hopfield 1.1 → 1.2

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 6f1e7bbc674b32b5f95647dcb42109ce6a37bc0b
4
+ data.tar.gz: 083b4ff167702baf75a0dd050e3fd75de42f1c97
5
+ SHA512:
6
+ metadata.gz: 110a161f19c05846bde6fa84d4775af490ec44c7c3352b71338ca4c436ce793ac3b27b09e410fc70b85b1337c33c15f59fd9eefd85c339b9a99c57032d1aebd3
7
+ data.tar.gz: 56c9fb943f7be0e5d23983c5db41e8739b1c10118252828bfa9a21f40af5d42cf69aa59ae1437d28bd70e426b2bbb1e2aa7224dc7d51470345f46544a4d47759
data/README.md CHANGED
@@ -24,7 +24,7 @@ network.runs # how many propagations it took
24
24
  ```
25
25
 
26
26
  ## TODO
27
- - Make this a C extension to boost performance
27
+ - Improve C extension to boost performance
28
28
  - Turn the random picking of neurons into pseudo randomness to prevent the same neuron to be propagated over and over again
29
29
  - Implement the Storkey learning rule to provide an alternative for the already implemented Hebbian learning rule.
30
30
  - Release the examples
@@ -0,0 +1,3 @@
1
+ require 'mkmf'
2
+
3
+ create_makefile('hopfield/hopfield')
@@ -0,0 +1,47 @@
1
+ #include <ruby.h>
2
+
3
+ static VALUE m_hopfield;
4
+
5
+ static VALUE hopfield_calculate_weights_hebbian(VALUE self, VALUE patterns, VALUE neurons_count) {
6
+ Check_Type(patterns, T_ARRAY);
7
+ Check_Type(neurons_count, T_FIXNUM);
8
+
9
+ int n_count = FIX2INT(neurons_count);
10
+
11
+ VALUE weights;
12
+ weights = rb_ary_new2(n_count);
13
+ for(int i = 0; i < n_count-1; i++) {
14
+ rb_ary_store(weights, i, rb_ary_new2(n_count));
15
+ }
16
+
17
+ int patterns_count = (int) RARRAY_LEN(patterns);
18
+
19
+ for(int i = 0; i < n_count; i++) {
20
+ for(int j = (i+1); j < n_count; j++) {
21
+ if (j == i)
22
+ continue;
23
+
24
+ float weight = 0.0;
25
+ for(int p = 0; p < patterns_count; p ++) {
26
+ weight += FIX2INT(rb_ary_entry(rb_ary_entry(patterns, p), i)) * FIX2INT(rb_ary_entry(rb_ary_entry(patterns, p), j));
27
+ }
28
+
29
+ weight = weight / patterns_count;
30
+
31
+ int w_i = (i < j) ? i : j;
32
+ int w_j = (j > i) ? j : i;
33
+
34
+ rb_ary_store(rb_ary_entry(weights, w_i), w_j, rb_float_new(weight));
35
+ }
36
+ }
37
+
38
+ return weights;
39
+ }
40
+
41
+ /* ruby calls this to load the extension */
42
+ void Init_hopfield(void) {
43
+
44
+ m_hopfield = rb_define_module("Hopfield");
45
+
46
+ rb_define_module_function(m_hopfield, "calculate_weights_hebbian", hopfield_calculate_weights_hebbian, 2);
47
+ }
@@ -5,6 +5,8 @@ module Hopfield
5
5
  HEBBIAN_RULE = 1
6
6
  STORKEY_RULE = 2
7
7
 
8
+ USE_C_EXTENSION = true
9
+
8
10
  class Training
9
11
  attr_accessor :patterns, :neurons, :weights, :pattern_dimensions, :rule
10
12
 
@@ -48,18 +50,23 @@ module Hopfield
48
50
  # Neurons are fully connected; every neuron has a weight value for every other neuron
49
51
  case rule
50
52
  when Hopfield::HEBBIAN_RULE
51
- self.neurons.count.times do |i|
52
- for j in ((i+1)...self.neurons.count) do
53
- next if i == j
54
- weight = 0.0
55
- self.patterns.each do |pattern|
56
- weight += pattern[i] * pattern[j]
53
+ if USE_C_EXTENSION
54
+ self.weights = Hopfield::calculate_weights_hebbian(self.patterns, self.neurons.count)
55
+ else
56
+ # Ruby equivalent of the calculate_weights_hebbian C function
57
+ self.neurons.count.times do |i|
58
+ for j in ((i+1)...self.neurons.count) do
59
+ next if i == j
60
+ weight = 0.0
61
+ self.patterns.each do |pattern|
62
+ weight += pattern[i] * pattern[j]
63
+ end
64
+ set_weight(i, j, weight / self.patterns.count)
57
65
  end
58
- set_weight(i, j, weight / self.patterns.count)
59
66
  end
60
67
  end
61
68
  when Hopfield::STORKEY_RULE
62
-
69
+ # Still has to be implemented in both Ruby and C
63
70
  else
64
71
  abort 'Unknown learning rule specified, either use Hopfield::STORKEY_RULE or Hopfield::HEBBIAN_RULE'
65
72
  end
data/lib/hopfield.rb CHANGED
@@ -1,4 +1,4 @@
1
- require 'matrix'
1
+ require 'hopfield/hopfield'
2
2
 
3
3
  require_relative 'hopfield/neuron'
4
4
  require_relative 'hopfield/training'
metadata CHANGED
@@ -1,46 +1,41 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: hopfield
3
3
  version: !ruby/object:Gem::Version
4
- version: '1.1'
5
- prerelease:
4
+ version: '1.2'
6
5
  platform: ruby
7
6
  authors:
8
7
  - Bart Olsthoorn
9
8
  autorequire:
10
9
  bindir: bin
11
10
  cert_chain: []
12
- date: 2013-05-11 00:00:00.000000000 Z
11
+ date: 2013-07-03 00:00:00.000000000 Z
13
12
  dependencies:
14
13
  - !ruby/object:Gem::Dependency
15
14
  name: rspec
16
15
  requirement: !ruby/object:Gem::Requirement
17
- none: false
18
16
  requirements:
19
- - - ! '>='
17
+ - - '>='
20
18
  - !ruby/object:Gem::Version
21
19
  version: '0'
22
20
  type: :development
23
21
  prerelease: false
24
22
  version_requirements: !ruby/object:Gem::Requirement
25
- none: false
26
23
  requirements:
27
- - - ! '>='
24
+ - - '>='
28
25
  - !ruby/object:Gem::Version
29
26
  version: '0'
30
27
  - !ruby/object:Gem::Dependency
31
28
  name: chunky_png
32
29
  requirement: !ruby/object:Gem::Requirement
33
- none: false
34
30
  requirements:
35
- - - ! '>='
31
+ - - '>='
36
32
  - !ruby/object:Gem::Version
37
33
  version: '0'
38
34
  type: :development
39
35
  prerelease: false
40
36
  version_requirements: !ruby/object:Gem::Requirement
41
- none: false
42
37
  requirements:
43
- - - ! '>='
38
+ - - '>='
44
39
  - !ruby/object:Gem::Version
45
40
  version: '0'
46
41
  description: Hopfield networks can be used for smart pattern recollections. It's recalling
@@ -48,37 +43,40 @@ description: Hopfield networks can be used for smart pattern recollections. It's
48
43
  email:
49
44
  - bartolsthoorn@gmail.com
50
45
  executables: []
51
- extensions: []
46
+ extensions:
47
+ - ext/hopfield/extconf.rb
52
48
  extra_rdoc_files: []
53
49
  files:
54
50
  - lib/hopfield/network.rb
55
51
  - lib/hopfield/neuron.rb
56
52
  - lib/hopfield/training.rb
57
53
  - lib/hopfield.rb
54
+ - ext/hopfield/hopfield.c
55
+ - ext/hopfield/extconf.rb
58
56
  - LICENSE
59
57
  - README.md
60
58
  homepage: http://github.com/bartolsthoorn/hopfield-ruby
61
- licenses: []
59
+ licenses:
60
+ - MIT
61
+ metadata: {}
62
62
  post_install_message:
63
63
  rdoc_options: []
64
64
  require_paths:
65
65
  - lib
66
66
  required_ruby_version: !ruby/object:Gem::Requirement
67
- none: false
68
67
  requirements:
69
- - - ! '>='
68
+ - - '>='
70
69
  - !ruby/object:Gem::Version
71
70
  version: '0'
72
71
  required_rubygems_version: !ruby/object:Gem::Requirement
73
- none: false
74
72
  requirements:
75
- - - ! '>='
73
+ - - '>='
76
74
  - !ruby/object:Gem::Version
77
75
  version: '0'
78
76
  requirements: []
79
77
  rubyforge_project:
80
- rubygems_version: 1.8.25
78
+ rubygems_version: 2.0.3
81
79
  signing_key:
82
- specification_version: 3
80
+ specification_version: 4
83
81
  summary: Ruby implementation of a Hopfield Network
84
82
  test_files: []