be null.
|
574
|
+
# So, we cut decoder_input_ids if past is used
|
575
|
+
decoder_input_ids = [decoder_input_ids[-1]]
|
576
|
+
end
|
577
|
+
|
578
|
+
# 1. Prepare
|
579
|
+
model_inputs = {
|
580
|
+
input_name => beam[:inputs],
|
581
|
+
decoder_input_ids: [decoder_input_ids],
|
582
|
+
encoder_outputs: beam[:encoder_outputs],
|
583
|
+
past_key_values: beam[:prev_model_outputs] && beam[:prev_model_outputs][:past_key_values]
|
584
|
+
}
|
585
|
+
if beam[:attention_mask]
|
586
|
+
model_inputs[:attention_mask] = beam[:attention_mask]
|
587
|
+
end
|
588
|
+
|
589
|
+
# 2. Run
|
590
|
+
output = @forward.(model_inputs)
|
591
|
+
|
592
|
+
# 3. Update
|
593
|
+
beam[:prev_model_outputs] = output
|
594
|
+
beam[:encoder_outputs] = output[:encoder_outputs]
|
595
|
+
|
596
|
+
output
|
597
|
+
end
|
598
|
+
|
599
|
+
def seq2seq_update_beam(beam, new_token_id)
|
600
|
+
beam[:output_token_ids] += [new_token_id]
|
601
|
+
end
|
602
|
+
|
603
|
+
def group_beams(beams)
|
604
|
+
# Group beams by their ids
|
605
|
+
groups = {}
|
606
|
+
beams.each do |obj|
|
607
|
+
if !groups[obj[:id]]
|
608
|
+
groups[obj[:id]] = [obj]
|
609
|
+
else
|
610
|
+
groups[obj[:id]] << obj
|
611
|
+
end
|
612
|
+
end
|
613
|
+
groups.values
|
614
|
+
end
|
615
|
+
|
158
616
|
def encoder_forward(model_inputs, output_names: nil)
|
159
617
|
encoder_feeds = {}
|
160
618
|
@session.inputs.each do |input|
|
@@ -167,7 +625,96 @@ module Informers
|
|
167
625
|
session_run(@session, encoder_feeds, output_names:)
|
168
626
|
end
|
169
627
|
|
170
|
-
def
|
628
|
+
def decoder_forward(model_inputs)
|
629
|
+
input_ids, past_key_values, attention_mask =
|
630
|
+
model_inputs.values_at(:input_ids, :past_key_values, :attention_mask)
|
631
|
+
decoder_feeds = {
|
632
|
+
input_ids: input_ids,
|
633
|
+
attention_mask: attention_mask || prepare_attention_mask(input_ids)
|
634
|
+
}
|
635
|
+
use_cache_branch = !!past_key_values
|
636
|
+
|
637
|
+
if @session.inputs.map { |v| v[:name] }.include?("use_cache_branch")
|
638
|
+
decoder_feeds[:use_cache_branch] = [use_cache_branch]
|
639
|
+
end
|
640
|
+
|
641
|
+
prepare_position_ids(@session, decoder_feeds, use_cache_branch)
|
642
|
+
|
643
|
+
add_past_key_values(decoder_feeds, past_key_values)
|
644
|
+
|
645
|
+
decoder_results = session_run(@session, decoder_feeds)
|
646
|
+
decoder_results = @session.outputs.map { |v| v[:name] }.zip(decoder_results).to_h
|
647
|
+
|
648
|
+
logits = decoder_results["logits"]
|
649
|
+
|
650
|
+
past_key_values = get_past_key_values(decoder_results, past_key_values)
|
651
|
+
{"logits" => logits, past_key_values: past_key_values}
|
652
|
+
end
|
653
|
+
|
654
|
+
def decoder_start_beams(input_token_ids, generation_config, num_output_tokens, inputs_attention_mask)
|
655
|
+
beams = []
|
656
|
+
|
657
|
+
beam_id = 0
|
658
|
+
input_token_ids.each do |tokens|
|
659
|
+
output_token_ids = tokens.dup
|
660
|
+
|
661
|
+
# TODO: Improve
|
662
|
+
# Currently, just add back batch dimension.
|
663
|
+
# In future, allow for true parallel execution
|
664
|
+
tokens = [tokens]
|
665
|
+
|
666
|
+
if inputs_attention_mask
|
667
|
+
attn_mask = inputs_attention_mask[beam_id]
|
668
|
+
attn_mask = [attn_mask]
|
669
|
+
else
|
670
|
+
attn_mask = prepare_attention_mask(tokens)
|
671
|
+
end
|
672
|
+
|
673
|
+
start = {
|
674
|
+
input: tokens,
|
675
|
+
model_input_ids: tokens,
|
676
|
+
attention_mask: attn_mask,
|
677
|
+
prev_model_outputs: nil,
|
678
|
+
|
679
|
+
output_token_ids: output_token_ids,
|
680
|
+
num_output_tokens: num_output_tokens,
|
681
|
+
|
682
|
+
done: false,
|
683
|
+
score: 0,
|
684
|
+
id: beam_id # assign unique id to beams
|
685
|
+
}
|
686
|
+
beam_id += 1
|
687
|
+
|
688
|
+
beams << start
|
689
|
+
end
|
690
|
+
beams
|
691
|
+
end
|
692
|
+
|
693
|
+
def decoder_run_beam(beam)
|
694
|
+
attn_mask_data = Array.new(beam[:output_token_ids].length, 1)
|
695
|
+
|
696
|
+
# 1. Prepare
|
697
|
+
model_inputs = {
|
698
|
+
input_ids: beam[:model_input_ids],
|
699
|
+
attention_mask: [attn_mask_data],
|
700
|
+
past_key_values: beam[:prev_model_outputs] && beam[:prev_model_outputs][:past_key_values]
|
701
|
+
}
|
702
|
+
|
703
|
+
# 2. Run
|
704
|
+
output = @forward.(model_inputs)
|
705
|
+
|
706
|
+
# 3. Update
|
707
|
+
beam[:prev_model_outputs] = output
|
708
|
+
|
709
|
+
output
|
710
|
+
end
|
711
|
+
|
712
|
+
def decoder_update_beam(beam, new_token_id)
|
713
|
+
beam[:output_token_ids] += [new_token_id]
|
714
|
+
beam[:model_input_ids] = [[new_token_id]]
|
715
|
+
end
|
716
|
+
|
717
|
+
def session_run(session, inputs, output_names: nil)
|
171
718
|
checked_inputs = validate_inputs(session, inputs)
|
172
719
|
begin
|
173
720
|
output = session.run(output_names || @output_names, checked_inputs)
|
@@ -187,6 +734,18 @@ module Informers
|
|
187
734
|
def validate_inputs(session, inputs)
|
188
735
|
inputs
|
189
736
|
end
|
737
|
+
|
738
|
+
def get_start_beams(input_token_ids, generation_config, num_output_tokens, inputs_attention_mask)
|
739
|
+
@get_start_beams.(input_token_ids, generation_config, num_output_tokens, inputs_attention_mask)
|
740
|
+
end
|
741
|
+
|
742
|
+
def run_beam(beam)
|
743
|
+
@run_beam.(beam)
|
744
|
+
end
|
745
|
+
|
746
|
+
def update_beam(beam, new_token_id)
|
747
|
+
@update_beam.(beam, new_token_id)
|
748
|
+
end
|
190
749
|
end
|
191
750
|
|
192
751
|
class BertPreTrainedModel < PreTrainedModel
|
@@ -195,6 +754,12 @@ module Informers
|
|
195
754
|
class BertModel < BertPreTrainedModel
|
196
755
|
end
|
197
756
|
|
757
|
+
class BertForMaskedLM < BertPreTrainedModel
|
758
|
+
def call(model_inputs)
|
759
|
+
MaskedLMOutput.new(*super(model_inputs))
|
760
|
+
end
|
761
|
+
end
|
762
|
+
|
198
763
|
class BertForSequenceClassification < BertPreTrainedModel
|
199
764
|
def call(model_inputs)
|
200
765
|
SequenceClassifierOutput.new(*super(model_inputs))
|
@@ -243,6 +808,114 @@ module Informers
|
|
243
808
|
class MPNetModel < MPNetPreTrainedModel
|
244
809
|
end
|
245
810
|
|
811
|
+
class T5PreTrainedModel < PreTrainedModel
|
812
|
+
end
|
813
|
+
|
814
|
+
class T5Model < T5PreTrainedModel
|
815
|
+
end
|
816
|
+
|
817
|
+
class T5ForConditionalGeneration < T5PreTrainedModel
|
818
|
+
def initialize(config, session, decoder_merged_session, generation_config)
|
819
|
+
super(config, session)
|
820
|
+
@decoder_merged_session = decoder_merged_session
|
821
|
+
@generation_config = generation_config
|
822
|
+
|
823
|
+
@num_decoder_layers = @config[:num_decoder_layers]
|
824
|
+
@num_decoder_heads = @config[:num_heads]
|
825
|
+
@decoder_dim_kv = @config[:d_kv]
|
826
|
+
|
827
|
+
@num_encoder_layers = @config[:num_layers]
|
828
|
+
@num_encoder_heads = @config[:num_heads]
|
829
|
+
@encoder_dim_kv = @config[:d_kv]
|
830
|
+
end
|
831
|
+
end
|
832
|
+
|
833
|
+
class BartPretrainedModel < PreTrainedModel
|
834
|
+
end
|
835
|
+
|
836
|
+
class BartModel < BartPretrainedModel
|
837
|
+
end
|
838
|
+
|
839
|
+
class BartForConditionalGeneration < BartPretrainedModel
|
840
|
+
def initialize(config, session, decoder_merged_session, generation_config)
|
841
|
+
super(config, session)
|
842
|
+
@decoder_merged_session = decoder_merged_session
|
843
|
+
@generation_config = generation_config
|
844
|
+
|
845
|
+
@num_decoder_layers = @config["decoder_layers"]
|
846
|
+
@num_decoder_heads = @config["decoder_attention_heads"]
|
847
|
+
@decoder_dim_kv = @config["d_model"] / @num_decoder_heads.to_f
|
848
|
+
|
849
|
+
@num_encoder_layers = @config["encoder_layers"]
|
850
|
+
@num_encoder_heads = @config["encoder_attention_heads"]
|
851
|
+
@encoder_dim_kv = @config["d_model"] / @num_encoder_heads
|
852
|
+
end
|
853
|
+
end
|
854
|
+
|
855
|
+
class BartForSequenceClassification < BartPretrainedModel
|
856
|
+
def call(model_inputs)
|
857
|
+
SequenceClassifierOutput.new(*super(model_inputs))
|
858
|
+
end
|
859
|
+
end
|
860
|
+
|
861
|
+
class MBartPreTrainedModel < PreTrainedModel
|
862
|
+
end
|
863
|
+
|
864
|
+
class MBartModel < MBartPreTrainedModel
|
865
|
+
end
|
866
|
+
|
867
|
+
class MBartForCausalLM < MBartPreTrainedModel
|
868
|
+
attr_reader :num_decoder_layers, :num_decoder_heads, :decoder_dim_kv,
|
869
|
+
:num_encoder_layers, :num_encoder_heads, :encoder_dim_kv
|
870
|
+
|
871
|
+
def initialize(config, decoder_merged_session, generation_config)
|
872
|
+
super(config, decoder_merged_session)
|
873
|
+
@generation_config = generation_config
|
874
|
+
|
875
|
+
@num_decoder_layers = @config["decoder_layers"]
|
876
|
+
@num_decoder_heads = @config["decoder_attention_heads"]
|
877
|
+
@decoder_dim_kv = @config["d_model"] / @num_decoder_heads.to_f
|
878
|
+
|
879
|
+
@num_encoder_layers = @config["encoder_layers"]
|
880
|
+
@num_encoder_heads = @config["encoder_attention_heads"]
|
881
|
+
@encoder_dim_kv = @config["d_model"] / @num_encoder_heads.to_f
|
882
|
+
end
|
883
|
+
end
|
884
|
+
|
885
|
+
class M2M100PreTrainedModel < PreTrainedModel
|
886
|
+
end
|
887
|
+
|
888
|
+
class M2M100Model < M2M100PreTrainedModel
|
889
|
+
end
|
890
|
+
|
891
|
+
class M2M100ForConditionalGeneration < M2M100PreTrainedModel
|
892
|
+
def initialize(config, session, decoder_merged_session, generation_config)
|
893
|
+
super(config, session)
|
894
|
+
@decoder_merged_session = decoder_merged_session
|
895
|
+
@generation_config = generation_config
|
896
|
+
|
897
|
+
@num_decoder_layers = @config["decoder_layers"]
|
898
|
+
@num_decoder_heads = @config["decoder_attention_heads"]
|
899
|
+
@decoder_dim_kv = @config["d_model"] / @num_decoder_heads.to_f
|
900
|
+
|
901
|
+
@num_encoder_layers = @config["encoder_layers"]
|
902
|
+
@num_encoder_heads = @config["encoder_attention_heads"]
|
903
|
+
@encoder_dim_kv = @config["d_model"] / @num_encoder_heads.to_f
|
904
|
+
end
|
905
|
+
end
|
906
|
+
|
907
|
+
class RobertaPreTrainedModel < PreTrainedModel
|
908
|
+
end
|
909
|
+
|
910
|
+
class RobertaModel < RobertaPreTrainedModel
|
911
|
+
end
|
912
|
+
|
913
|
+
class RobertaForMaskedLM < RobertaPreTrainedModel
|
914
|
+
def call(model_inputs)
|
915
|
+
MaskedLMOutput.new(*super(model_inputs))
|
916
|
+
end
|
917
|
+
end
|
918
|
+
|
246
919
|
class XLMRobertaPreTrainedModel < PreTrainedModel
|
247
920
|
end
|
248
921
|
|
@@ -255,34 +928,250 @@ module Informers
|
|
255
928
|
end
|
256
929
|
end
|
257
930
|
|
931
|
+
class ViTPreTrainedModel < PreTrainedModel
|
932
|
+
end
|
933
|
+
|
934
|
+
class ViTModel < ViTPreTrainedModel
|
935
|
+
end
|
936
|
+
|
937
|
+
class ViTForImageClassification < ViTPreTrainedModel
|
938
|
+
def call(model_inputs)
|
939
|
+
SequenceClassifierOutput.new(*super(model_inputs))
|
940
|
+
end
|
941
|
+
end
|
942
|
+
|
943
|
+
class CLIPPreTrainedModel < PreTrainedModel
|
944
|
+
end
|
945
|
+
|
946
|
+
class CLIPModel < CLIPPreTrainedModel
|
947
|
+
end
|
948
|
+
|
949
|
+
class GPT2PreTrainedModel < PreTrainedModel
|
950
|
+
attr_reader :num_heads, :num_layers, :dim_kv
|
951
|
+
|
952
|
+
def initialize(config, session, generation_config)
|
953
|
+
super(config, session)
|
954
|
+
@generation_config = generation_config
|
955
|
+
|
956
|
+
# config doesn't contain pad_token_id, so we assume it is the eos_token_id
|
957
|
+
@config["pad_token_id"] = @config["eos_token_id"]
|
958
|
+
|
959
|
+
@num_heads = @config["n_head"]
|
960
|
+
@num_layers = @config["n_layer"]
|
961
|
+
@dim_kv = @config["n_embd"] / @num_heads.to_f
|
962
|
+
end
|
963
|
+
end
|
964
|
+
|
965
|
+
class GPT2Model < GPT2PreTrainedModel
|
966
|
+
end
|
967
|
+
|
968
|
+
class GPT2LMHeadModel < GPT2PreTrainedModel
|
969
|
+
end
|
970
|
+
|
971
|
+
class OwlViTPreTrainedModel < PreTrainedModel
|
972
|
+
end
|
973
|
+
|
974
|
+
class OwlViTModel < OwlViTPreTrainedModel
|
975
|
+
end
|
976
|
+
|
977
|
+
class OwlViTForObjectDetection < OwlViTPreTrainedModel
|
978
|
+
end
|
979
|
+
|
980
|
+
class DetrPreTrainedModel < PreTrainedModel
|
981
|
+
end
|
982
|
+
|
983
|
+
class DetrModel < DetrPreTrainedModel
|
984
|
+
end
|
985
|
+
|
986
|
+
class DetrForObjectDetection < DetrPreTrainedModel
|
987
|
+
def call(model_inputs)
|
988
|
+
DetrObjectDetectionOutput.new(*super(model_inputs))
|
989
|
+
end
|
990
|
+
end
|
991
|
+
|
992
|
+
class DetrForSegmentation < DetrPreTrainedModel
|
993
|
+
def call(model_inputs)
|
994
|
+
DetrSegmentationOutput.new(*super(model_inputs))
|
995
|
+
end
|
996
|
+
end
|
997
|
+
|
998
|
+
class Swin2SRPreTrainedModel < PreTrainedModel
|
999
|
+
end
|
1000
|
+
|
1001
|
+
class Swin2SRModel < Swin2SRPreTrainedModel
|
1002
|
+
end
|
1003
|
+
|
1004
|
+
class Swin2SRForImageSuperResolution < Swin2SRPreTrainedModel
|
1005
|
+
end
|
1006
|
+
|
1007
|
+
class DPTPreTrainedModel < PreTrainedModel
|
1008
|
+
end
|
1009
|
+
|
1010
|
+
class DPTModel < DPTPreTrainedModel
|
1011
|
+
end
|
1012
|
+
|
1013
|
+
class DPTForDepthEstimation < DPTPreTrainedModel
|
1014
|
+
end
|
1015
|
+
|
1016
|
+
class VisionEncoderDecoderModel < PreTrainedModel
|
1017
|
+
MAIN_INPUT_NAME = :pixel_values
|
1018
|
+
|
1019
|
+
def initialize(config, session, decoder_merged_session, generation_config)
|
1020
|
+
super(config, session)
|
1021
|
+
@decoder_merged_session = decoder_merged_session
|
1022
|
+
@generation_config = generation_config
|
1023
|
+
|
1024
|
+
# Extract configs
|
1025
|
+
encoder_config = @config["encoder"]
|
1026
|
+
decoder_config = @config["decoder"]
|
1027
|
+
|
1028
|
+
# Validate encoder
|
1029
|
+
encoder_model_type = encoder_config["model_type"]
|
1030
|
+
encoder_model = MODEL_MAPPING_NAMES_ENCODER_ONLY[encoder_model_type] || MODEL_MAPPING_NAMES_ENCODER_DECODER[encoder_model_type]
|
1031
|
+
if !encoder_model
|
1032
|
+
warn "Model type for encoder '#{encoder_model_type}' not found, assuming encoder-only architecture. Please report this."
|
1033
|
+
end
|
1034
|
+
|
1035
|
+
# Validate decoder
|
1036
|
+
decoder_model = MODEL_WITH_LM_HEAD_MAPPING_NAMES[decoder_config["model_type"]]
|
1037
|
+
if !decoder_model
|
1038
|
+
raise Error, "Unable to construct `VisionEncoderDecoder` due to unsupported decoder: \"#{decoder_config["model_type"]}\""
|
1039
|
+
end
|
1040
|
+
|
1041
|
+
decoder_model_class = decoder_model[1]
|
1042
|
+
decoder = decoder_model_class.new(decoder_config, decoder_merged_session, generation_config)
|
1043
|
+
|
1044
|
+
@add_encoder_pkv = decoder.respond_to?(:num_decoder_layers)
|
1045
|
+
if @add_encoder_pkv
|
1046
|
+
# Decoder is part of an encoder-decoder model
|
1047
|
+
@num_decoder_layers = decoder.num_decoder_layers
|
1048
|
+
@num_decoder_heads = decoder.num_decoder_heads
|
1049
|
+
@decoder_dim_kv = decoder.decoder_dim_kv
|
1050
|
+
|
1051
|
+
@num_encoder_layers = decoder.num_encoder_layers
|
1052
|
+
@num_encoder_heads = decoder.num_encoder_heads
|
1053
|
+
@encoder_dim_kv = decoder.encoder_dim_kv
|
1054
|
+
else
|
1055
|
+
# Decoder is a decoder-only model
|
1056
|
+
@num_layers = decoder.num_layers
|
1057
|
+
@num_heads = decoder.num_heads
|
1058
|
+
@dim_kv = decoder.dim_kv
|
1059
|
+
end
|
1060
|
+
end
|
1061
|
+
end
|
1062
|
+
|
1063
|
+
class DonutSwinPreTrainedModel < PreTrainedModel
|
1064
|
+
end
|
1065
|
+
|
1066
|
+
class DonutSwinModel < DonutSwinPreTrainedModel
|
1067
|
+
end
|
1068
|
+
|
258
1069
|
MODEL_MAPPING_NAMES_ENCODER_ONLY = {
|
259
1070
|
"bert" => ["BertModel", BertModel],
|
260
1071
|
"nomic_bert" => ["NomicBertModel", NomicBertModel],
|
261
1072
|
"deberta-v2" => ["DebertaV2Model", DebertaV2Model],
|
262
1073
|
"mpnet" => ["MPNetModel", MPNetModel],
|
263
1074
|
"distilbert" => ["DistilBertModel", DistilBertModel],
|
264
|
-
"
|
1075
|
+
"roberta" => ["RobertaModel", RobertaModel],
|
1076
|
+
"xlm-roberta" => ["XLMRobertaModel", XLMRobertaModel],
|
1077
|
+
"clip" => ["CLIPModel", CLIPModel],
|
1078
|
+
"detr" => ["DetrModel", DetrModel],
|
1079
|
+
"vit" => ["ViTModel", ViTModel],
|
1080
|
+
"owlvit" => ["OwlViTModel", OwlViTModel],
|
1081
|
+
"donut-swin" => ["DonutSwinModel", DonutSwinModel]
|
1082
|
+
}
|
1083
|
+
|
1084
|
+
MODEL_MAPPING_NAMES_ENCODER_DECODER = {
|
1085
|
+
"bart" => ["BartModel", BartModel]
|
265
1086
|
}
|
266
1087
|
|
267
1088
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = {
|
268
1089
|
"bert" => ["BertForSequenceClassification", BertForSequenceClassification],
|
269
1090
|
"distilbert" => ["DistilBertForSequenceClassification", DistilBertForSequenceClassification],
|
270
|
-
"xlm-roberta" => ["XLMRobertaForSequenceClassification", XLMRobertaForSequenceClassification]
|
1091
|
+
"xlm-roberta" => ["XLMRobertaForSequenceClassification", XLMRobertaForSequenceClassification],
|
1092
|
+
"bart" => ["BartForSequenceClassification", BartForSequenceClassification]
|
271
1093
|
}
|
272
1094
|
|
273
1095
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = {
|
274
1096
|
"bert" => ["BertForTokenClassification", BertForTokenClassification]
|
275
1097
|
}
|
276
1098
|
|
1099
|
+
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = {
|
1100
|
+
"t5" => ["T5ForConditionalGeneration", T5ForConditionalGeneration],
|
1101
|
+
"bart" => ["BartForConditionalGeneration", BartForConditionalGeneration],
|
1102
|
+
"m2m_100" => ["M2M100ForConditionalGeneration", M2M100ForConditionalGeneration]
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
MODEL_WITH_LM_HEAD_MAPPING_NAMES = {
|
1106
|
+
"gpt2" => ["GPT2LMHeadModel", GPT2LMHeadModel],
|
1107
|
+
"mbart" => ["MBartForCausalLM", MBartForCausalLM]
|
1108
|
+
}
|
1109
|
+
|
1110
|
+
MODEL_FOR_MASKED_LM_MAPPING_NAMES = {
|
1111
|
+
"bert" => ["BertForMaskedLM", BertForMaskedLM],
|
1112
|
+
"roberta" => ["RobertaForMaskedLM", RobertaForMaskedLM]
|
1113
|
+
}
|
1114
|
+
|
277
1115
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = {
|
278
1116
|
"distilbert" => ["DistilBertForQuestionAnswering", DistilBertForQuestionAnswering]
|
279
1117
|
}
|
280
1118
|
|
1119
|
+
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = {
|
1120
|
+
"vision-encoder-decoder" => ["VisionEncoderDecoderModel", VisionEncoderDecoderModel]
|
1121
|
+
}
|
1122
|
+
|
1123
|
+
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES = {
|
1124
|
+
"vision-encoder-decoder" => ["VisionEncoderDecoderModel", VisionEncoderDecoderModel]
|
1125
|
+
}
|
1126
|
+
|
1127
|
+
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = {
|
1128
|
+
"vit" => ["ViTForImageClassification", ViTForImageClassification]
|
1129
|
+
}
|
1130
|
+
|
1131
|
+
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES = {
|
1132
|
+
"detr" => ["DetrForObjectDetection", DetrForObjectDetection]
|
1133
|
+
}
|
1134
|
+
|
1135
|
+
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES = {
|
1136
|
+
"owlvit" => ["OwlViTForObjectDetection", OwlViTForObjectDetection]
|
1137
|
+
}
|
1138
|
+
|
1139
|
+
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES = {
|
1140
|
+
"detr" => ["DetrForSegmentation", DetrForSegmentation]
|
1141
|
+
}
|
1142
|
+
|
1143
|
+
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES = {
|
1144
|
+
}
|
1145
|
+
|
1146
|
+
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES = {
|
1147
|
+
"swin2sr" => ["Swin2SRForImageSuperResolution", Swin2SRForImageSuperResolution]
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES = {
|
1151
|
+
"dpt" => ["DPTForDepthEstimation", DPTForDepthEstimation]
|
1152
|
+
}
|
1153
|
+
|
1154
|
+
MODEL_FOR_IMAGE_FEATURE_EXTRACTION_MAPPING_NAMES = {
|
1155
|
+
}
|
1156
|
+
|
281
1157
|
MODEL_CLASS_TYPE_MAPPING = [
|
282
1158
|
[MODEL_MAPPING_NAMES_ENCODER_ONLY, MODEL_TYPES[:EncoderOnly]],
|
1159
|
+
[MODEL_MAPPING_NAMES_ENCODER_DECODER, MODEL_TYPES[:EncoderDecoder]],
|
283
1160
|
[MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
284
1161
|
[MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
285
|
-
[
|
1162
|
+
[MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_TYPES[:Seq2Seq]],
|
1163
|
+
[MODEL_WITH_LM_HEAD_MAPPING_NAMES, MODEL_TYPES[:DecoderOnly]],
|
1164
|
+
[MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1165
|
+
[MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1166
|
+
[MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES, MODEL_TYPES[:Vision2Seq]],
|
1167
|
+
[MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1168
|
+
[MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1169
|
+
[MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1170
|
+
[MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1171
|
+
[MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1172
|
+
[MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1173
|
+
[MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
|
1174
|
+
[MODEL_FOR_IMAGE_FEATURE_EXTRACTION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]]
|
286
1175
|
]
|
287
1176
|
|
288
1177
|
MODEL_CLASS_TYPE_MAPPING.each do |mappings, type|
|
@@ -306,11 +1195,77 @@ module Informers
|
|
306
1195
|
MODEL_CLASS_MAPPINGS = [MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES]
|
307
1196
|
end
|
308
1197
|
|
1198
|
+
class AutoModelForSeq2SeqLM < PretrainedMixin
|
1199
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES]
|
1200
|
+
end
|
1201
|
+
|
1202
|
+
class AutoModelForCausalLM < PretrainedMixin
|
1203
|
+
MODEL_CLASS_MAPPINGS = [MODEL_WITH_LM_HEAD_MAPPING_NAMES]
|
1204
|
+
end
|
1205
|
+
|
1206
|
+
class AutoModelForMaskedLM < PretrainedMixin
|
1207
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_MASKED_LM_MAPPING_NAMES]
|
1208
|
+
end
|
1209
|
+
|
309
1210
|
class AutoModelForQuestionAnswering < PretrainedMixin
|
310
1211
|
MODEL_CLASS_MAPPINGS = [MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES]
|
311
1212
|
end
|
312
1213
|
|
1214
|
+
class AutoModelForVision2Seq < PretrainedMixin
|
1215
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES]
|
1216
|
+
end
|
1217
|
+
|
1218
|
+
class AutoModelForImageClassification < PretrainedMixin
|
1219
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES]
|
1220
|
+
end
|
1221
|
+
|
1222
|
+
class AutoModelForImageSegmentation < PretrainedMixin
|
1223
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES]
|
1224
|
+
end
|
1225
|
+
|
1226
|
+
class AutoModelForSemanticSegmentation < PretrainedMixin
|
1227
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES]
|
1228
|
+
end
|
1229
|
+
|
1230
|
+
class AutoModelForObjectDetection < PretrainedMixin
|
1231
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES]
|
1232
|
+
end
|
1233
|
+
|
1234
|
+
class AutoModelForZeroShotObjectDetection < PretrainedMixin
|
1235
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES]
|
1236
|
+
end
|
1237
|
+
|
1238
|
+
class AutoModelForDocumentQuestionAnswering < PretrainedMixin
|
1239
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES]
|
1240
|
+
end
|
1241
|
+
|
1242
|
+
class AutoModelForImageToImage < PretrainedMixin
|
1243
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES]
|
1244
|
+
end
|
1245
|
+
|
1246
|
+
class AutoModelForDepthEstimation < PretrainedMixin
|
1247
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES]
|
1248
|
+
end
|
1249
|
+
|
1250
|
+
class AutoModelForImageFeatureExtraction < PretrainedMixin
|
1251
|
+
MODEL_CLASS_MAPPINGS = [MODEL_FOR_IMAGE_FEATURE_EXTRACTION_MAPPING_NAMES]
|
1252
|
+
end
|
1253
|
+
|
313
1254
|
class ModelOutput
|
1255
|
+
def [](key)
|
1256
|
+
instance_variable_get("@#{key}")
|
1257
|
+
end
|
1258
|
+
end
|
1259
|
+
|
1260
|
+
class Seq2SeqLMOutput < ModelOutput
|
1261
|
+
def initialize(logits, past_key_values, encoder_outputs, decoder_attentions = nil, cross_attentions = nil)
|
1262
|
+
super()
|
1263
|
+
@logits = logits
|
1264
|
+
@past_key_values = past_key_values
|
1265
|
+
@encoder_outputs = encoder_outputs
|
1266
|
+
@decoder_attentions = decoder_attentions
|
1267
|
+
@cross_attentions = cross_attentions
|
1268
|
+
end
|
314
1269
|
end
|
315
1270
|
|
316
1271
|
class SequenceClassifierOutput < ModelOutput
|
@@ -331,6 +1286,15 @@ module Informers
|
|
331
1286
|
end
|
332
1287
|
end
|
333
1288
|
|
1289
|
+
class MaskedLMOutput < ModelOutput
|
1290
|
+
attr_reader :logits
|
1291
|
+
|
1292
|
+
def initialize(logits)
|
1293
|
+
super()
|
1294
|
+
@logits = logits
|
1295
|
+
end
|
1296
|
+
end
|
1297
|
+
|
334
1298
|
class QuestionAnsweringModelOutput < ModelOutput
|
335
1299
|
attr_reader :start_logits, :end_logits
|
336
1300
|
|
@@ -340,4 +1304,25 @@ module Informers
|
|
340
1304
|
@end_logits = end_logits
|
341
1305
|
end
|
342
1306
|
end
|
1307
|
+
|
1308
|
+
class DetrObjectDetectionOutput < ModelOutput
|
1309
|
+
attr_reader :logits, :pred_boxes
|
1310
|
+
|
1311
|
+
def initialize(logits, pred_boxes)
|
1312
|
+
super()
|
1313
|
+
@logits = logits
|
1314
|
+
@pred_boxes = pred_boxes
|
1315
|
+
end
|
1316
|
+
end
|
1317
|
+
|
1318
|
+
class DetrSegmentationOutput < ModelOutput
|
1319
|
+
attr_reader :logits, :pred_boxes, :pred_masks
|
1320
|
+
|
1321
|
+
def initialize(logits, pred_boxes, pred_masks)
|
1322
|
+
super()
|
1323
|
+
@logits = logits
|
1324
|
+
@pred_boxes = pred_boxes
|
1325
|
+
@pred_masks = pred_masks
|
1326
|
+
end
|
1327
|
+
end
|
343
1328
|
end
|