hopfield 1.0
Sign up to get free protection for your applications and to get access to all the features.
- data/LICENSE +22 -0
- data/README.md +30 -0
- data/lib/hopfield.rb +10 -0
- data/lib/hopfield/network.rb +92 -0
- data/lib/hopfield/neuron.rb +18 -0
- data/lib/hopfield/training.rb +47 -0
- metadata +85 -0
data/LICENSE
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2012 Bart Olsthoorn, website: bartolsthoorn.nl
|
2
|
+
|
3
|
+
Permission is hereby granted, free of charge, to any person
|
4
|
+
obtaining a copy of this software and associated documentation
|
5
|
+
files (the "Software"), to deal in the Software without
|
6
|
+
restriction, including without limitation the rights to use,
|
7
|
+
copy, modify, merge, publish, distribute, sublicense, and/or sell
|
8
|
+
copies of the Software, and to permit persons to whom the
|
9
|
+
Software is furnished to do so, subject to the following
|
10
|
+
conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be
|
13
|
+
included in all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
16
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
17
|
+
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
18
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
19
|
+
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
20
|
+
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
21
|
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
22
|
+
OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
# Hopfield Network in Ruby
|
2
|
+
|
3
|
+
## What is it?
|
4
|
+
[Hopfield Networks](http://en.wikipedia.org/wiki/Hopfield_network) model the way humans recall memories, or more specific, how neurons recall the pattern. This means you first train the network with a set of known patterns and then pass an unknown or perturbed version of the pattern. The neurons will restore the missing information to create an exact match.
|
5
|
+
|
6
|
+
The patterns can be passed using multi dimensional array of either 0 and 1 or -1 and 1. An artifical neural network will learn the patterns. Now let's move on to an example.
|
7
|
+
|
8
|
+
## How do I use it?
|
9
|
+
```ruby
|
10
|
+
training = Hopfield::Training.new([pattern1, pattern2])
|
11
|
+
network = Hopfield::Network.new(training, perturbed_pattern)
|
12
|
+
network.pattern # the matched pattern
|
13
|
+
network.runs # how many propagations it took
|
14
|
+
```
|
15
|
+
|
16
|
+
## Example with images
|
17
|
+
See examples/image.rb for a memory association of Charlie Sheen, with a cat hiding him.
|
18
|
+
```
|
19
|
+
$ cd examples
|
20
|
+
$ ruby image.rb
|
21
|
+
Image 1 is now in an array of [20x20]
|
22
|
+
Image 2 is now in an array of [20x20]
|
23
|
+
Hopfield neurons are trained!
|
24
|
+
Neurons propagated: 1776
|
25
|
+
Errors: [0]
|
26
|
+
```
|
27
|
+
The script also creates black and white pattern images for you.
|
28
|
+
|
29
|
+
## Credits
|
30
|
+
I was introduced to Hopfield networks through the book [Clever Algorithms](www.cleveralgorithms.com), and I've borrowed bits of the implementation shown in the book. Also used the `.associated?` syntax found here: [Brain](https://github.com/brainopia/brain).
|
data/lib/hopfield.rb
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
require_relative 'hopfield/neuron'
|
2
|
+
require_relative 'hopfield/training'
|
3
|
+
require_relative 'hopfield/network'
|
4
|
+
|
5
|
+
module Hopfield
|
6
|
+
# Hopfield consists of three parts:
|
7
|
+
# => Neuron (hopfield/neuron.rb)
|
8
|
+
# => Training (hopfield/training.rb)
|
9
|
+
# => Network (hopfield/network.rb)
|
10
|
+
end
|
@@ -0,0 +1,92 @@
|
|
1
|
+
module Hopfield
|
2
|
+
class Network
|
3
|
+
attr_accessor :neurons, :patterns, :state, :pattern_width, :vector, :last_error, :runs
|
4
|
+
|
5
|
+
def initialize(training, perturbed_pattern)
|
6
|
+
unless training.class.to_s == 'Hopfield::Training'
|
7
|
+
raise TypeError, 'Training has to be an instance of Hopfield::Training'
|
8
|
+
end
|
9
|
+
|
10
|
+
unless training.patterns.first.size == perturbed_pattern.size
|
11
|
+
raise SyntaxError, 'Given pattern does not match size of the training patterns'
|
12
|
+
end
|
13
|
+
|
14
|
+
# Turn 0 into -1
|
15
|
+
perturbed_pattern.map {|value| (value == 0 ? -1 : value) }
|
16
|
+
|
17
|
+
self.neurons = training.neurons
|
18
|
+
self.patterns = training.patterns
|
19
|
+
self.pattern_width = training.pattern_width
|
20
|
+
self.vector = perturbed_pattern.flatten
|
21
|
+
self.neurons.each_with_index { |neuron,i| neuron.output = self.vector[i] }
|
22
|
+
|
23
|
+
self.last_error = [1]
|
24
|
+
self.runs = 0
|
25
|
+
end
|
26
|
+
|
27
|
+
def associated?
|
28
|
+
return self.last_error.include? 0
|
29
|
+
end
|
30
|
+
|
31
|
+
def pattern
|
32
|
+
return self.state
|
33
|
+
end
|
34
|
+
|
35
|
+
def propagate
|
36
|
+
# Select random neuron
|
37
|
+
i = rand(self.neurons.size)
|
38
|
+
activation = 0
|
39
|
+
self.neurons.each_with_index do |other, j|
|
40
|
+
activation += other.weights[i]*other.output if i!=j
|
41
|
+
end
|
42
|
+
output = transfer(activation)
|
43
|
+
change = output != self.neurons[i].output
|
44
|
+
self.neurons[i].output = output
|
45
|
+
|
46
|
+
# Compile state of outputs
|
47
|
+
state = Array.new(self.neurons.size){|i| self.neurons[i].output}
|
48
|
+
|
49
|
+
# Calculate the current error
|
50
|
+
self.last_error = calculate_error(state)
|
51
|
+
|
52
|
+
# Convert state to binary and back to a multi dimensional array
|
53
|
+
state = to_binary(state)
|
54
|
+
state = state.each_slice(self.pattern_width).to_a
|
55
|
+
self.state = state
|
56
|
+
|
57
|
+
self.runs += 1
|
58
|
+
|
59
|
+
return {
|
60
|
+
:did_change => change,
|
61
|
+
:state => self.state,
|
62
|
+
:error => self.last_error
|
63
|
+
}
|
64
|
+
end
|
65
|
+
|
66
|
+
def calculate_error(current_pattern)
|
67
|
+
errors = Array.new(0)
|
68
|
+
|
69
|
+
self.patterns.each do |pattern|
|
70
|
+
sum = 0
|
71
|
+
|
72
|
+
expected = pattern.flatten
|
73
|
+
actual = current_pattern
|
74
|
+
|
75
|
+
expected.each_with_index do |v, i|
|
76
|
+
sum += 1 if expected[i]!=actual[i]
|
77
|
+
end
|
78
|
+
errors << sum
|
79
|
+
end
|
80
|
+
return errors
|
81
|
+
end
|
82
|
+
|
83
|
+
def transfer(activation)
|
84
|
+
(activation >= 0 ? 1 : -1)
|
85
|
+
end
|
86
|
+
|
87
|
+
def to_binary(vector)
|
88
|
+
return Array.new(vector.size){|i| ((vector[i]==-1) ? 0 : 1)}
|
89
|
+
end
|
90
|
+
|
91
|
+
end
|
92
|
+
end
|
@@ -0,0 +1,18 @@
|
|
1
|
+
module Hopfield
|
2
|
+
class Neuron
|
3
|
+
attr_accessor :weights, :output
|
4
|
+
|
5
|
+
def initialize(pattern_size)
|
6
|
+
minmax = Array.new(pattern_size) { [-0.5, 0.5] }
|
7
|
+
|
8
|
+
self.weights = random_vector(minmax)
|
9
|
+
end
|
10
|
+
|
11
|
+
def random_vector(minmax)
|
12
|
+
return Array.new(minmax.size) do |i|
|
13
|
+
minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())
|
14
|
+
end
|
15
|
+
end
|
16
|
+
|
17
|
+
end
|
18
|
+
end
|
@@ -0,0 +1,47 @@
|
|
1
|
+
module Hopfield
|
2
|
+
class Training
|
3
|
+
attr_accessor :patterns, :neurons, :pattern_width
|
4
|
+
|
5
|
+
def initialize(patterns)
|
6
|
+
# Check if patterns are the same size
|
7
|
+
unless patterns.map(&:size).uniq.count == 1
|
8
|
+
raise SyntaxError, 'Inconsistent pattern size'
|
9
|
+
end
|
10
|
+
|
11
|
+
# Turn 0 into -1
|
12
|
+
patterns.map { |pattern| pattern.map {|value| (value == 0 ? -1 : value) }}
|
13
|
+
|
14
|
+
# Set the patterns for this training
|
15
|
+
self.patterns = patterns
|
16
|
+
|
17
|
+
# Calculate the amount of required neurons
|
18
|
+
# This number is based on the number of inputs of a pattern
|
19
|
+
connections = patterns.first.map(&:size).inject{|sum,x| sum + x }
|
20
|
+
self.pattern_width = patterns.first.first.size
|
21
|
+
|
22
|
+
# Create neurons
|
23
|
+
self.neurons = Array.new(connections) { Neuron.new connections }
|
24
|
+
|
25
|
+
# Train the neurons
|
26
|
+
train(connections)
|
27
|
+
end
|
28
|
+
|
29
|
+
def train(connections)
|
30
|
+
self.neurons.each_with_index do |neuron, i|
|
31
|
+
for j in ((i+1)...connections) do
|
32
|
+
wij = 0.0
|
33
|
+
self.patterns.each do |pattern|
|
34
|
+
vector = pattern.flatten
|
35
|
+
#puts "Pattern: " + pattern.size.to_s
|
36
|
+
#puts "Pattern Y: " + pattern.first.size.to_s
|
37
|
+
#puts "Vector: " + vector.size.to_s
|
38
|
+
wij += vector[i]*vector[j]
|
39
|
+
end
|
40
|
+
self.neurons[i].weights[j] = wij
|
41
|
+
self.neurons[j].weights[i] = wij
|
42
|
+
end
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
end
|
47
|
+
end
|
metadata
ADDED
@@ -0,0 +1,85 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: hopfield
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: '1.0'
|
5
|
+
prerelease:
|
6
|
+
platform: ruby
|
7
|
+
authors:
|
8
|
+
- Bart Olsthoorn
|
9
|
+
autorequire:
|
10
|
+
bindir: bin
|
11
|
+
cert_chain: []
|
12
|
+
date: 2013-02-17 00:00:00.000000000 Z
|
13
|
+
dependencies:
|
14
|
+
- !ruby/object:Gem::Dependency
|
15
|
+
name: rspec
|
16
|
+
requirement: !ruby/object:Gem::Requirement
|
17
|
+
none: false
|
18
|
+
requirements:
|
19
|
+
- - ! '>='
|
20
|
+
- !ruby/object:Gem::Version
|
21
|
+
version: '0'
|
22
|
+
type: :development
|
23
|
+
prerelease: false
|
24
|
+
version_requirements: !ruby/object:Gem::Requirement
|
25
|
+
none: false
|
26
|
+
requirements:
|
27
|
+
- - ! '>='
|
28
|
+
- !ruby/object:Gem::Version
|
29
|
+
version: '0'
|
30
|
+
- !ruby/object:Gem::Dependency
|
31
|
+
name: chunky_png
|
32
|
+
requirement: !ruby/object:Gem::Requirement
|
33
|
+
none: false
|
34
|
+
requirements:
|
35
|
+
- - ! '>='
|
36
|
+
- !ruby/object:Gem::Version
|
37
|
+
version: '0'
|
38
|
+
type: :development
|
39
|
+
prerelease: false
|
40
|
+
version_requirements: !ruby/object:Gem::Requirement
|
41
|
+
none: false
|
42
|
+
requirements:
|
43
|
+
- - ! '>='
|
44
|
+
- !ruby/object:Gem::Version
|
45
|
+
version: '0'
|
46
|
+
description: Hopfield networks can be used for smart pattern recollections. It's recalling
|
47
|
+
patterns by modelling associative memory of a neural network
|
48
|
+
email:
|
49
|
+
- bartolsthoorn@gmail.com
|
50
|
+
executables: []
|
51
|
+
extensions: []
|
52
|
+
extra_rdoc_files: []
|
53
|
+
files:
|
54
|
+
- lib/hopfield/network.rb
|
55
|
+
- lib/hopfield/neuron.rb
|
56
|
+
- lib/hopfield/training.rb
|
57
|
+
- lib/hopfield.rb
|
58
|
+
- LICENSE
|
59
|
+
- README.md
|
60
|
+
homepage: http://github.com/bartolsthoorn/ruby-hopfield
|
61
|
+
licenses: []
|
62
|
+
post_install_message:
|
63
|
+
rdoc_options: []
|
64
|
+
require_paths:
|
65
|
+
- lib
|
66
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
67
|
+
none: false
|
68
|
+
requirements:
|
69
|
+
- - ! '>='
|
70
|
+
- !ruby/object:Gem::Version
|
71
|
+
version: '0'
|
72
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
73
|
+
none: false
|
74
|
+
requirements:
|
75
|
+
- - ! '>='
|
76
|
+
- !ruby/object:Gem::Version
|
77
|
+
version: '0'
|
78
|
+
requirements: []
|
79
|
+
rubyforge_project:
|
80
|
+
rubygems_version: 1.8.24
|
81
|
+
signing_key:
|
82
|
+
specification_version: 3
|
83
|
+
summary: Ruby implementation of a Hopfield Network
|
84
|
+
test_files: []
|
85
|
+
has_rdoc:
|