informers 1.0.2 → 1.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +9 -0
- data/README.md +213 -19
- data/lib/informers/configs.rb +10 -8
- data/lib/informers/model.rb +2 -14
- data/lib/informers/models.rb +1027 -13
- data/lib/informers/pipelines.rb +781 -14
- data/lib/informers/processors.rb +796 -0
- data/lib/informers/tokenizers.rb +166 -4
- data/lib/informers/utils/core.rb +4 -0
- data/lib/informers/utils/generation.rb +294 -0
- data/lib/informers/utils/image.rb +116 -0
- data/lib/informers/utils/math.rb +73 -0
- data/lib/informers/utils/tensor.rb +46 -0
- data/lib/informers/version.rb +1 -1
- data/lib/informers.rb +3 -0
- metadata +8 -5
@@ -0,0 +1,796 @@
|
|
1
|
+
module Informers
|
2
|
+
class FeatureExtractor
|
3
|
+
def initialize(config)
|
4
|
+
super()
|
5
|
+
@config = config
|
6
|
+
end
|
7
|
+
end
|
8
|
+
|
9
|
+
class ImageFeatureExtractor < FeatureExtractor
|
10
|
+
def initialize(config)
|
11
|
+
super(config)
|
12
|
+
|
13
|
+
@image_mean = @config["image_mean"] || @config["mean"]
|
14
|
+
@image_std = @config["image_std"] || @config["std"]
|
15
|
+
|
16
|
+
@resample = @config["resample"] || 2 # 2 => bilinear
|
17
|
+
@do_rescale = @config.fetch("do_rescale", true)
|
18
|
+
@rescale_factor = @config["rescale_factor"] || (1 / 255.0)
|
19
|
+
@do_normalize = @config["do_normalize"]
|
20
|
+
|
21
|
+
@do_resize = @config["do_resize"]
|
22
|
+
@do_thumbnail = @config["do_thumbnail"]
|
23
|
+
@size = @config["size"]
|
24
|
+
@size_divisibility = @config["size_divisibility"] || @config["size_divisor"]
|
25
|
+
|
26
|
+
@do_center_crop = @config["do_center_crop"]
|
27
|
+
@crop_size = @config["crop_size"]
|
28
|
+
@do_convert_rgb = @config.fetch("do_convert_rgb", true)
|
29
|
+
@do_crop_margin = @config["do_crop_margin"]
|
30
|
+
|
31
|
+
@pad_size = @config["pad_size"]
|
32
|
+
@do_pad = @config["do_pad"]
|
33
|
+
|
34
|
+
if @do_pad && !@pad_size && @size && !@size["width"].nil? && !@size["height"].nil?
|
35
|
+
# Should pad, but no pad size specified
|
36
|
+
# We infer the pad size from the resize size
|
37
|
+
@pad_size = @size
|
38
|
+
end
|
39
|
+
|
40
|
+
@do_flip_channel_order = @config["do_flip_channel_order"] || false
|
41
|
+
end
|
42
|
+
|
43
|
+
def thumbnail(image, size, resample = 2)
|
44
|
+
input_height = image.height
|
45
|
+
input_width = image.width
|
46
|
+
|
47
|
+
output_height = size["height"]
|
48
|
+
output_width = size["width"]
|
49
|
+
|
50
|
+
# We always resize to the smallest of either the input or output size.
|
51
|
+
height = [input_height, output_height].min
|
52
|
+
width = [input_width, output_width].min
|
53
|
+
|
54
|
+
if height == input_height && width == input_width
|
55
|
+
return image
|
56
|
+
end
|
57
|
+
if input_height > input_width
|
58
|
+
width = (input_width * height / input_height).floor
|
59
|
+
elsif input_width > input_height
|
60
|
+
height = (input_height * width / input_width).floor
|
61
|
+
end
|
62
|
+
image.resize(width, height, resample:)
|
63
|
+
end
|
64
|
+
|
65
|
+
def pad_image(
|
66
|
+
pixel_data,
|
67
|
+
img_dims,
|
68
|
+
pad_size,
|
69
|
+
mode: "constant",
|
70
|
+
center: false,
|
71
|
+
constant_values: 0
|
72
|
+
)
|
73
|
+
image_height, image_width, image_channels = img_dims
|
74
|
+
|
75
|
+
if pad_size.is_a?(Numeric)
|
76
|
+
padded_image_width = pad_size
|
77
|
+
padded_image_height = pad_size
|
78
|
+
else
|
79
|
+
padded_image_width = pad_size[:width] || pad_size["width"]
|
80
|
+
padded_image_height = pad_size[:height] || pad_size["height"]
|
81
|
+
end
|
82
|
+
|
83
|
+
# Only add padding if there is a difference in size
|
84
|
+
if padded_image_width != image_width || padded_image_height != image_height
|
85
|
+
padded_pixel_data = Array.new(padded_image_width * padded_image_height * image_channels)
|
86
|
+
if constant_values.is_a?(Array)
|
87
|
+
# Fill with constant values, cycling through the array
|
88
|
+
padded_pixel_data.length.times do |i|
|
89
|
+
padded_pixel_data[i] = constant_values[i % image_channels]
|
90
|
+
end
|
91
|
+
elsif constant_values != 0
|
92
|
+
padded_pixel_data.fill(constant_values)
|
93
|
+
end
|
94
|
+
|
95
|
+
left, top =
|
96
|
+
if center
|
97
|
+
[((padded_image_width - image_width) / 2.0).floor, ((padded_image_height - image_height) / 2.0).floor]
|
98
|
+
else
|
99
|
+
[0, 0]
|
100
|
+
end
|
101
|
+
|
102
|
+
# Copy the original image into the padded image
|
103
|
+
image_height.times do |i|
|
104
|
+
a = (i + top) * padded_image_width
|
105
|
+
b = i * image_width
|
106
|
+
image_width.times do |j|
|
107
|
+
c = (a + j + left) * image_channels
|
108
|
+
d = (b + j) * image_channels
|
109
|
+
image_channels.times do |k|
|
110
|
+
padded_pixel_data[c + k] = pixel_data[d + k]
|
111
|
+
end
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
if mode == "symmetric"
|
116
|
+
if center
|
117
|
+
raise Error, "`center` padding is not supported when `mode` is set to `symmetric`."
|
118
|
+
end
|
119
|
+
h1 = image_height - 1
|
120
|
+
w1 = image_width - 1
|
121
|
+
padded_image_height.times do |i|
|
122
|
+
a = i * padded_image_width
|
123
|
+
b = Utils.calculate_reflect_offset(i, h1) * image_width
|
124
|
+
|
125
|
+
padded_image_width.times do |j|
|
126
|
+
next if i < image_height && j < image_width # Do not overwrite original image
|
127
|
+
c = (a + j) * image_channels
|
128
|
+
d = (b + Utils.calculate_reflect_offset(j, w1)) * image_channels
|
129
|
+
|
130
|
+
# Copy channel-wise
|
131
|
+
image_channels.times do |k|
|
132
|
+
padded_pixel_data[c + k] = pixel_data[d + k]
|
133
|
+
end
|
134
|
+
end
|
135
|
+
end
|
136
|
+
end
|
137
|
+
|
138
|
+
# Update pixel data and image dimensions
|
139
|
+
pixel_data = padded_pixel_data
|
140
|
+
img_dims = [padded_image_height, padded_image_width, image_channels]
|
141
|
+
end
|
142
|
+
[pixel_data, img_dims]
|
143
|
+
end
|
144
|
+
|
145
|
+
def rescale(pixel_data)
|
146
|
+
pixel_data.length.times do |i|
|
147
|
+
pixel_data[i] *= @rescale_factor
|
148
|
+
end
|
149
|
+
end
|
150
|
+
|
151
|
+
def get_resize_output_image_size(image, size)
|
152
|
+
src_width, src_height = image.size
|
153
|
+
|
154
|
+
if @do_thumbnail
|
155
|
+
# NOTE: custom logic for `Donut` models
|
156
|
+
height = size["height"]
|
157
|
+
width = size["width"]
|
158
|
+
shortest_edge = [height, width].min
|
159
|
+
elsif size.is_a?(Numeric)
|
160
|
+
shortest_edge = size
|
161
|
+
longest_edge = @config["max_size"] || shortest_edge
|
162
|
+
elsif !size.nil?
|
163
|
+
# Extract known properties from `size`
|
164
|
+
shortest_edge = size["shortest_edge"]
|
165
|
+
longest_edge = size["longest_edge"]
|
166
|
+
end
|
167
|
+
|
168
|
+
if !shortest_edge.nil? || !longest_edge.nil?
|
169
|
+
# http://opensourcehacker.com/2011/12/01/calculate-aspect-ratio-conserving-resize-for-images-in-javascript/
|
170
|
+
# Try resize so that shortest edge is `shortest_edge` (target)
|
171
|
+
short_resize_factor =
|
172
|
+
if shortest_edge.nil?
|
173
|
+
1 # If `shortest_edge` is not set, don't upscale
|
174
|
+
else
|
175
|
+
[shortest_edge / src_width.to_f, shortest_edge / src_height.to_f].max
|
176
|
+
end
|
177
|
+
|
178
|
+
new_width = src_width * short_resize_factor
|
179
|
+
new_height = src_height * short_resize_factor
|
180
|
+
|
181
|
+
# The new width and height might be greater than `longest_edge`, so
|
182
|
+
# we downscale again to ensure the largest dimension is `longest_edge`
|
183
|
+
long_resize_factor =
|
184
|
+
if longest_edge.nil?
|
185
|
+
1 # If `longest_edge` is not set, don't downscale
|
186
|
+
else
|
187
|
+
[longest_edge / new_width.to_f, longest_edge / new_height.to_f].min
|
188
|
+
end
|
189
|
+
|
190
|
+
# To avoid certain floating point precision issues, we round to 2 decimal places
|
191
|
+
final_width = (new_width * long_resize_factor).round(2).floor
|
192
|
+
final_height = (new_height * long_resize_factor).round(2).floor
|
193
|
+
|
194
|
+
if !@size_divisibility.nil?
|
195
|
+
raise Todo
|
196
|
+
end
|
197
|
+
[final_width, final_height]
|
198
|
+
elsif !size.nil? && !size["width"].nil? && !size["height"].nil?
|
199
|
+
new_width = size["width"]
|
200
|
+
new_height = size["height"]
|
201
|
+
|
202
|
+
if @config["keep_aspect_ratio"] && @config["ensure_multiple_of"]
|
203
|
+
raise Todo
|
204
|
+
end
|
205
|
+
|
206
|
+
[new_width, new_height]
|
207
|
+
else
|
208
|
+
raise Todo
|
209
|
+
end
|
210
|
+
end
|
211
|
+
|
212
|
+
def resize(image)
|
213
|
+
new_width, new_height = get_resize_output_image_size(image, @size)
|
214
|
+
image.resize(new_width, new_height, resample: @resample)
|
215
|
+
end
|
216
|
+
|
217
|
+
def preprocess(
|
218
|
+
image,
|
219
|
+
do_normalize: nil,
|
220
|
+
do_pad: nil,
|
221
|
+
do_convert_rgb: nil,
|
222
|
+
do_convert_grayscale: nil,
|
223
|
+
do_flip_channel_order: nil
|
224
|
+
)
|
225
|
+
if @do_crop_margin
|
226
|
+
# NOTE: Specific to nougat processors. This is done before resizing,
|
227
|
+
# and can be interpreted as a pre-preprocessing step.
|
228
|
+
image = crop_margin(image)
|
229
|
+
end
|
230
|
+
|
231
|
+
src_width, src_height = image.size # original image size
|
232
|
+
|
233
|
+
# Convert image to RGB if specified in config.
|
234
|
+
if !do_convert_rgb.nil? ? do_convert_rgb : @do_convert_rgb
|
235
|
+
image = image.rgb
|
236
|
+
elsif do_convert_grayscale
|
237
|
+
image = image.grayscale
|
238
|
+
end
|
239
|
+
|
240
|
+
# Resize all images
|
241
|
+
if @do_resize
|
242
|
+
image = resize(image)
|
243
|
+
end
|
244
|
+
|
245
|
+
# Resize the image using thumbnail method.
|
246
|
+
if @do_thumbnail
|
247
|
+
image = thumbnail(image, @size, @resample)
|
248
|
+
end
|
249
|
+
|
250
|
+
if @do_center_crop
|
251
|
+
if @crop_size.is_a?(Integer)
|
252
|
+
crop_width = @crop_size
|
253
|
+
crop_height = @crop_size
|
254
|
+
else
|
255
|
+
crop_width = @crop_size["width"]
|
256
|
+
crop_height = @crop_size["height"]
|
257
|
+
end
|
258
|
+
image = image.center_crop(crop_width, crop_height)
|
259
|
+
end
|
260
|
+
|
261
|
+
reshaped_input_size = [image.height, image.width]
|
262
|
+
|
263
|
+
# NOTE: All pixel-level manipulation (i.e., modifying `pixelData`)
|
264
|
+
# occurs with data in the hwc format (height, width, channels),
|
265
|
+
# to emulate the behavior of the original Python code (w/ numpy).
|
266
|
+
pixel_data = image.data
|
267
|
+
img_dims = [image.height, image.width, image.channels]
|
268
|
+
|
269
|
+
if @do_rescale
|
270
|
+
rescale(pixel_data)
|
271
|
+
end
|
272
|
+
|
273
|
+
if !do_normalize.nil? ? do_normalize : @do_normalize
|
274
|
+
image_mean = @image_mean
|
275
|
+
if !@image_mean.is_a?(Array)
|
276
|
+
image_mean = new Array(image.channels) { image_mean }
|
277
|
+
end
|
278
|
+
|
279
|
+
image_std = @image_std
|
280
|
+
if !@image_std.is_a?(Array)
|
281
|
+
image_std = new Array(image.channels) { image_std }
|
282
|
+
end
|
283
|
+
|
284
|
+
if image_mean.length != image.channels || image_std.length != image.channels
|
285
|
+
raise Error, "When set to arrays, the length of `image_mean` (#{image_mean.length}) and `image_std` (#{image_std.length}) must match the number of channels in the image (#{image.channels})."
|
286
|
+
end
|
287
|
+
|
288
|
+
i = 0
|
289
|
+
while i < pixel_data.length
|
290
|
+
image.channels.times do |j|
|
291
|
+
pixel_data[i + j] = (pixel_data[i + j] - image_mean[j]) / image_std[j]
|
292
|
+
end
|
293
|
+
i += image.channels
|
294
|
+
end
|
295
|
+
end
|
296
|
+
|
297
|
+
# do padding after rescaling/normalizing
|
298
|
+
if !do_pad.nil? ? do_pad : @do_pad
|
299
|
+
if @pad_size
|
300
|
+
padded = pad_image(pixel_data, [image.height, image.width, image.channels], @pad_size)
|
301
|
+
pixel_data, img_dims = padded # Update pixel data and image dimensions
|
302
|
+
elsif @size_divisibility
|
303
|
+
raise Todo
|
304
|
+
end
|
305
|
+
end
|
306
|
+
|
307
|
+
if !do_flip_channel_order.nil? ? do_flip_channel_order : @do_flip_channel_order
|
308
|
+
raise Todo
|
309
|
+
end
|
310
|
+
|
311
|
+
# convert to channel dimension format (hwc -> chw)
|
312
|
+
h, w, c = img_dims
|
313
|
+
pixel_values =
|
314
|
+
c.times.map do |ci|
|
315
|
+
h.times.map do |hi|
|
316
|
+
w.times.map do |wi|
|
317
|
+
index = (hi * w * c) + (wi * c) + ci
|
318
|
+
pixel_data[index]
|
319
|
+
end
|
320
|
+
end
|
321
|
+
end
|
322
|
+
|
323
|
+
{
|
324
|
+
original_size: [src_height, src_width],
|
325
|
+
reshaped_input_size: reshaped_input_size,
|
326
|
+
pixel_values: pixel_values
|
327
|
+
}
|
328
|
+
end
|
329
|
+
|
330
|
+
def call(images, *args)
|
331
|
+
if !images.is_a?(Array)
|
332
|
+
images = [images]
|
333
|
+
end
|
334
|
+
|
335
|
+
image_data = images.map { |x| preprocess(x) }
|
336
|
+
|
337
|
+
# Stack pixel values
|
338
|
+
pixel_values = Utils.stack(image_data.map { |x| x[:pixel_values] }, 0)
|
339
|
+
|
340
|
+
{
|
341
|
+
pixel_values: pixel_values,
|
342
|
+
|
343
|
+
# Original sizes of images
|
344
|
+
original_sizes: image_data.map { |x| x[:original_size] },
|
345
|
+
|
346
|
+
# Reshaped sizes of images, before padding or cropping
|
347
|
+
reshaped_input_sizes: image_data.map { |x| x[:reshaped_input_size] }
|
348
|
+
}
|
349
|
+
end
|
350
|
+
end
|
351
|
+
|
352
|
+
class CLIPFeatureExtractor < ImageFeatureExtractor
|
353
|
+
end
|
354
|
+
|
355
|
+
class DPTFeatureExtractor < ImageFeatureExtractor
|
356
|
+
end
|
357
|
+
|
358
|
+
class ViTFeatureExtractor < ImageFeatureExtractor
|
359
|
+
end
|
360
|
+
|
361
|
+
class OwlViTFeatureExtractor < ImageFeatureExtractor
|
362
|
+
def post_process_object_detection(*args)
|
363
|
+
Utils.post_process_object_detection(*args)
|
364
|
+
end
|
365
|
+
end
|
366
|
+
|
367
|
+
class Swin2SRImageProcessor < ImageFeatureExtractor
|
368
|
+
def pad_image(pixel_data, img_dims, pad_size, **options)
|
369
|
+
# NOTE: In this case, `padSize` represents the size of the sliding window for the local attention.
|
370
|
+
# In other words, the image is padded so that its width and height are multiples of `padSize`.
|
371
|
+
image_height, image_width, _image_channels = img_dims
|
372
|
+
|
373
|
+
super(
|
374
|
+
pixel_data,
|
375
|
+
img_dims,
|
376
|
+
{
|
377
|
+
# NOTE: For Swin2SR models, the original python implementation adds padding even when the image's width/height is already
|
378
|
+
# a multiple of `pad_size`. However, this is most likely a bug (PR: https://github.com/mv-lab/swin2sr/pull/19).
|
379
|
+
# For this reason, we only add padding when the image's width/height is not a multiple of `pad_size`.
|
380
|
+
width: image_width + (pad_size - image_width % pad_size) % pad_size,
|
381
|
+
height: image_height + (pad_size - image_height % pad_size) % pad_size
|
382
|
+
},
|
383
|
+
mode: "symmetric",
|
384
|
+
center: false,
|
385
|
+
constant_values: -1,
|
386
|
+
**options
|
387
|
+
)
|
388
|
+
end
|
389
|
+
end
|
390
|
+
|
391
|
+
class DonutFeatureExtractor < ImageFeatureExtractor
|
392
|
+
def pad_image(pixel_data, img_dims, pad_size, **options)
|
393
|
+
_image_height, _image_width, image_channels = img_dims
|
394
|
+
|
395
|
+
image_mean = @image_mean
|
396
|
+
if !image_mean.is_a?(Array)
|
397
|
+
image_mean = new Array(image_channels, image_mean)
|
398
|
+
end
|
399
|
+
|
400
|
+
image_std = @image_std
|
401
|
+
if !image_std.is_a?(Array)
|
402
|
+
image_std = new Array(image_channels, image_std)
|
403
|
+
end
|
404
|
+
|
405
|
+
constant_values = image_mean.map.with_index { |x, i| -x / image_std[i] }
|
406
|
+
|
407
|
+
super(
|
408
|
+
pixel_data,
|
409
|
+
img_dims,
|
410
|
+
pad_size,
|
411
|
+
center: true,
|
412
|
+
# Since normalization is done after padding, we need to use certain constant values to ensure the same behaviour is observed.
|
413
|
+
# For more information, see https://github.com/huggingface/transformers/blob/main/src/transformers/models/donut/image_processing_donut.py#L433-L451
|
414
|
+
constant_values: constant_values,
|
415
|
+
**options
|
416
|
+
)
|
417
|
+
end
|
418
|
+
end
|
419
|
+
|
420
|
+
class DetrFeatureExtractor < ImageFeatureExtractor
|
421
|
+
def call(images)
|
422
|
+
result = super(images)
|
423
|
+
|
424
|
+
# TODO support differently-sized images, for now assume all images are the same size.
|
425
|
+
# TODO support different mask sizes (not just 64x64)
|
426
|
+
# Currently, just fill pixel mask with 1s
|
427
|
+
mask_size = [result[:pixel_values].size, 64, 64]
|
428
|
+
pixel_mask =
|
429
|
+
mask_size[0].times.map do
|
430
|
+
mask_size[1].times.map do
|
431
|
+
mask_size[2].times.map do
|
432
|
+
1
|
433
|
+
end
|
434
|
+
end
|
435
|
+
end
|
436
|
+
|
437
|
+
result.merge(pixel_mask: pixel_mask)
|
438
|
+
end
|
439
|
+
|
440
|
+
def post_process_object_detection(*args)
|
441
|
+
Utils.post_process_object_detection(*args)
|
442
|
+
end
|
443
|
+
|
444
|
+
def remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels)
|
445
|
+
mask_probs_item = []
|
446
|
+
pred_scores_item = []
|
447
|
+
pred_labels_item = []
|
448
|
+
|
449
|
+
class_logits.size.times do |j|
|
450
|
+
cls = class_logits[j]
|
451
|
+
mask = mask_logits[j]
|
452
|
+
|
453
|
+
pred_label = Utils.max(cls)[1]
|
454
|
+
if pred_label == num_labels
|
455
|
+
# Is the background, so we ignore it
|
456
|
+
next
|
457
|
+
end
|
458
|
+
|
459
|
+
scores = Utils.softmax(cls)
|
460
|
+
pred_score = scores[pred_label]
|
461
|
+
if pred_score > object_mask_threshold
|
462
|
+
mask_probs_item << mask
|
463
|
+
pred_scores_item << pred_score
|
464
|
+
pred_labels_item << pred_label
|
465
|
+
end
|
466
|
+
end
|
467
|
+
|
468
|
+
[mask_probs_item, pred_scores_item, pred_labels_item]
|
469
|
+
end
|
470
|
+
|
471
|
+
def check_segment_validity(
|
472
|
+
mask_labels,
|
473
|
+
mask_probs,
|
474
|
+
k,
|
475
|
+
mask_threshold = 0.5,
|
476
|
+
overlap_mask_area_threshold = 0.8
|
477
|
+
)
|
478
|
+
# mask_k is a 1D array of indices, indicating where the mask is equal to k
|
479
|
+
mask_k = []
|
480
|
+
mask_k_area = 0
|
481
|
+
original_area = 0
|
482
|
+
|
483
|
+
mask_probs_k_data = mask_probs[k].flatten
|
484
|
+
|
485
|
+
# Compute the area of all the stuff in query k
|
486
|
+
mask_labels.length.times do |i|
|
487
|
+
if mask_labels[i] == k
|
488
|
+
mask_k << i
|
489
|
+
mask_k_area += 1
|
490
|
+
end
|
491
|
+
|
492
|
+
if mask_probs_k_data[i] >= mask_threshold
|
493
|
+
original_area += 1
|
494
|
+
end
|
495
|
+
end
|
496
|
+
mask_exists = mask_k_area > 0 && original_area > 0
|
497
|
+
|
498
|
+
# Eliminate disconnected tiny segments
|
499
|
+
if mask_exists
|
500
|
+
# Perform additional check
|
501
|
+
area_ratio = mask_k_area / original_area
|
502
|
+
mask_exists = area_ratio > overlap_mask_area_threshold
|
503
|
+
end
|
504
|
+
|
505
|
+
[mask_exists, mask_k]
|
506
|
+
end
|
507
|
+
|
508
|
+
def compute_segments(
|
509
|
+
mask_probs,
|
510
|
+
pred_scores,
|
511
|
+
pred_labels,
|
512
|
+
mask_threshold,
|
513
|
+
overlap_mask_area_threshold,
|
514
|
+
label_ids_to_fuse = nil,
|
515
|
+
target_size = nil
|
516
|
+
)
|
517
|
+
height, width = target_size || Utils.dims(mask_probs[0])
|
518
|
+
|
519
|
+
segmentation = Array.new(height * width)
|
520
|
+
segments = []
|
521
|
+
|
522
|
+
# 1. If target_size is not null, we need to resize the masks to the target size
|
523
|
+
if !target_size.nil?
|
524
|
+
# resize the masks to the target size
|
525
|
+
mask_probs.length.times do |i|
|
526
|
+
mask_probs[i] = Utils.interpolate(mask_probs[i], target_size, "bilinear", false)
|
527
|
+
end
|
528
|
+
end
|
529
|
+
|
530
|
+
# 2. Weigh each mask by its prediction score
|
531
|
+
# NOTE: `mask_probs` is updated in-place
|
532
|
+
#
|
533
|
+
# Temporary storage for the best label/scores for each pixel ([height, width]):
|
534
|
+
mask_labels = Array.new(mask_probs[0].flatten.length)
|
535
|
+
best_scores = Array.new(mask_probs[0].flatten.length, 0)
|
536
|
+
|
537
|
+
mask_probs.length.times do |i|
|
538
|
+
score = pred_scores[i]
|
539
|
+
|
540
|
+
mask_probs_i_data = mask_probs[i].flatten
|
541
|
+
mask_probs_i_dims = Utils.dims(mask_probs[i])
|
542
|
+
|
543
|
+
mask_probs_i_data.length.times do |j|
|
544
|
+
mask_probs_i_data[j] *= score
|
545
|
+
if mask_probs_i_data[j] > best_scores[j]
|
546
|
+
mask_labels[j] = i
|
547
|
+
best_scores[j] = mask_probs_i_data[j]
|
548
|
+
end
|
549
|
+
end
|
550
|
+
|
551
|
+
mask_probs[i] = Utils.reshape(mask_probs_i_data, mask_probs_i_dims)
|
552
|
+
end
|
553
|
+
|
554
|
+
current_segment_id = 0
|
555
|
+
|
556
|
+
# stuff_memory_list = {}
|
557
|
+
pred_labels.length.times do |k|
|
558
|
+
pred_class = pred_labels[k]
|
559
|
+
|
560
|
+
# TODO add `should_fuse`
|
561
|
+
# should_fuse = label_ids_to_fuse.include?(pred_class)
|
562
|
+
|
563
|
+
# Check if mask exists and large enough to be a segment
|
564
|
+
mask_exists, mask_k = check_segment_validity(
|
565
|
+
mask_labels,
|
566
|
+
mask_probs,
|
567
|
+
k,
|
568
|
+
mask_threshold,
|
569
|
+
overlap_mask_area_threshold
|
570
|
+
)
|
571
|
+
|
572
|
+
if !mask_exists
|
573
|
+
# Nothing to see here
|
574
|
+
next
|
575
|
+
end
|
576
|
+
|
577
|
+
current_segment_id += 1
|
578
|
+
|
579
|
+
# Add current object segment to final segmentation map
|
580
|
+
mask_k.each do |index|
|
581
|
+
segmentation[index] = current_segment_id
|
582
|
+
end
|
583
|
+
|
584
|
+
segments << {
|
585
|
+
id: current_segment_id,
|
586
|
+
label_id: pred_class,
|
587
|
+
score: pred_scores[k]
|
588
|
+
}
|
589
|
+
end
|
590
|
+
|
591
|
+
segmentation = Utils.reshape(segmentation, [height, width])
|
592
|
+
|
593
|
+
[segmentation, segments]
|
594
|
+
end
|
595
|
+
|
596
|
+
def post_process_panoptic_segmentation(
|
597
|
+
outputs,
|
598
|
+
threshold: 0.5,
|
599
|
+
mask_threshold: 0.5,
|
600
|
+
overlap_mask_area_threshold: 0.8,
|
601
|
+
label_ids_to_fuse: nil,
|
602
|
+
target_sizes: nil
|
603
|
+
)
|
604
|
+
if label_ids_to_fuse.nil?
|
605
|
+
warn "`label_ids_to_fuse` unset. No instance will be fused."
|
606
|
+
label_ids_to_fuse = Set.new
|
607
|
+
end
|
608
|
+
|
609
|
+
class_queries_logits = outputs[:logits] # [batch_size, num_queries, num_classes+1]
|
610
|
+
masks_queries_logits = outputs[:pred_masks] # [batch_size, num_queries, height, width]
|
611
|
+
|
612
|
+
mask_probs = Utils.sigmoid(masks_queries_logits) # [batch_size, num_queries, height, width]
|
613
|
+
|
614
|
+
batch_size, _num_queries, num_labels = class_queries_logits.size, class_queries_logits[0].size, class_queries_logits[0][0].size
|
615
|
+
num_labels -= 1 # Remove last class (background)
|
616
|
+
|
617
|
+
if !target_sizes.nil? && target_sizes.length != batch_size
|
618
|
+
raise Error, "Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
619
|
+
end
|
620
|
+
|
621
|
+
to_return = []
|
622
|
+
batch_size.times do |i|
|
623
|
+
target_size = !target_sizes.nil? ? target_sizes[i] : nil
|
624
|
+
|
625
|
+
class_logits = class_queries_logits[i]
|
626
|
+
mask_logits = mask_probs[i]
|
627
|
+
|
628
|
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(class_logits, mask_logits, threshold, num_labels)
|
629
|
+
|
630
|
+
if pred_labels_item.length == 0
|
631
|
+
raise Todo
|
632
|
+
end
|
633
|
+
|
634
|
+
# Get segmentation map and segment information of batch item
|
635
|
+
segmentation, segments = compute_segments(
|
636
|
+
mask_probs_item,
|
637
|
+
pred_scores_item,
|
638
|
+
pred_labels_item,
|
639
|
+
mask_threshold,
|
640
|
+
overlap_mask_area_threshold,
|
641
|
+
label_ids_to_fuse,
|
642
|
+
target_size
|
643
|
+
)
|
644
|
+
|
645
|
+
to_return << {
|
646
|
+
segmentation: segmentation,
|
647
|
+
segments_info: segments
|
648
|
+
}
|
649
|
+
end
|
650
|
+
|
651
|
+
to_return
|
652
|
+
end
|
653
|
+
end
|
654
|
+
|
655
|
+
module Utils
|
656
|
+
def self.center_to_corners_format(v)
|
657
|
+
centerX, centerY, width, height = v
|
658
|
+
[
|
659
|
+
centerX - width / 2.0,
|
660
|
+
centerY - height / 2.0,
|
661
|
+
centerX + width / 2.0,
|
662
|
+
centerY + height / 2.0
|
663
|
+
]
|
664
|
+
end
|
665
|
+
|
666
|
+
def self.post_process_object_detection(outputs, threshold = 0.5, target_sizes = nil, is_zero_shot = false)
|
667
|
+
out_logits = outputs[:logits]
|
668
|
+
out_bbox = outputs[:pred_boxes]
|
669
|
+
batch_size, num_boxes, num_classes = out_logits.size, out_logits[0].size, out_logits[0][0].size
|
670
|
+
|
671
|
+
if !target_sizes.nil? && target_sizes.length != batch_size
|
672
|
+
raise Error, "Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
673
|
+
end
|
674
|
+
to_return = []
|
675
|
+
batch_size.times do |i|
|
676
|
+
target_size = !target_sizes.nil? ? target_sizes[i] : nil
|
677
|
+
info = {
|
678
|
+
boxes: [],
|
679
|
+
classes: [],
|
680
|
+
scores: []
|
681
|
+
}
|
682
|
+
logits = out_logits[i]
|
683
|
+
bbox = out_bbox[i]
|
684
|
+
|
685
|
+
num_boxes.times do |j|
|
686
|
+
logit = logits[j]
|
687
|
+
|
688
|
+
indices = []
|
689
|
+
if is_zero_shot
|
690
|
+
# Get indices of classes with high enough probability
|
691
|
+
probs = Utils.sigmoid(logit)
|
692
|
+
probs.length.times do |k|
|
693
|
+
if probs[k] > threshold
|
694
|
+
indices << k
|
695
|
+
end
|
696
|
+
end
|
697
|
+
else
|
698
|
+
# Get most probable class
|
699
|
+
max_index = Utils.max(logit)[1]
|
700
|
+
|
701
|
+
if max_index == num_classes - 1
|
702
|
+
# This is the background class, skip it
|
703
|
+
next
|
704
|
+
end
|
705
|
+
indices << max_index
|
706
|
+
|
707
|
+
# Compute softmax over classes
|
708
|
+
probs = Utils.softmax(logit)
|
709
|
+
end
|
710
|
+
|
711
|
+
indices.each do |index|
|
712
|
+
box = bbox[j]
|
713
|
+
|
714
|
+
# convert to [x0, y0, x1, y1] format
|
715
|
+
box = center_to_corners_format(box)
|
716
|
+
if !target_size.nil?
|
717
|
+
box = box.map.with_index { |x, i| x * target_size[(i + 1) % 2] }
|
718
|
+
end
|
719
|
+
|
720
|
+
info[:boxes] << box
|
721
|
+
info[:classes] << index
|
722
|
+
info[:scores] << probs[index]
|
723
|
+
end
|
724
|
+
end
|
725
|
+
to_return << info
|
726
|
+
end
|
727
|
+
to_return
|
728
|
+
end
|
729
|
+
end
|
730
|
+
|
731
|
+
class Processor
|
732
|
+
attr_reader :feature_extractor
|
733
|
+
|
734
|
+
def initialize(feature_extractor)
|
735
|
+
@feature_extractor = feature_extractor
|
736
|
+
end
|
737
|
+
|
738
|
+
def call(input, *args)
|
739
|
+
@feature_extractor.(input, *args)
|
740
|
+
end
|
741
|
+
end
|
742
|
+
|
743
|
+
class AutoProcessor
|
744
|
+
FEATURE_EXTRACTOR_CLASS_MAPPING = {
|
745
|
+
"ViTFeatureExtractor" => ViTFeatureExtractor,
|
746
|
+
"OwlViTFeatureExtractor" => OwlViTFeatureExtractor,
|
747
|
+
"CLIPFeatureExtractor" => CLIPFeatureExtractor,
|
748
|
+
"DPTFeatureExtractor" => DPTFeatureExtractor,
|
749
|
+
"DetrFeatureExtractor" => DetrFeatureExtractor,
|
750
|
+
"Swin2SRImageProcessor" => Swin2SRImageProcessor,
|
751
|
+
"DonutFeatureExtractor" => DonutFeatureExtractor
|
752
|
+
}
|
753
|
+
|
754
|
+
PROCESSOR_CLASS_MAPPING = {}
|
755
|
+
|
756
|
+
def self.from_pretrained(
|
757
|
+
pretrained_model_name_or_path,
|
758
|
+
progress_callback: nil,
|
759
|
+
config: nil,
|
760
|
+
cache_dir: nil,
|
761
|
+
local_files_only: false,
|
762
|
+
revision: "main",
|
763
|
+
**kwargs
|
764
|
+
)
|
765
|
+
preprocessor_config = config || Utils::Hub::get_model_json(pretrained_model_name_or_path, "preprocessor_config.json", true,
|
766
|
+
progress_callback:,
|
767
|
+
config:,
|
768
|
+
cache_dir:,
|
769
|
+
local_files_only:,
|
770
|
+
revision:
|
771
|
+
)
|
772
|
+
|
773
|
+
# Determine feature extractor class
|
774
|
+
# TODO: Ensure backwards compatibility with old configs
|
775
|
+
key = preprocessor_config["feature_extractor_type"] || preprocessor_config["image_processor_type"]
|
776
|
+
feature_extractor_class = FEATURE_EXTRACTOR_CLASS_MAPPING[key]
|
777
|
+
|
778
|
+
if !feature_extractor_class
|
779
|
+
if preprocessor_config["size"]
|
780
|
+
# Assume ImageFeatureExtractor
|
781
|
+
warn "Feature extractor type #{key.inspect} not found, assuming ImageFeatureExtractor due to size parameter in config."
|
782
|
+
feature_extractor_class = ImageFeatureExtractor
|
783
|
+
else
|
784
|
+
raise Error, "Unknown Feature Extractor type: #{key}"
|
785
|
+
end
|
786
|
+
end
|
787
|
+
|
788
|
+
# If no associated processor class, use default
|
789
|
+
processor_class = PROCESSOR_CLASS_MAPPING[preprocessor_config["processor_class"]] || Processor
|
790
|
+
|
791
|
+
# Instantiate processor and feature extractor
|
792
|
+
feature_extractor = feature_extractor_class.new(preprocessor_config)
|
793
|
+
processor_class.new(feature_extractor)
|
794
|
+
end
|
795
|
+
end
|
796
|
+
end
|