hopfield 1.1 → 1.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +1 -1
- data/ext/hopfield/extconf.rb +3 -0
- data/ext/hopfield/hopfield.c +47 -0
- data/lib/hopfield/training.rb +15 -8
- data/lib/hopfield.rb +1 -1
- metadata +17 -19
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 6f1e7bbc674b32b5f95647dcb42109ce6a37bc0b
|
4
|
+
data.tar.gz: 083b4ff167702baf75a0dd050e3fd75de42f1c97
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 110a161f19c05846bde6fa84d4775af490ec44c7c3352b71338ca4c436ce793ac3b27b09e410fc70b85b1337c33c15f59fd9eefd85c339b9a99c57032d1aebd3
|
7
|
+
data.tar.gz: 56c9fb943f7be0e5d23983c5db41e8739b1c10118252828bfa9a21f40af5d42cf69aa59ae1437d28bd70e426b2bbb1e2aa7224dc7d51470345f46544a4d47759
|
data/README.md
CHANGED
@@ -24,7 +24,7 @@ network.runs # how many propagations it took
|
|
24
24
|
```
|
25
25
|
|
26
26
|
## TODO
|
27
|
-
-
|
27
|
+
- Improve C extension to boost performance
|
28
28
|
- Turn the random picking of neurons into pseudo randomness to prevent the same neuron to be propagated over and over again
|
29
29
|
- Implement the Storkey learning rule to provide an alternative for the already implemented Hebbian learning rule.
|
30
30
|
- Release the examples
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#include <ruby.h>
|
2
|
+
|
3
|
+
static VALUE m_hopfield;
|
4
|
+
|
5
|
+
static VALUE hopfield_calculate_weights_hebbian(VALUE self, VALUE patterns, VALUE neurons_count) {
|
6
|
+
Check_Type(patterns, T_ARRAY);
|
7
|
+
Check_Type(neurons_count, T_FIXNUM);
|
8
|
+
|
9
|
+
int n_count = FIX2INT(neurons_count);
|
10
|
+
|
11
|
+
VALUE weights;
|
12
|
+
weights = rb_ary_new2(n_count);
|
13
|
+
for(int i = 0; i < n_count-1; i++) {
|
14
|
+
rb_ary_store(weights, i, rb_ary_new2(n_count));
|
15
|
+
}
|
16
|
+
|
17
|
+
int patterns_count = (int) RARRAY_LEN(patterns);
|
18
|
+
|
19
|
+
for(int i = 0; i < n_count; i++) {
|
20
|
+
for(int j = (i+1); j < n_count; j++) {
|
21
|
+
if (j == i)
|
22
|
+
continue;
|
23
|
+
|
24
|
+
float weight = 0.0;
|
25
|
+
for(int p = 0; p < patterns_count; p ++) {
|
26
|
+
weight += FIX2INT(rb_ary_entry(rb_ary_entry(patterns, p), i)) * FIX2INT(rb_ary_entry(rb_ary_entry(patterns, p), j));
|
27
|
+
}
|
28
|
+
|
29
|
+
weight = weight / patterns_count;
|
30
|
+
|
31
|
+
int w_i = (i < j) ? i : j;
|
32
|
+
int w_j = (j > i) ? j : i;
|
33
|
+
|
34
|
+
rb_ary_store(rb_ary_entry(weights, w_i), w_j, rb_float_new(weight));
|
35
|
+
}
|
36
|
+
}
|
37
|
+
|
38
|
+
return weights;
|
39
|
+
}
|
40
|
+
|
41
|
+
/* ruby calls this to load the extension */
|
42
|
+
void Init_hopfield(void) {
|
43
|
+
|
44
|
+
m_hopfield = rb_define_module("Hopfield");
|
45
|
+
|
46
|
+
rb_define_module_function(m_hopfield, "calculate_weights_hebbian", hopfield_calculate_weights_hebbian, 2);
|
47
|
+
}
|
data/lib/hopfield/training.rb
CHANGED
@@ -5,6 +5,8 @@ module Hopfield
|
|
5
5
|
HEBBIAN_RULE = 1
|
6
6
|
STORKEY_RULE = 2
|
7
7
|
|
8
|
+
USE_C_EXTENSION = true
|
9
|
+
|
8
10
|
class Training
|
9
11
|
attr_accessor :patterns, :neurons, :weights, :pattern_dimensions, :rule
|
10
12
|
|
@@ -48,18 +50,23 @@ module Hopfield
|
|
48
50
|
# Neurons are fully connected; every neuron has a weight value for every other neuron
|
49
51
|
case rule
|
50
52
|
when Hopfield::HEBBIAN_RULE
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
53
|
+
if USE_C_EXTENSION
|
54
|
+
self.weights = Hopfield::calculate_weights_hebbian(self.patterns, self.neurons.count)
|
55
|
+
else
|
56
|
+
# Ruby equivalent of the calculate_weights_hebbian C function
|
57
|
+
self.neurons.count.times do |i|
|
58
|
+
for j in ((i+1)...self.neurons.count) do
|
59
|
+
next if i == j
|
60
|
+
weight = 0.0
|
61
|
+
self.patterns.each do |pattern|
|
62
|
+
weight += pattern[i] * pattern[j]
|
63
|
+
end
|
64
|
+
set_weight(i, j, weight / self.patterns.count)
|
57
65
|
end
|
58
|
-
set_weight(i, j, weight / self.patterns.count)
|
59
66
|
end
|
60
67
|
end
|
61
68
|
when Hopfield::STORKEY_RULE
|
62
|
-
|
69
|
+
# Still has to be implemented in both Ruby and C
|
63
70
|
else
|
64
71
|
abort 'Unknown learning rule specified, either use Hopfield::STORKEY_RULE or Hopfield::HEBBIAN_RULE'
|
65
72
|
end
|
data/lib/hopfield.rb
CHANGED
metadata
CHANGED
@@ -1,46 +1,41 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: hopfield
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: '1.
|
5
|
-
prerelease:
|
4
|
+
version: '1.2'
|
6
5
|
platform: ruby
|
7
6
|
authors:
|
8
7
|
- Bart Olsthoorn
|
9
8
|
autorequire:
|
10
9
|
bindir: bin
|
11
10
|
cert_chain: []
|
12
|
-
date: 2013-
|
11
|
+
date: 2013-07-03 00:00:00.000000000 Z
|
13
12
|
dependencies:
|
14
13
|
- !ruby/object:Gem::Dependency
|
15
14
|
name: rspec
|
16
15
|
requirement: !ruby/object:Gem::Requirement
|
17
|
-
none: false
|
18
16
|
requirements:
|
19
|
-
- -
|
17
|
+
- - '>='
|
20
18
|
- !ruby/object:Gem::Version
|
21
19
|
version: '0'
|
22
20
|
type: :development
|
23
21
|
prerelease: false
|
24
22
|
version_requirements: !ruby/object:Gem::Requirement
|
25
|
-
none: false
|
26
23
|
requirements:
|
27
|
-
- -
|
24
|
+
- - '>='
|
28
25
|
- !ruby/object:Gem::Version
|
29
26
|
version: '0'
|
30
27
|
- !ruby/object:Gem::Dependency
|
31
28
|
name: chunky_png
|
32
29
|
requirement: !ruby/object:Gem::Requirement
|
33
|
-
none: false
|
34
30
|
requirements:
|
35
|
-
- -
|
31
|
+
- - '>='
|
36
32
|
- !ruby/object:Gem::Version
|
37
33
|
version: '0'
|
38
34
|
type: :development
|
39
35
|
prerelease: false
|
40
36
|
version_requirements: !ruby/object:Gem::Requirement
|
41
|
-
none: false
|
42
37
|
requirements:
|
43
|
-
- -
|
38
|
+
- - '>='
|
44
39
|
- !ruby/object:Gem::Version
|
45
40
|
version: '0'
|
46
41
|
description: Hopfield networks can be used for smart pattern recollections. It's recalling
|
@@ -48,37 +43,40 @@ description: Hopfield networks can be used for smart pattern recollections. It's
|
|
48
43
|
email:
|
49
44
|
- bartolsthoorn@gmail.com
|
50
45
|
executables: []
|
51
|
-
extensions:
|
46
|
+
extensions:
|
47
|
+
- ext/hopfield/extconf.rb
|
52
48
|
extra_rdoc_files: []
|
53
49
|
files:
|
54
50
|
- lib/hopfield/network.rb
|
55
51
|
- lib/hopfield/neuron.rb
|
56
52
|
- lib/hopfield/training.rb
|
57
53
|
- lib/hopfield.rb
|
54
|
+
- ext/hopfield/hopfield.c
|
55
|
+
- ext/hopfield/extconf.rb
|
58
56
|
- LICENSE
|
59
57
|
- README.md
|
60
58
|
homepage: http://github.com/bartolsthoorn/hopfield-ruby
|
61
|
-
licenses:
|
59
|
+
licenses:
|
60
|
+
- MIT
|
61
|
+
metadata: {}
|
62
62
|
post_install_message:
|
63
63
|
rdoc_options: []
|
64
64
|
require_paths:
|
65
65
|
- lib
|
66
66
|
required_ruby_version: !ruby/object:Gem::Requirement
|
67
|
-
none: false
|
68
67
|
requirements:
|
69
|
-
- -
|
68
|
+
- - '>='
|
70
69
|
- !ruby/object:Gem::Version
|
71
70
|
version: '0'
|
72
71
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
73
|
-
none: false
|
74
72
|
requirements:
|
75
|
-
- -
|
73
|
+
- - '>='
|
76
74
|
- !ruby/object:Gem::Version
|
77
75
|
version: '0'
|
78
76
|
requirements: []
|
79
77
|
rubyforge_project:
|
80
|
-
rubygems_version:
|
78
|
+
rubygems_version: 2.0.3
|
81
79
|
signing_key:
|
82
|
-
specification_version:
|
80
|
+
specification_version: 4
|
83
81
|
summary: Ruby implementation of a Hopfield Network
|
84
82
|
test_files: []
|