informers 0.2.0 → 1.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/README.md +70 -95
- data/lib/informers/configs.rb +48 -0
- data/lib/informers/env.rb +14 -0
- data/lib/informers/model.rb +31 -0
- data/lib/informers/models.rb +294 -0
- data/lib/informers/pipelines.rb +439 -0
- data/lib/informers/tokenizers.rb +141 -0
- data/lib/informers/utils/core.rb +7 -0
- data/lib/informers/utils/hub.rb +240 -0
- data/lib/informers/utils/math.rb +44 -0
- data/lib/informers/utils/tensor.rb +26 -0
- data/lib/informers/version.rb +1 -1
- data/lib/informers.rb +29 -9
- metadata +21 -41
- data/lib/informers/feature_extraction.rb +0 -59
- data/lib/informers/fill_mask.rb +0 -109
- data/lib/informers/ner.rb +0 -106
- data/lib/informers/question_answering.rb +0 -197
- data/lib/informers/sentiment_analysis.rb +0 -72
- data/lib/informers/text_generation.rb +0 -54
- data/vendor/LICENSE-bert.txt +0 -202
- data/vendor/LICENSE-blingfire.txt +0 -21
- data/vendor/LICENSE-gpt2.txt +0 -24
- data/vendor/LICENSE-roberta.txt +0 -21
- data/vendor/bert_base_cased_tok.bin +0 -0
- data/vendor/bert_base_tok.bin +0 -0
- data/vendor/gpt2.bin +0 -0
- data/vendor/gpt2.i2w +0 -0
- data/vendor/roberta.bin +0 -0
- data/vendor/roberta.i2w +0 -0
    
        checksums.yaml
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 1 | 
             
            ---
         | 
| 2 2 | 
             
            SHA256:
         | 
| 3 | 
            -
              metadata.gz:  | 
| 4 | 
            -
              data.tar.gz:  | 
| 3 | 
            +
              metadata.gz: 3abc738d8975839b873bc5e07bb95305d455a9ac1eec94c432415b713411f20b
         | 
| 4 | 
            +
              data.tar.gz: b9c36794c33316378752dd816fb517714c6d8186062562a778d3c8539ba7d79a
         | 
| 5 5 | 
             
            SHA512:
         | 
| 6 | 
            -
              metadata.gz:  | 
| 7 | 
            -
              data.tar.gz:  | 
| 6 | 
            +
              metadata.gz: ce05bfcdebce333fd6b5abefca703850d3a6d6a50c3c1589bf675e91ae24b424f2e43e6bc0270ad4ea8a520f5be9d636c5e8a5a66deae2c0183adae6cbc517aa
         | 
| 7 | 
            +
              data.tar.gz: 6cc9b08b6e0f9e8ea23f306c0c460dc2557e4ee5113ef26300b517608485ea528fcb9254d51f395c37b557bf1728051c2c3dd8a20a25b5bd4826832a4ff30bf8
         | 
    
        data/CHANGELOG.md
    CHANGED
    
    | @@ -1,3 +1,14 @@ | |
| 1 | 
            +
            ## 1.0.1 (2024-08-27)
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            - Added support for `Supabase/gte-small` to `Model`
         | 
| 4 | 
            +
            - Fixed error with downloads
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            ## 1.0.0 (2024-08-26)
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            - Replaced task classes with `pipeline` method
         | 
| 9 | 
            +
            - Added `Model` class
         | 
| 10 | 
            +
            - Dropped support for Ruby < 3.1
         | 
| 11 | 
            +
             | 
| 1 12 | 
             
            ## 0.2.0 (2022-09-06)
         | 
| 2 13 |  | 
| 3 14 | 
             
            - Added support for `optimum` and `transformers.onnx` models
         | 
    
        data/README.md
    CHANGED
    
    | @@ -1,15 +1,10 @@ | |
| 1 1 | 
             
            # Informers
         | 
| 2 2 |  | 
| 3 | 
            -
            : | 
| 3 | 
            +
            :fire: Fast [transformer](https://github.com/xenova/transformers.js) inference for Ruby
         | 
| 4 4 |  | 
| 5 | 
            -
             | 
| 5 | 
            +
            For non-ONNX models, check out [Transformers.rb](https://github.com/ankane/transformers-ruby) :slightly_smiling_face:
         | 
| 6 6 |  | 
| 7 | 
            -
             | 
| 8 | 
            -
            - Question answering
         | 
| 9 | 
            -
            - Named-entity recognition
         | 
| 10 | 
            -
            - Text generation
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            [](https://github.com/ankane/informers/actions)
         | 
| 7 | 
            +
            [](https://github.com/ankane/informers/actions)
         | 
| 13 8 |  | 
| 14 9 | 
             
            ## Installation
         | 
| 15 10 |  | 
| @@ -21,140 +16,122 @@ gem "informers" | |
| 21 16 |  | 
| 22 17 | 
             
            ## Getting Started
         | 
| 23 18 |  | 
| 24 | 
            -
            - [ | 
| 25 | 
            -
            - [ | 
| 26 | 
            -
            - [Named-entity recognition](#named-entity-recognition)
         | 
| 27 | 
            -
            - [Text generation](#text-generation)
         | 
| 28 | 
            -
            - [Feature extraction](#feature-extraction)
         | 
| 29 | 
            -
            - [Fill mask](#fill-mask)
         | 
| 19 | 
            +
            - [Models](#models)
         | 
| 20 | 
            +
            - [Pipelines](#pipelines)
         | 
| 30 21 |  | 
| 31 | 
            -
             | 
| 22 | 
            +
            ## Models
         | 
| 32 23 |  | 
| 33 | 
            -
             | 
| 24 | 
            +
            ### sentence-transformers/all-MiniLM-L6-v2
         | 
| 34 25 |  | 
| 35 | 
            -
             | 
| 26 | 
            +
            [Docs](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
         | 
| 36 27 |  | 
| 37 28 | 
             
            ```ruby
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            model.predict("This is super cool")
         | 
| 40 | 
            -
            ```
         | 
| 29 | 
            +
            sentences = ["This is an example sentence", "Each sentence is converted"]
         | 
| 41 30 |  | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
            ```ruby
         | 
| 45 | 
            -
            {label: "positive", score: 0.999855186578301}
         | 
| 31 | 
            +
            model = Informers::Model.new("sentence-transformers/all-MiniLM-L6-v2")
         | 
| 32 | 
            +
            embeddings = model.embed(sentences)
         | 
| 46 33 | 
             
            ```
         | 
| 47 34 |  | 
| 48 | 
            -
             | 
| 35 | 
            +
            For a quantized version, use:
         | 
| 49 36 |  | 
| 50 37 | 
             
            ```ruby
         | 
| 51 | 
            -
            model. | 
| 38 | 
            +
            model = Informers::Model.new("Xenova/all-MiniLM-L6-v2", quantized: true)
         | 
| 52 39 | 
             
            ```
         | 
| 53 40 |  | 
| 54 | 
            -
            ###  | 
| 41 | 
            +
            ### Xenova/multi-qa-MiniLM-L6-cos-v1
         | 
| 55 42 |  | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
            Ask a question with some context
         | 
| 43 | 
            +
            [Docs](https://huggingface.co/Xenova/multi-qa-MiniLM-L6-cos-v1)
         | 
| 59 44 |  | 
| 60 45 | 
             
            ```ruby
         | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
            )
         | 
| 46 | 
            +
            query = "How many people live in London?"
         | 
| 47 | 
            +
            docs = ["Around 9 Million people live in London", "London is known for its financial district"]
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            model = Informers::Model.new("Xenova/multi-qa-MiniLM-L6-cos-v1")
         | 
| 50 | 
            +
            query_embedding = model.embed(query)
         | 
| 51 | 
            +
            doc_embeddings = model.embed(docs)
         | 
| 52 | 
            +
            scores = doc_embeddings.map { |e| e.zip(query_embedding).sum { |d, q| d * q } }
         | 
| 53 | 
            +
            doc_score_pairs = docs.zip(scores).sort_by { |d, s| -s }
         | 
| 66 54 | 
             
            ```
         | 
| 67 55 |  | 
| 68 | 
            -
             | 
| 56 | 
            +
            ### mixedbread-ai/mxbai-embed-large-v1
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            [Docs](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
         | 
| 69 59 |  | 
| 70 60 | 
             
            ```ruby
         | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 61 | 
            +
            def transform_query(query)
         | 
| 62 | 
            +
              "Represent this sentence for searching relevant passages: #{query}"
         | 
| 63 | 
            +
            end
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            docs = [
         | 
| 66 | 
            +
              transform_query("puppy"),
         | 
| 67 | 
            +
              "The dog is barking",
         | 
| 68 | 
            +
              "The cat is purring"
         | 
| 69 | 
            +
            ]
         | 
| 73 70 |  | 
| 74 | 
            -
             | 
| 71 | 
            +
            model = Informers::Model.new("mixedbread-ai/mxbai-embed-large-v1")
         | 
| 72 | 
            +
            embeddings = model.embed(docs)
         | 
| 73 | 
            +
            ```
         | 
| 75 74 |  | 
| 76 | 
            -
             | 
| 75 | 
            +
            ### Supabase/gte-small
         | 
| 77 76 |  | 
| 78 | 
            -
             | 
| 77 | 
            +
            [Docs](https://huggingface.co/Supabase/gte-small)
         | 
| 79 78 |  | 
| 80 79 | 
             
            ```ruby
         | 
| 81 | 
            -
             | 
| 82 | 
            -
            model.predict("Nat works at GitHub in San Francisco")
         | 
| 83 | 
            -
            ```
         | 
| 80 | 
            +
            sentences = ["That is a happy person", "That is a very happy person"]
         | 
| 84 81 |  | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
            ```ruby
         | 
| 88 | 
            -
            [
         | 
| 89 | 
            -
              {text: "Nat",           tag: "person",   score: 0.9840519576513487, start: 0,  end: 3},
         | 
| 90 | 
            -
              {text: "GitHub",        tag: "org",      score: 0.9426134775785775, start: 13, end: 19},
         | 
| 91 | 
            -
              {text: "San Francisco", tag: "location", score: 0.9952414982243061, start: 23, end: 36}
         | 
| 92 | 
            -
            ]
         | 
| 82 | 
            +
            model = Informers::Model.new("Supabase/gte-small")
         | 
| 83 | 
            +
            embeddings = model.embed(sentences)
         | 
| 93 84 | 
             
            ```
         | 
| 94 85 |  | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
            First, export the [pretrained model](tools/export.md).
         | 
| 86 | 
            +
            ## Pipelines
         | 
| 98 87 |  | 
| 99 | 
            -
             | 
| 88 | 
            +
            Named-entity recognition
         | 
| 100 89 |  | 
| 101 90 | 
             
            ```ruby
         | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 91 | 
            +
            ner = Informers.pipeline("ner")
         | 
| 92 | 
            +
            ner.("Ruby is a programming language created by Matz")
         | 
| 104 93 | 
             
            ```
         | 
| 105 94 |  | 
| 106 | 
            -
             | 
| 95 | 
            +
            Sentiment analysis
         | 
| 107 96 |  | 
| 108 | 
            -
            ``` | 
| 109 | 
            -
             | 
| 97 | 
            +
            ```ruby
         | 
| 98 | 
            +
            classifier = Informers.pipeline("sentiment-analysis")
         | 
| 99 | 
            +
            classifier.("We are very happy to show you the 🤗 Transformers library.")
         | 
| 110 100 | 
             
            ```
         | 
| 111 101 |  | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
            First, export a [pretrained model](tools/export.md).
         | 
| 102 | 
            +
            Question answering
         | 
| 115 103 |  | 
| 116 104 | 
             
            ```ruby
         | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 105 | 
            +
            qa = Informers.pipeline("question-answering")
         | 
| 106 | 
            +
            qa.("Who invented Ruby?", "Ruby is a programming language created by Matz")
         | 
| 119 107 | 
             
            ```
         | 
| 120 108 |  | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
            First, export a [pretrained model](tools/export.md).
         | 
| 109 | 
            +
            Feature extraction
         | 
| 124 110 |  | 
| 125 111 | 
             
            ```ruby
         | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 112 | 
            +
            extractor = Informers.pipeline("feature-extraction")
         | 
| 113 | 
            +
            extractor.("We are very happy to show you the 🤗 Transformers library.")
         | 
| 128 114 | 
             
            ```
         | 
| 129 115 |  | 
| 130 | 
            -
            ##  | 
| 131 | 
            -
             | 
| 132 | 
            -
            Task | Description | Contributor | License | Link
         | 
| 133 | 
            -
            --- | --- | --- | --- | ---
         | 
| 134 | 
            -
            Sentiment analysis | DistilBERT fine-tuned on SST-2 | Hugging Face | Apache-2.0 | [Link](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)
         | 
| 135 | 
            -
            Question answering | DistilBERT fine-tuned on SQuAD | Hugging Face | Apache-2.0 | [Link](https://huggingface.co/distilbert-base-cased-distilled-squad)
         | 
| 136 | 
            -
            Named-entity recognition | BERT fine-tuned on CoNLL03 | Bayerische Staatsbibliothek | In-progress | [Link](https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english)
         | 
| 137 | 
            -
            Text generation | GPT-2 | OpenAI | [Custom](https://github.com/openai/gpt-2/blob/master/LICENSE) | [Link](https://huggingface.co/gpt2)
         | 
| 116 | 
            +
            ## Credits
         | 
| 138 117 |  | 
| 139 | 
            -
             | 
| 118 | 
            +
            This library was ported from [Transformers.js](https://github.com/xenova/transformers.js) and is available under the same license.
         | 
| 140 119 |  | 
| 141 | 
            -
            ##  | 
| 120 | 
            +
            ## Upgrading
         | 
| 142 121 |  | 
| 143 | 
            -
             | 
| 122 | 
            +
            ### 1.0
         | 
| 144 123 |  | 
| 145 | 
            -
             | 
| 146 | 
            -
            trove push sentiment-analysis.onnx
         | 
| 147 | 
            -
            ```
         | 
| 124 | 
            +
            Task classes have been replaced with the `pipeline` method.
         | 
| 148 125 |  | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 | 
            -
             | 
| 153 | 
            -
            - [Transformers](https://github.com/huggingface/transformers) for transformer models
         | 
| 154 | 
            -
            - [Bling Fire](https://github.com/microsoft/BlingFire) and [BERT](https://github.com/google-research/bert) for high-performance text tokenization
         | 
| 155 | 
            -
            - [ONNX Runtime](https://github.com/Microsoft/onnxruntime) for high-performance inference
         | 
| 126 | 
            +
            ```ruby
         | 
| 127 | 
            +
            # before
         | 
| 128 | 
            +
            model = Informers::SentimentAnalysis.new("sentiment-analysis.onnx")
         | 
| 129 | 
            +
            model.predict("This is super cool")
         | 
| 156 130 |  | 
| 157 | 
            -
             | 
| 131 | 
            +
            # after
         | 
| 132 | 
            +
            model = Informers.pipeline("sentiment-analysis")
         | 
| 133 | 
            +
            model.("This is super cool")
         | 
| 134 | 
            +
            ```
         | 
| 158 135 |  | 
| 159 136 | 
             
            ## History
         | 
| 160 137 |  | 
| @@ -175,7 +152,5 @@ To get started with development: | |
| 175 152 | 
             
            git clone https://github.com/ankane/informers.git
         | 
| 176 153 | 
             
            cd informers
         | 
| 177 154 | 
             
            bundle install
         | 
| 178 | 
            -
             | 
| 179 | 
            -
            export MODELS_PATH=path/to/onnx/models
         | 
| 180 155 | 
             
            bundle exec rake test
         | 
| 181 156 | 
             
            ```
         | 
| @@ -0,0 +1,48 @@ | |
| 1 | 
            +
            module Informers
         | 
| 2 | 
            +
              class PretrainedConfig
         | 
| 3 | 
            +
                attr_reader :model_type, :problem_type, :id2label
         | 
| 4 | 
            +
             | 
| 5 | 
            +
                def initialize(config_json)
         | 
| 6 | 
            +
                  @is_encoder_decoder = false
         | 
| 7 | 
            +
             | 
| 8 | 
            +
                  @model_type = config_json["model_type"]
         | 
| 9 | 
            +
                  @problem_type = config_json["problem_type"]
         | 
| 10 | 
            +
                  @id2label = config_json["id2label"]
         | 
| 11 | 
            +
                end
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def [](key)
         | 
| 14 | 
            +
                  instance_variable_get("@#{key}")
         | 
| 15 | 
            +
                end
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def self.from_pretrained(
         | 
| 18 | 
            +
                  pretrained_model_name_or_path,
         | 
| 19 | 
            +
                  progress_callback: nil,
         | 
| 20 | 
            +
                  config: nil,
         | 
| 21 | 
            +
                  cache_dir: nil,
         | 
| 22 | 
            +
                  local_files_only: false,
         | 
| 23 | 
            +
                  revision: "main",
         | 
| 24 | 
            +
                  **kwargs
         | 
| 25 | 
            +
                )
         | 
| 26 | 
            +
                  data = config || load_config(
         | 
| 27 | 
            +
                    pretrained_model_name_or_path,
         | 
| 28 | 
            +
                    progress_callback:,
         | 
| 29 | 
            +
                    config:,
         | 
| 30 | 
            +
                    cache_dir:,
         | 
| 31 | 
            +
                    local_files_only:,
         | 
| 32 | 
            +
                    revision:
         | 
| 33 | 
            +
                  )
         | 
| 34 | 
            +
                  new(data)
         | 
| 35 | 
            +
                end
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def self.load_config(pretrained_model_name_or_path, **options)
         | 
| 38 | 
            +
                  info = Utils::Hub.get_model_json(pretrained_model_name_or_path, "config.json", true, **options)
         | 
| 39 | 
            +
                  info
         | 
| 40 | 
            +
                end
         | 
| 41 | 
            +
              end
         | 
| 42 | 
            +
             | 
| 43 | 
            +
              class AutoConfig
         | 
| 44 | 
            +
                def self.from_pretrained(...)
         | 
| 45 | 
            +
                  PretrainedConfig.from_pretrained(...)
         | 
| 46 | 
            +
                end
         | 
| 47 | 
            +
              end
         | 
| 48 | 
            +
            end
         | 
| @@ -0,0 +1,14 @@ | |
| 1 | 
            +
            module Informers
         | 
| 2 | 
            +
              CACHE_HOME = ENV.fetch("XDG_CACHE_HOME", File.join(ENV.fetch("HOME"), ".cache"))
         | 
| 3 | 
            +
              DEFAULT_CACHE_DIR = File.expand_path(File.join(CACHE_HOME, "informers"))
         | 
| 4 | 
            +
             | 
| 5 | 
            +
              class << self
         | 
| 6 | 
            +
                attr_accessor :allow_remote_models, :remote_host, :remote_path_template, :cache_dir
         | 
| 7 | 
            +
              end
         | 
| 8 | 
            +
             | 
| 9 | 
            +
              self.allow_remote_models = ENV["INFORMERS_OFFLINE"].to_s.empty?
         | 
| 10 | 
            +
              self.remote_host = "https://huggingface.co/"
         | 
| 11 | 
            +
              self.remote_path_template = "{model}/resolve/{revision}/"
         | 
| 12 | 
            +
             | 
| 13 | 
            +
              self.cache_dir = DEFAULT_CACHE_DIR
         | 
| 14 | 
            +
            end
         | 
| @@ -0,0 +1,31 @@ | |
| 1 | 
            +
            module Informers
         | 
| 2 | 
            +
              class Model
         | 
| 3 | 
            +
                def initialize(model_id, quantized: false)
         | 
| 4 | 
            +
                  @model_id = model_id
         | 
| 5 | 
            +
                  @model = Informers.pipeline("feature-extraction", model_id, quantized: quantized)
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                  # TODO better pattern
         | 
| 8 | 
            +
                  if model_id == "sentence-transformers/all-MiniLM-L6-v2"
         | 
| 9 | 
            +
                    @model.instance_variable_get(:@model).instance_variable_set(:@output_names, ["sentence_embedding"])
         | 
| 10 | 
            +
                  end
         | 
| 11 | 
            +
                end
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def embed(texts)
         | 
| 14 | 
            +
                  is_batched = texts.is_a?(Array)
         | 
| 15 | 
            +
                  texts = [texts] unless is_batched
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                  case @model_id
         | 
| 18 | 
            +
                  when "sentence-transformers/all-MiniLM-L6-v2"
         | 
| 19 | 
            +
                    output = @model.(texts)
         | 
| 20 | 
            +
                  when "Xenova/all-MiniLM-L6-v2", "Xenova/multi-qa-MiniLM-L6-cos-v1", "Supabase/gte-small"
         | 
| 21 | 
            +
                    output = @model.(texts, pooling: "mean", normalize: true)
         | 
| 22 | 
            +
                  when "mixedbread-ai/mxbai-embed-large-v1"
         | 
| 23 | 
            +
                    output = @model.(texts, pooling: "cls")
         | 
| 24 | 
            +
                  else
         | 
| 25 | 
            +
                    raise Error, "model not supported: #{@model_id}"
         | 
| 26 | 
            +
                  end
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                  is_batched ? output : output[0]
         | 
| 29 | 
            +
                end
         | 
| 30 | 
            +
              end
         | 
| 31 | 
            +
            end
         | 
| @@ -0,0 +1,294 @@ | |
| 1 | 
            +
            module Informers
         | 
| 2 | 
            +
              MODEL_TYPES = {
         | 
| 3 | 
            +
                EncoderOnly: 0,
         | 
| 4 | 
            +
                EncoderDecoder: 1,
         | 
| 5 | 
            +
                Seq2Seq: 2,
         | 
| 6 | 
            +
                Vision2Seq: 3,
         | 
| 7 | 
            +
                DecoderOnly: 4,
         | 
| 8 | 
            +
                MaskGeneration: 5
         | 
| 9 | 
            +
              }
         | 
| 10 | 
            +
             | 
| 11 | 
            +
              # NOTE: These will be populated fully later
         | 
| 12 | 
            +
              MODEL_TYPE_MAPPING = {}
         | 
| 13 | 
            +
              MODEL_NAME_TO_CLASS_MAPPING = {}
         | 
| 14 | 
            +
              MODEL_CLASS_TO_NAME_MAPPING = {}
         | 
| 15 | 
            +
             | 
| 16 | 
            +
              class PretrainedMixin
         | 
| 17 | 
            +
                def self.from_pretrained(
         | 
| 18 | 
            +
                  pretrained_model_name_or_path,
         | 
| 19 | 
            +
                  quantized: true,
         | 
| 20 | 
            +
                  progress_callback: nil,
         | 
| 21 | 
            +
                  config: nil,
         | 
| 22 | 
            +
                  cache_dir: nil,
         | 
| 23 | 
            +
                  local_files_only: false,
         | 
| 24 | 
            +
                  revision: "main",
         | 
| 25 | 
            +
                  model_file_name: nil
         | 
| 26 | 
            +
                )
         | 
| 27 | 
            +
                  options = {
         | 
| 28 | 
            +
                    quantized:,
         | 
| 29 | 
            +
                    progress_callback:,
         | 
| 30 | 
            +
                    config:,
         | 
| 31 | 
            +
                    cache_dir:,
         | 
| 32 | 
            +
                    local_files_only:,
         | 
| 33 | 
            +
                    revision:,
         | 
| 34 | 
            +
                    model_file_name:
         | 
| 35 | 
            +
                  }
         | 
| 36 | 
            +
                  config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **options)
         | 
| 37 | 
            +
                  if options[:config].nil?
         | 
| 38 | 
            +
                    # If no config was passed, reuse this config for future processing
         | 
| 39 | 
            +
                    options[:config] = config
         | 
| 40 | 
            +
                  end
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                  if !const_defined?(:MODEL_CLASS_MAPPINGS)
         | 
| 43 | 
            +
                    raise Error, "`MODEL_CLASS_MAPPINGS` not implemented for this type of `AutoClass`: #{name}"
         | 
| 44 | 
            +
                  end
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                  const_get(:MODEL_CLASS_MAPPINGS).each do |model_class_mapping|
         | 
| 47 | 
            +
                    model_info = model_class_mapping[config.model_type]
         | 
| 48 | 
            +
                    if !model_info
         | 
| 49 | 
            +
                      next # Item not found in this mapping
         | 
| 50 | 
            +
                    end
         | 
| 51 | 
            +
                    return model_info[1].from_pretrained(pretrained_model_name_or_path, **options)
         | 
| 52 | 
            +
                  end
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                  if const_defined?(:BASE_IF_FAIL)
         | 
| 55 | 
            +
                    warn "Unknown model class #{config.model_type.inspect}, attempting to construct from base class."
         | 
| 56 | 
            +
                    PreTrainedModel.from_pretrained(pretrained_model_name_or_path, **options)
         | 
| 57 | 
            +
                  else
         | 
| 58 | 
            +
                    raise Error, "Unsupported model type: #{config.model_type}"
         | 
| 59 | 
            +
                  end
         | 
| 60 | 
            +
                end
         | 
| 61 | 
            +
              end
         | 
| 62 | 
            +
             | 
| 63 | 
            +
              class PreTrainedModel
         | 
| 64 | 
            +
                attr_reader :config
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def initialize(config, session)
         | 
| 67 | 
            +
                  super()
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                  @config = config
         | 
| 70 | 
            +
                  @session = session
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                  @output_names = nil
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                  model_name = MODEL_CLASS_TO_NAME_MAPPING[self.class]
         | 
| 75 | 
            +
                  model_type = MODEL_TYPE_MAPPING[model_name]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                  case model_type
         | 
| 78 | 
            +
                  when MODEL_TYPES[:DecoderOnly]
         | 
| 79 | 
            +
                    raise Todo
         | 
| 80 | 
            +
                  when MODEL_TYPES[:Seq2Seq], MODEL_TYPES[:Vision2Seq]
         | 
| 81 | 
            +
                    raise Todo
         | 
| 82 | 
            +
                  when MODEL_TYPES[:EncoderDecoder]
         | 
| 83 | 
            +
                    raise Todo
         | 
| 84 | 
            +
                  else
         | 
| 85 | 
            +
                    @forward = method(:encoder_forward)
         | 
| 86 | 
            +
                  end
         | 
| 87 | 
            +
                end
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def self.from_pretrained(
         | 
| 90 | 
            +
                  pretrained_model_name_or_path,
         | 
| 91 | 
            +
                  quantized: true,
         | 
| 92 | 
            +
                  progress_callback: nil,
         | 
| 93 | 
            +
                  config: nil,
         | 
| 94 | 
            +
                  cache_dir: nil,
         | 
| 95 | 
            +
                  local_files_only: false,
         | 
| 96 | 
            +
                  revision: "main",
         | 
| 97 | 
            +
                  model_file_name: nil
         | 
| 98 | 
            +
                )
         | 
| 99 | 
            +
                  options = {
         | 
| 100 | 
            +
                    quantized:,
         | 
| 101 | 
            +
                    progress_callback:,
         | 
| 102 | 
            +
                    config:,
         | 
| 103 | 
            +
                    cache_dir:,
         | 
| 104 | 
            +
                    local_files_only:,
         | 
| 105 | 
            +
                    revision:,
         | 
| 106 | 
            +
                    model_file_name:
         | 
| 107 | 
            +
                  }
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                  model_name = MODEL_CLASS_TO_NAME_MAPPING[self]
         | 
| 110 | 
            +
                  model_type = MODEL_TYPE_MAPPING[model_name]
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                  if model_type == MODEL_TYPES[:DecoderOnly]
         | 
| 113 | 
            +
                    raise Todo
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                  elsif model_type == MODEL_TYPES[:Seq2Seq] || model_type == MODEL_TYPES[:Vision2Seq]
         | 
| 116 | 
            +
                    raise Todo
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                  elsif model_type == MODEL_TYPES[:MaskGeneration]
         | 
| 119 | 
            +
                    raise Todo
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                  elsif model_type == MODEL_TYPES[:EncoderDecoder]
         | 
| 122 | 
            +
                    raise Todo
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                  else
         | 
| 125 | 
            +
                    if model_type != MODEL_TYPES[:EncoderOnly]
         | 
| 126 | 
            +
                      warn "Model type for '#{model_name || config&.model_type}' not found, assuming encoder-only architecture. Please report this."
         | 
| 127 | 
            +
                    end
         | 
| 128 | 
            +
                    info = [
         | 
| 129 | 
            +
                      AutoConfig.from_pretrained(pretrained_model_name_or_path, **options),
         | 
| 130 | 
            +
                      construct_session(pretrained_model_name_or_path, options[:model_file_name] || "model", **options)
         | 
| 131 | 
            +
                    ]
         | 
| 132 | 
            +
                  end
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                  new(*info)
         | 
| 135 | 
            +
                end
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                def self.construct_session(pretrained_model_name_or_path, file_name, **options)
         | 
| 138 | 
            +
                  model_file_name = "onnx/#{file_name}#{options[:quantized] ? "_quantized" : ""}.onnx"
         | 
| 139 | 
            +
                  path = Utils::Hub.get_model_file(pretrained_model_name_or_path, model_file_name, true, **options)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                  OnnxRuntime::InferenceSession.new(path)
         | 
| 142 | 
            +
                end
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def call(model_inputs)
         | 
| 145 | 
            +
                  @forward.(model_inputs)
         | 
| 146 | 
            +
                end
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                private
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def encoder_forward(model_inputs)
         | 
| 151 | 
            +
                  encoder_feeds = {}
         | 
| 152 | 
            +
                  @session.inputs.each do |input|
         | 
| 153 | 
            +
                    key = input[:name].to_sym
         | 
| 154 | 
            +
                    encoder_feeds[key] = model_inputs[key]
         | 
| 155 | 
            +
                  end
         | 
| 156 | 
            +
                  if @session.inputs.any? { |v| v[:name] == "token_type_ids" } && !encoder_feeds[:token_type_ids]
         | 
| 157 | 
            +
                    raise Todo
         | 
| 158 | 
            +
                  end
         | 
| 159 | 
            +
                  session_run(@session, encoder_feeds)
         | 
| 160 | 
            +
                end
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def session_run(session, inputs)
         | 
| 163 | 
            +
                  checked_inputs = validate_inputs(session, inputs)
         | 
| 164 | 
            +
                  begin
         | 
| 165 | 
            +
                    output = session.run(@output_names, checked_inputs)
         | 
| 166 | 
            +
                    output = replace_tensors(output)
         | 
| 167 | 
            +
                    output
         | 
| 168 | 
            +
                  rescue => e
         | 
| 169 | 
            +
                    raise e
         | 
| 170 | 
            +
                  end
         | 
| 171 | 
            +
                end
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                # TODO
         | 
| 174 | 
            +
                def replace_tensors(obj)
         | 
| 175 | 
            +
                  obj
         | 
| 176 | 
            +
                end
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                # TODO
         | 
| 179 | 
            +
                def validate_inputs(session, inputs)
         | 
| 180 | 
            +
                  inputs
         | 
| 181 | 
            +
                end
         | 
| 182 | 
            +
              end
         | 
| 183 | 
            +
             | 
| 184 | 
            +
              class BertPreTrainedModel < PreTrainedModel
         | 
| 185 | 
            +
              end
         | 
| 186 | 
            +
             | 
| 187 | 
            +
              class BertModel < BertPreTrainedModel
         | 
| 188 | 
            +
              end
         | 
| 189 | 
            +
             | 
| 190 | 
            +
              class BertForSequenceClassification < BertPreTrainedModel
         | 
| 191 | 
            +
                def call(model_inputs)
         | 
| 192 | 
            +
                  SequenceClassifierOutput.new(*super(model_inputs))
         | 
| 193 | 
            +
                end
         | 
| 194 | 
            +
              end
         | 
| 195 | 
            +
             | 
| 196 | 
            +
              class BertForTokenClassification < BertPreTrainedModel
         | 
| 197 | 
            +
                def call(model_inputs)
         | 
| 198 | 
            +
                  TokenClassifierOutput.new(*super(model_inputs))
         | 
| 199 | 
            +
                end
         | 
| 200 | 
            +
              end
         | 
| 201 | 
            +
             | 
| 202 | 
            +
              class DistilBertPreTrainedModel < PreTrainedModel
         | 
| 203 | 
            +
              end
         | 
| 204 | 
            +
             | 
| 205 | 
            +
              class DistilBertModel < DistilBertPreTrainedModel
         | 
| 206 | 
            +
              end
         | 
| 207 | 
            +
             | 
| 208 | 
            +
              class DistilBertForSequenceClassification < DistilBertPreTrainedModel
         | 
| 209 | 
            +
                def call(model_inputs)
         | 
| 210 | 
            +
                  SequenceClassifierOutput.new(*super(model_inputs))
         | 
| 211 | 
            +
                end
         | 
| 212 | 
            +
              end
         | 
| 213 | 
            +
             | 
| 214 | 
            +
              class DistilBertForQuestionAnswering < DistilBertPreTrainedModel
         | 
| 215 | 
            +
                def call(model_inputs)
         | 
| 216 | 
            +
                  QuestionAnsweringModelOutput.new(*super(model_inputs))
         | 
| 217 | 
            +
                end
         | 
| 218 | 
            +
              end
         | 
| 219 | 
            +
             | 
| 220 | 
            +
              MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = {
         | 
| 221 | 
            +
                "bert" => ["BertForSequenceClassification", BertForSequenceClassification],
         | 
| 222 | 
            +
                "distilbert" => ["DistilBertForSequenceClassification", DistilBertForSequenceClassification]
         | 
| 223 | 
            +
              }
         | 
| 224 | 
            +
             | 
| 225 | 
            +
              MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = {
         | 
| 226 | 
            +
                "bert" => ["BertForTokenClassification", BertForTokenClassification]
         | 
| 227 | 
            +
              }
         | 
| 228 | 
            +
             | 
| 229 | 
            +
              MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = {
         | 
| 230 | 
            +
                "distilbert" => ["DistilBertForQuestionAnswering", DistilBertForQuestionAnswering]
         | 
| 231 | 
            +
              }
         | 
| 232 | 
            +
             | 
| 233 | 
            +
              MODEL_CLASS_TYPE_MAPPING = [
         | 
| 234 | 
            +
                [MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
         | 
| 235 | 
            +
                [MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]],
         | 
| 236 | 
            +
                [MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]]
         | 
| 237 | 
            +
              ]
         | 
| 238 | 
            +
             | 
| 239 | 
            +
              MODEL_CLASS_TYPE_MAPPING.each do |mappings, type|
         | 
| 240 | 
            +
                mappings.values.each do |name, model|
         | 
| 241 | 
            +
                  MODEL_TYPE_MAPPING[name] = type
         | 
| 242 | 
            +
                  MODEL_CLASS_TO_NAME_MAPPING[model] = name
         | 
| 243 | 
            +
                  MODEL_NAME_TO_CLASS_MAPPING[name] = model
         | 
| 244 | 
            +
                end
         | 
| 245 | 
            +
              end
         | 
| 246 | 
            +
             | 
| 247 | 
            +
              class AutoModel < PretrainedMixin
         | 
| 248 | 
            +
                MODEL_CLASS_MAPPINGS = MODEL_CLASS_TYPE_MAPPING.map { |x| x[0] }
         | 
| 249 | 
            +
                BASE_IF_FAIL = true
         | 
| 250 | 
            +
              end
         | 
| 251 | 
            +
             | 
| 252 | 
            +
              class AutoModelForSequenceClassification < PretrainedMixin
         | 
| 253 | 
            +
                MODEL_CLASS_MAPPINGS = [MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES]
         | 
| 254 | 
            +
              end
         | 
| 255 | 
            +
             | 
| 256 | 
            +
              class AutoModelForTokenClassification < PretrainedMixin
         | 
| 257 | 
            +
                MODEL_CLASS_MAPPINGS = [MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES]
         | 
| 258 | 
            +
              end
         | 
| 259 | 
            +
             | 
| 260 | 
            +
              class AutoModelForQuestionAnswering < PretrainedMixin
         | 
| 261 | 
            +
                MODEL_CLASS_MAPPINGS = [MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES]
         | 
| 262 | 
            +
              end
         | 
| 263 | 
            +
             | 
| 264 | 
            +
              class ModelOutput
         | 
| 265 | 
            +
              end
         | 
| 266 | 
            +
             | 
| 267 | 
            +
              class SequenceClassifierOutput < ModelOutput
         | 
| 268 | 
            +
                attr_reader :logits
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def initialize(logits)
         | 
| 271 | 
            +
                  super()
         | 
| 272 | 
            +
                  @logits = logits
         | 
| 273 | 
            +
                end
         | 
| 274 | 
            +
              end
         | 
| 275 | 
            +
             | 
| 276 | 
            +
              class TokenClassifierOutput < ModelOutput
         | 
| 277 | 
            +
                attr_reader :logits
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                def initialize(logits)
         | 
| 280 | 
            +
                  super()
         | 
| 281 | 
            +
                  @logits = logits
         | 
| 282 | 
            +
                end
         | 
| 283 | 
            +
              end
         | 
| 284 | 
            +
             | 
| 285 | 
            +
              class QuestionAnsweringModelOutput < ModelOutput
         | 
| 286 | 
            +
                attr_reader :start_logits, :end_logits
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def initialize(start_logits, end_logits)
         | 
| 289 | 
            +
                  super()
         | 
| 290 | 
            +
                  @start_logits = start_logits
         | 
| 291 | 
            +
                  @end_logits = end_logits
         | 
| 292 | 
            +
                end
         | 
| 293 | 
            +
              end
         | 
| 294 | 
            +
            end
         |