hopfield 1.0 → 1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/README.md +17 -13
- data/lib/hopfield.rb +2 -0
- data/lib/hopfield/network.rb +28 -16
- data/lib/hopfield/neuron.rb +1 -14
- data/lib/hopfield/training.rb +48 -26
- metadata +4 -5
data/README.md
CHANGED
@@ -1,30 +1,34 @@
|
|
1
1
|
# Hopfield Network in Ruby
|
2
2
|
|
3
|
+
A pure, albeit slow Ruby implementation of a Hopfield Network.
|
4
|
+
|
3
5
|
## What is it?
|
4
6
|
[Hopfield Networks](http://en.wikipedia.org/wiki/Hopfield_network) model the way humans recall memories, or more specific, how neurons recall the pattern. This means you first train the network with a set of known patterns and then pass an unknown or perturbed version of the pattern. The neurons will restore the missing information to create an exact match.
|
5
7
|
|
6
8
|
The patterns can be passed using multi dimensional array of either 0 and 1 or -1 and 1. An artifical neural network will learn the patterns. Now let's move on to an example.
|
7
9
|
|
10
|
+
```ruby
|
11
|
+
gem 'hopfield'
|
12
|
+
```
|
13
|
+
|
8
14
|
## How do I use it?
|
9
15
|
```ruby
|
10
16
|
training = Hopfield::Training.new([pattern1, pattern2])
|
11
17
|
network = Hopfield::Network.new(training, perturbed_pattern)
|
18
|
+
|
19
|
+
# Propagate until match
|
20
|
+
network.propagate until network.associated?
|
21
|
+
|
12
22
|
network.pattern # the matched pattern
|
13
23
|
network.runs # how many propagations it took
|
14
24
|
```
|
15
25
|
|
16
|
-
##
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
Image 2 is now in an array of [20x20]
|
23
|
-
Hopfield neurons are trained!
|
24
|
-
Neurons propagated: 1776
|
25
|
-
Errors: [0]
|
26
|
-
```
|
27
|
-
The script also creates black and white pattern images for you.
|
26
|
+
## TODO
|
27
|
+
- Make this a C extension to boost performance
|
28
|
+
- Turn the random picking of neurons into pseudo randomness to prevent the same neuron to be propagated over and over again
|
29
|
+
- Implement the Storkey learning rule to provide an alternative for the already implemented Hebbian learning rule.
|
30
|
+
- Release the examples
|
31
|
+
|
28
32
|
|
29
|
-
##
|
33
|
+
## Thanks to
|
30
34
|
I was introduced to Hopfield networks through the book [Clever Algorithms](www.cleveralgorithms.com), and I've borrowed bits of the implementation shown in the book. Also used the `.associated?` syntax found here: [Brain](https://github.com/brainopia/brain).
|
data/lib/hopfield.rb
CHANGED
data/lib/hopfield/network.rb
CHANGED
@@ -1,24 +1,27 @@
|
|
1
1
|
module Hopfield
|
2
2
|
class Network
|
3
|
-
attr_accessor :neurons, :patterns, :
|
3
|
+
attr_accessor :neurons, :patterns, :weights, :state, :pattern_dimensions, :last_error, :runs
|
4
4
|
|
5
5
|
def initialize(training, perturbed_pattern)
|
6
6
|
unless training.class.to_s == 'Hopfield::Training'
|
7
7
|
raise TypeError, 'Training has to be an instance of Hopfield::Training'
|
8
8
|
end
|
9
9
|
|
10
|
-
unless training.patterns.first.size == perturbed_pattern.size
|
10
|
+
unless training.patterns.first.size == perturbed_pattern.flatten.size
|
11
11
|
raise SyntaxError, 'Given pattern does not match size of the training patterns'
|
12
12
|
end
|
13
13
|
|
14
14
|
# Turn 0 into -1
|
15
|
-
perturbed_pattern.map {|value| (value == 0 ? -1 : value) }
|
15
|
+
perturbed_pattern = perturbed_pattern.flatten.map { |value| (value == 0 ? -1 : value) }
|
16
16
|
|
17
17
|
self.neurons = training.neurons
|
18
18
|
self.patterns = training.patterns
|
19
|
-
self.
|
20
|
-
self.
|
21
|
-
|
19
|
+
self.weights = training.weights
|
20
|
+
self.pattern_dimensions = training.pattern_dimensions
|
21
|
+
|
22
|
+
self.neurons.count.times do |i|
|
23
|
+
self.neurons[i].state = perturbed_pattern[i]
|
24
|
+
end
|
22
25
|
|
23
26
|
self.last_error = [1]
|
24
27
|
self.runs = 0
|
@@ -32,26 +35,35 @@ module Hopfield
|
|
32
35
|
return self.state
|
33
36
|
end
|
34
37
|
|
38
|
+
def get_weight(i , j)
|
39
|
+
ij = [i, j].sort
|
40
|
+
return self.weights[ij.first][ij.last]
|
41
|
+
end
|
42
|
+
|
35
43
|
def propagate
|
36
44
|
# Select random neuron
|
37
|
-
i = rand(self.neurons.
|
38
|
-
|
45
|
+
i = rand(self.neurons.count)
|
46
|
+
|
47
|
+
activation = 0.0
|
48
|
+
|
39
49
|
self.neurons.each_with_index do |other, j|
|
40
|
-
|
50
|
+
next if i == j
|
51
|
+
activation += get_weight(i, j)*other.state
|
41
52
|
end
|
53
|
+
|
42
54
|
output = transfer(activation)
|
43
|
-
change = output != self.neurons[i].
|
44
|
-
self.neurons[i].
|
55
|
+
change = output != self.neurons[i].state
|
56
|
+
self.neurons[i].state = output
|
45
57
|
|
46
58
|
# Compile state of outputs
|
47
|
-
state = Array.new(self.neurons.
|
48
|
-
|
59
|
+
state = Array.new(self.neurons.count){ |i| self.neurons[i].state }
|
60
|
+
|
49
61
|
# Calculate the current error
|
50
62
|
self.last_error = calculate_error(state)
|
51
|
-
|
63
|
+
|
52
64
|
# Convert state to binary and back to a multi dimensional array
|
53
65
|
state = to_binary(state)
|
54
|
-
state = state.each_slice(self.
|
66
|
+
state = state.each_slice(self.pattern_dimensions[:width]).to_a
|
55
67
|
self.state = state
|
56
68
|
|
57
69
|
self.runs += 1
|
@@ -85,7 +97,7 @@ module Hopfield
|
|
85
97
|
end
|
86
98
|
|
87
99
|
def to_binary(vector)
|
88
|
-
return Array.new(vector.size){|i| ((vector[i]
|
100
|
+
return Array.new(vector.size){|i| ((vector[i] == -1) ? 0 : 1)}
|
89
101
|
end
|
90
102
|
|
91
103
|
end
|
data/lib/hopfield/neuron.rb
CHANGED
@@ -1,18 +1,5 @@
|
|
1
1
|
module Hopfield
|
2
2
|
class Neuron
|
3
|
-
attr_accessor :
|
4
|
-
|
5
|
-
def initialize(pattern_size)
|
6
|
-
minmax = Array.new(pattern_size) { [-0.5, 0.5] }
|
7
|
-
|
8
|
-
self.weights = random_vector(minmax)
|
9
|
-
end
|
10
|
-
|
11
|
-
def random_vector(minmax)
|
12
|
-
return Array.new(minmax.size) do |i|
|
13
|
-
minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())
|
14
|
-
end
|
15
|
-
end
|
16
|
-
|
3
|
+
attr_accessor :state
|
17
4
|
end
|
18
5
|
end
|
data/lib/hopfield/training.rb
CHANGED
@@ -1,46 +1,68 @@
|
|
1
1
|
module Hopfield
|
2
|
+
|
3
|
+
# Two learning rules have been implemented, storkey and hebbian
|
4
|
+
# See: http://en.wikipedia.org/wiki/Hopfield_network#Learning_Rules
|
5
|
+
HEBBIAN_RULE = 1
|
6
|
+
STORKEY_RULE = 2
|
7
|
+
|
2
8
|
class Training
|
3
|
-
attr_accessor :patterns, :neurons, :
|
9
|
+
attr_accessor :patterns, :neurons, :weights, :pattern_dimensions, :rule
|
4
10
|
|
5
|
-
def initialize(patterns)
|
11
|
+
def initialize(patterns, rule=Hopfield::HEBBIAN_RULE)
|
6
12
|
# Check if patterns are the same size
|
7
13
|
unless patterns.map(&:size).uniq.count == 1
|
8
|
-
raise
|
14
|
+
raise ArgumentError, 'Inconsistent pattern size'
|
9
15
|
end
|
10
16
|
|
11
|
-
# Turn 0 into -1
|
12
|
-
patterns.map { |pattern| pattern.map {|value| (value == 0 ? -1 : value) }}
|
13
|
-
|
14
|
-
# Set the patterns for this training
|
15
|
-
self.patterns = patterns
|
16
|
-
|
17
17
|
# Calculate the amount of required neurons
|
18
18
|
# This number is based on the number of inputs of a pattern
|
19
|
-
|
20
|
-
|
19
|
+
net_size = patterns.first.map(&:size).inject{|sum,x| sum + x }
|
20
|
+
|
21
|
+
self.pattern_dimensions = Hash.new
|
22
|
+
self.pattern_dimensions[:width] = patterns.first.first.size
|
23
|
+
self.pattern_dimensions[:height] = patterns.first.size
|
24
|
+
|
25
|
+
# Flatten patterns to 1D array
|
26
|
+
self.patterns = patterns.map { |pattern| pattern.flatten }
|
27
|
+
|
28
|
+
# Turn 0 into -1
|
29
|
+
self.patterns = self.patterns.map { |pattern| pattern.map { |value| (value == 0 ? -1 : value) }}
|
21
30
|
|
22
31
|
# Create neurons
|
23
|
-
self.neurons = Array.new(
|
32
|
+
self.neurons = Array.new(self.patterns.first.length) { Neuron.new }
|
33
|
+
|
34
|
+
self.weights = Array.new
|
24
35
|
|
25
36
|
# Train the neurons
|
26
|
-
train(
|
37
|
+
train(rule)
|
27
38
|
end
|
28
39
|
|
29
|
-
def
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
40
|
+
def set_weight(neuron_index, other_neuron_index, weight)
|
41
|
+
# Connections are symmetric, so ij is the same as ji, so store it only once
|
42
|
+
ij = [neuron_index, other_neuron_index].sort
|
43
|
+
self.weights[ij.first] = [] if self.weights[ij.first].nil?
|
44
|
+
self.weights[ij.first][ij.last] = weight
|
45
|
+
end
|
46
|
+
|
47
|
+
def train(rule)
|
48
|
+
# Neurons are fully connected; every neuron has a weight value for every other neuron
|
49
|
+
case rule
|
50
|
+
when Hopfield::HEBBIAN_RULE
|
51
|
+
self.neurons.count.times do |i|
|
52
|
+
for j in ((i+1)...self.neurons.count) do
|
53
|
+
next if i == j
|
54
|
+
weight = 0.0
|
55
|
+
self.patterns.each do |pattern|
|
56
|
+
weight += pattern[i] * pattern[j]
|
57
|
+
end
|
58
|
+
set_weight(i, j, weight / self.patterns.count)
|
59
|
+
end
|
39
60
|
end
|
40
|
-
|
41
|
-
|
61
|
+
when Hopfield::STORKEY_RULE
|
62
|
+
|
63
|
+
else
|
64
|
+
abort 'Unknown learning rule specified, either use Hopfield::STORKEY_RULE or Hopfield::HEBBIAN_RULE'
|
42
65
|
end
|
43
|
-
end
|
44
66
|
end
|
45
67
|
|
46
68
|
end
|
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: hopfield
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: '1.
|
4
|
+
version: '1.1'
|
5
5
|
prerelease:
|
6
6
|
platform: ruby
|
7
7
|
authors:
|
@@ -9,7 +9,7 @@ authors:
|
|
9
9
|
autorequire:
|
10
10
|
bindir: bin
|
11
11
|
cert_chain: []
|
12
|
-
date: 2013-
|
12
|
+
date: 2013-05-11 00:00:00.000000000 Z
|
13
13
|
dependencies:
|
14
14
|
- !ruby/object:Gem::Dependency
|
15
15
|
name: rspec
|
@@ -57,7 +57,7 @@ files:
|
|
57
57
|
- lib/hopfield.rb
|
58
58
|
- LICENSE
|
59
59
|
- README.md
|
60
|
-
homepage: http://github.com/bartolsthoorn/ruby
|
60
|
+
homepage: http://github.com/bartolsthoorn/hopfield-ruby
|
61
61
|
licenses: []
|
62
62
|
post_install_message:
|
63
63
|
rdoc_options: []
|
@@ -77,9 +77,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
77
77
|
version: '0'
|
78
78
|
requirements: []
|
79
79
|
rubyforge_project:
|
80
|
-
rubygems_version: 1.8.
|
80
|
+
rubygems_version: 1.8.25
|
81
81
|
signing_key:
|
82
82
|
specification_version: 3
|
83
83
|
summary: Ruby implementation of a Hopfield Network
|
84
84
|
test_files: []
|
85
|
-
has_rdoc:
|