hopfield 1.2 → 1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +1 -1
- data/ext/hopfield/hopfield.c +55 -0
- data/lib/hopfield.rb +3 -3
- data/lib/hopfield/network.rb +35 -15
- data/lib/hopfield/training.rb +1 -3
- metadata +2 -17
- data/lib/hopfield/neuron.rb +0 -5
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: eb3940e29051c8015264955b03947a57aca274bf
|
4
|
+
data.tar.gz: 52ad2e0455663abb7d345391d31383bad489daf9
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 0bf65127ea952843e26c0089e7f1e0eae112b336382b5e106726779f09d723312905e19d0add3971f6ce5e751c132302a5062e904dc645baa6e4ebb554a30aab
|
7
|
+
data.tar.gz: 8eaa5500db84c1891bded3e90035697782c6e610655a9ebad241d04af136f6e61ed9b14fec4fa961afcc15c1332486973241a89a02f299cd79bf569870b756bc
|
data/README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
# Hopfield Network in Ruby
|
2
2
|
|
3
|
-
A
|
3
|
+
A short and simple Ruby implementation of a Hopfield Network. Includes a small C extension to speed up the CPU intensive loops.
|
4
4
|
|
5
5
|
## What is it?
|
6
6
|
[Hopfield Networks](http://en.wikipedia.org/wiki/Hopfield_network) model the way humans recall memories, or more specific, how neurons recall the pattern. This means you first train the network with a set of known patterns and then pass an unknown or perturbed version of the pattern. The neurons will restore the missing information to create an exact match.
|
data/ext/hopfield/hopfield.c
CHANGED
@@ -38,10 +38,65 @@ static VALUE hopfield_calculate_weights_hebbian(VALUE self, VALUE patterns, VALU
|
|
38
38
|
return weights;
|
39
39
|
}
|
40
40
|
|
41
|
+
static VALUE hopfield_transfer_activation(float activation) {
|
42
|
+
return INT2FIX((activation >= 0) ? 1 : -1);
|
43
|
+
}
|
44
|
+
|
45
|
+
static VALUE hopfield_calculate_neuron_state(VALUE self, VALUE neuron_index, VALUE neurons, VALUE weights) {
|
46
|
+
Check_Type(neuron_index, T_FIXNUM);
|
47
|
+
Check_Type(neurons, T_ARRAY);
|
48
|
+
Check_Type(weights, T_ARRAY);
|
49
|
+
|
50
|
+
float activation = 0.0;
|
51
|
+
int i = FIX2INT(neuron_index);
|
52
|
+
int neurons_count = (int) RARRAY_LEN(neurons);
|
53
|
+
|
54
|
+
for(int j = 0; j < neurons_count; j++) {
|
55
|
+
if (j == i)
|
56
|
+
continue;
|
57
|
+
|
58
|
+
int w_i = (i < j) ? i : j;
|
59
|
+
int w_j = (j > i) ? j : i;
|
60
|
+
|
61
|
+
activation += NUM2DBL(rb_ary_entry(rb_ary_entry(weights, w_i), w_j)) * NUM2DBL(rb_ary_entry(neurons, j));
|
62
|
+
}
|
63
|
+
|
64
|
+
return hopfield_transfer_activation(activation);
|
65
|
+
}
|
66
|
+
|
67
|
+
static VALUE hopfield_calculate_state_errors(VALUE self, VALUE state, VALUE patterns) {
|
68
|
+
Check_Type(state, T_ARRAY);
|
69
|
+
Check_Type(patterns, T_ARRAY);
|
70
|
+
|
71
|
+
// Compare state to patterns and calculate errors for each pattern
|
72
|
+
int patterns_count = (int) RARRAY_LEN(patterns);
|
73
|
+
int pattern_length = (int) RARRAY_LEN(state);
|
74
|
+
|
75
|
+
VALUE errors = rb_ary_new2(patterns_count);
|
76
|
+
|
77
|
+
for(int p = 0; p < patterns_count; p++) {
|
78
|
+
int sum = 0;
|
79
|
+
|
80
|
+
for(int c = 0; c < pattern_length; c++) {
|
81
|
+
int state_value = FIX2INT(rb_ary_entry(state, c));
|
82
|
+
int pattern_value = FIX2INT(rb_ary_entry(rb_ary_entry(patterns, p), c));
|
83
|
+
if (pattern_value != state_value)
|
84
|
+
sum++;
|
85
|
+
}
|
86
|
+
|
87
|
+
rb_ary_push(errors, INT2FIX(sum));
|
88
|
+
}
|
89
|
+
|
90
|
+
return errors;
|
91
|
+
}
|
92
|
+
|
41
93
|
/* ruby calls this to load the extension */
|
42
94
|
void Init_hopfield(void) {
|
43
95
|
|
44
96
|
m_hopfield = rb_define_module("Hopfield");
|
45
97
|
|
46
98
|
rb_define_module_function(m_hopfield, "calculate_weights_hebbian", hopfield_calculate_weights_hebbian, 2);
|
99
|
+
rb_define_module_function(m_hopfield, "calculate_neuron_state", hopfield_calculate_neuron_state, 3);
|
100
|
+
|
101
|
+
rb_define_module_function(m_hopfield, "calculate_state_errors", hopfield_calculate_state_errors, 2);
|
47
102
|
}
|
data/lib/hopfield.rb
CHANGED
@@ -1,12 +1,12 @@
|
|
1
1
|
require 'hopfield/hopfield'
|
2
2
|
|
3
|
-
require_relative 'hopfield/neuron'
|
4
3
|
require_relative 'hopfield/training'
|
5
4
|
require_relative 'hopfield/network'
|
6
5
|
|
7
6
|
module Hopfield
|
8
|
-
# Hopfield consists of
|
9
|
-
# => Neuron (hopfield/neuron.rb)
|
7
|
+
# Hopfield consists of two parts:
|
10
8
|
# => Training (hopfield/training.rb)
|
11
9
|
# => Network (hopfield/network.rb)
|
10
|
+
|
11
|
+
USE_C_EXTENSION = true
|
12
12
|
end
|
data/lib/hopfield/network.rb
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
module Hopfield
|
2
2
|
class Network
|
3
|
-
attr_accessor :neurons, :patterns, :weights, :state, :pattern_dimensions, :last_error, :runs
|
3
|
+
attr_accessor :neurons, :patterns, :weights, :state, :pattern_dimensions, :last_error, :runs, :random_pool, :random_pool_index
|
4
4
|
|
5
5
|
def initialize(training, perturbed_pattern)
|
6
6
|
unless training.class.to_s == 'Hopfield::Training'
|
@@ -20,9 +20,14 @@ module Hopfield
|
|
20
20
|
self.pattern_dimensions = training.pattern_dimensions
|
21
21
|
|
22
22
|
self.neurons.count.times do |i|
|
23
|
-
self.neurons[i]
|
23
|
+
self.neurons[i] = perturbed_pattern[i]
|
24
24
|
end
|
25
25
|
|
26
|
+
# Create a semi random pool to improve performance
|
27
|
+
# This prevents propagation of the same neuron over and over again
|
28
|
+
self.random_pool = (0...self.neurons.count).to_a.shuffle
|
29
|
+
self.random_pool_index = rand(self.neurons.count)
|
30
|
+
|
26
31
|
self.last_error = [1]
|
27
32
|
self.runs = 0
|
28
33
|
end
|
@@ -42,24 +47,39 @@ module Hopfield
|
|
42
47
|
|
43
48
|
def propagate
|
44
49
|
# Select random neuron
|
45
|
-
|
50
|
+
if self.random_pool_index == self.random_pool.size - 1
|
51
|
+
self.random_pool_index = 0
|
52
|
+
self.random_pool.shuffle!
|
53
|
+
end
|
46
54
|
|
47
|
-
|
55
|
+
i = self.random_pool[self.random_pool_index]
|
56
|
+
self.random_pool_index += 1
|
48
57
|
|
49
|
-
|
50
|
-
|
51
|
-
|
58
|
+
if USE_C_EXTENSION
|
59
|
+
output = Hopfield::calculate_neuron_state(i, self.neurons, self.weights)
|
60
|
+
else
|
61
|
+
# Ruby equivalent of calculate_neuron_state C function
|
62
|
+
activation = 0.0
|
63
|
+
self.neurons.each_with_index do |other, j|
|
64
|
+
next if i == j
|
65
|
+
activation += get_weight(i, j)*other
|
66
|
+
end
|
67
|
+
output = transfer(activation)
|
52
68
|
end
|
53
69
|
|
54
|
-
|
55
|
-
|
56
|
-
self.neurons[i].state = output
|
70
|
+
change = output != self.neurons[i]
|
71
|
+
self.neurons[i] = output
|
57
72
|
|
58
73
|
# Compile state of outputs
|
59
|
-
state =
|
74
|
+
state = self.neurons
|
60
75
|
|
61
76
|
# Calculate the current error
|
62
|
-
|
77
|
+
if USE_C_EXTENSION
|
78
|
+
self.last_error = Hopfield::calculate_state_errors(state, self.patterns)
|
79
|
+
else
|
80
|
+
# Ruby equivalent of calcuting the current error
|
81
|
+
self.last_error = calculate_error(state)
|
82
|
+
end
|
63
83
|
|
64
84
|
# Convert state to binary and back to a multi dimensional array
|
65
85
|
state = to_binary(state)
|
@@ -69,9 +89,9 @@ module Hopfield
|
|
69
89
|
self.runs += 1
|
70
90
|
|
71
91
|
return {
|
72
|
-
:
|
73
|
-
:
|
74
|
-
:
|
92
|
+
did_change: change,
|
93
|
+
state: self.state,
|
94
|
+
error: self.last_error
|
75
95
|
}
|
76
96
|
end
|
77
97
|
|
data/lib/hopfield/training.rb
CHANGED
@@ -5,8 +5,6 @@ module Hopfield
|
|
5
5
|
HEBBIAN_RULE = 1
|
6
6
|
STORKEY_RULE = 2
|
7
7
|
|
8
|
-
USE_C_EXTENSION = true
|
9
|
-
|
10
8
|
class Training
|
11
9
|
attr_accessor :patterns, :neurons, :weights, :pattern_dimensions, :rule
|
12
10
|
|
@@ -31,7 +29,7 @@ module Hopfield
|
|
31
29
|
self.patterns = self.patterns.map { |pattern| pattern.map { |value| (value == 0 ? -1 : value) }}
|
32
30
|
|
33
31
|
# Create neurons
|
34
|
-
self.neurons = Array.new(self.patterns.first.length) {
|
32
|
+
self.neurons = Array.new(self.patterns.first.length) { 0.0 }
|
35
33
|
|
36
34
|
self.weights = Array.new
|
37
35
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: hopfield
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: '1.
|
4
|
+
version: '1.3'
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Bart Olsthoorn
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2013-07-
|
11
|
+
date: 2013-07-15 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rspec
|
@@ -24,20 +24,6 @@ dependencies:
|
|
24
24
|
- - '>='
|
25
25
|
- !ruby/object:Gem::Version
|
26
26
|
version: '0'
|
27
|
-
- !ruby/object:Gem::Dependency
|
28
|
-
name: chunky_png
|
29
|
-
requirement: !ruby/object:Gem::Requirement
|
30
|
-
requirements:
|
31
|
-
- - '>='
|
32
|
-
- !ruby/object:Gem::Version
|
33
|
-
version: '0'
|
34
|
-
type: :development
|
35
|
-
prerelease: false
|
36
|
-
version_requirements: !ruby/object:Gem::Requirement
|
37
|
-
requirements:
|
38
|
-
- - '>='
|
39
|
-
- !ruby/object:Gem::Version
|
40
|
-
version: '0'
|
41
27
|
description: Hopfield networks can be used for smart pattern recollections. It's recalling
|
42
28
|
patterns by modelling associative memory of a neural network
|
43
29
|
email:
|
@@ -48,7 +34,6 @@ extensions:
|
|
48
34
|
extra_rdoc_files: []
|
49
35
|
files:
|
50
36
|
- lib/hopfield/network.rb
|
51
|
-
- lib/hopfield/neuron.rb
|
52
37
|
- lib/hopfield/training.rb
|
53
38
|
- lib/hopfield.rb
|
54
39
|
- ext/hopfield/hopfield.c
|