holt_winters 0.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +15 -0
- data/Gemfile +3 -0
- data/LICENSE +22 -0
- data/README.md +76 -0
- data/ext/holtWinters.java +244 -0
- data/ext/holt_winters.c +148 -0
- data/ext/holt_winters_R_language.c +93 -0
- data/holt_winters.gemspec +22 -0
- data/lib/holt_winters.rb +135 -0
- data/lib/holt_winters/version.rb +3 -0
- metadata +66 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
---
|
|
2
|
+
!binary "U0hBMQ==":
|
|
3
|
+
metadata.gz: !binary |-
|
|
4
|
+
NWE3MWEzMWQ1MDFiOTRkYmMzMDM5ZWMzMjZiYTZlODMyYjI5NDdlNw==
|
|
5
|
+
data.tar.gz: !binary |-
|
|
6
|
+
ZmU3OWMxNWIwNTI4OWFmZTc5MzllZTBlODU3YTI4NzMwNzA0NWI3MQ==
|
|
7
|
+
!binary "U0hBNTEy":
|
|
8
|
+
metadata.gz: !binary |-
|
|
9
|
+
NzRlNjA0MmE4MjEzZjI0ZDg1ZTUyYTk0OTEzNTllODJmYzBlODY2NTE1OTlk
|
|
10
|
+
ZTgxY2JmNjQ5MjYzMWIyMmJkZDg3ZWE1MzkwOWE1NGM0M2E2MmNmZWMxZTk0
|
|
11
|
+
MmM2NWRjOWZhNGQyOGFjYmYxNjMxYTM5NjM0YWRjMGI4ZGI3MmY=
|
|
12
|
+
data.tar.gz: !binary |-
|
|
13
|
+
MjE2MzYwNGQxZjI4MTMxNDk4NDg0NTExMjg2ZDVmZTYyNmEzOGVjZTRmODcz
|
|
14
|
+
YmQzZmZmYjJjNWI2NzA0NmM2NDFkYTFiZjMyNmM5OTg5YzQ3YzY3MDJjNGVm
|
|
15
|
+
YWE0N2IxZjNjODc4ZjQzNmY1ZGExYjg0MzFkNzYxNDM1NjE4ZDI=
|
data/Gemfile
ADDED
data/LICENSE
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
(The MIT-License)
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2011 Brandon Keene
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
|
6
|
+
a copy of this software and associated documentation files (the
|
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
|
11
|
+
the following conditions:
|
|
12
|
+
|
|
13
|
+
The above copyright notice and this permission notice shall be
|
|
14
|
+
included in all copies or substantial portions of the Software.
|
|
15
|
+
|
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
# Holt-Winters Triple Exponential Smoothing Algorithm
|
|
2
|
+
|
|
3
|
+
A Ruby port of Nishant Chandra's
|
|
4
|
+
[Java implementation](http://n-chandra.blogspot.com/2011/04/holt-winters-triple-exponential.html)
|
|
5
|
+
of the Holt-Winters smoothing algorithm.
|
|
6
|
+
|
|
7
|
+

|
|
8
|
+
|
|
9
|
+
The equations are intended to give more weight to recent observations and less weights to observations further in the past.
|
|
10
|
+
These weights are geometrically decreasing by a constant ratio.
|
|
11
|
+
|
|
12
|
+
# Usage
|
|
13
|
+
|
|
14
|
+
## forecast()
|
|
15
|
+
|
|
16
|
+
It calculates the initial values and returns the forecast for __m__ periods.
|
|
17
|
+
|
|
18
|
+
# y Time series array
|
|
19
|
+
# alpha Level smoothing coefficient
|
|
20
|
+
# beta Trend smoothing coefficient (increasing beta tightens fit)
|
|
21
|
+
# gamma Seasonal smoothing coefficient
|
|
22
|
+
# period A complete season's data consists of L periods. And we need
|
|
23
|
+
# to estimate the trend factor from one period to the next. To
|
|
24
|
+
# accomplish this, it is advisable to use two complete seasons;
|
|
25
|
+
# that is, 2L periods.
|
|
26
|
+
# m Extrapolated future data points
|
|
27
|
+
# - 4 quarterly
|
|
28
|
+
# - 7 weekly
|
|
29
|
+
# - 12 monthly
|
|
30
|
+
def forecast(y, alpha, beta, gamma, period, m)
|
|
31
|
+
# ...
|
|
32
|
+
end
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
## Example
|
|
36
|
+
|
|
37
|
+
This will generate a several variations of beta for a simple line:
|
|
38
|
+
|
|
39
|
+
require 'holt_winters'
|
|
40
|
+
|
|
41
|
+
x = (0..128).to_a
|
|
42
|
+
puts x.join(',')
|
|
43
|
+
puts HoltWinters.forecast(x, 0.5, 0, 0, 12, 2).join(',')
|
|
44
|
+
puts HoltWinters.forecast(x, 0.5, 0.25, 0, 12, 2).join(',')
|
|
45
|
+
puts HoltWinters.forecast(x, 0.5, 0.5, 0, 12, 2).join(',')
|
|
46
|
+
puts HoltWinters.forecast(x, 0.5, 0.75, 0, 12, 2).join(',')
|
|
47
|
+
puts HoltWinters.forecast(x, 0.5, 1.0, 0, 12, 2).join(',')
|
|
48
|
+
|
|
49
|
+
Try plotting the different lines to see how beta affects the forecast:
|
|
50
|
+
|
|
51
|
+

|
|
52
|
+
|
|
53
|
+
# License
|
|
54
|
+
|
|
55
|
+
(The MIT-License)
|
|
56
|
+
|
|
57
|
+
Copyright (c) 2011 Brandon Keene
|
|
58
|
+
|
|
59
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
|
60
|
+
a copy of this software and associated documentation files (the
|
|
61
|
+
"Software"), to deal in the Software without restriction, including
|
|
62
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
|
63
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
|
64
|
+
permit persons to whom the Software is furnished to do so, subject to
|
|
65
|
+
the following conditions:
|
|
66
|
+
|
|
67
|
+
The above copyright notice and this permission notice shall be
|
|
68
|
+
included in all copies or substantial portions of the Software.
|
|
69
|
+
|
|
70
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
71
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
72
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
73
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
74
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
75
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
76
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
package com.fr.tsa;
|
|
2
|
+
|
|
3
|
+
/**
|
|
4
|
+
* Copyright 2011 Nishant Chandra
|
|
5
|
+
*
|
|
6
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
* you may not use this file except in compliance with the License.
|
|
8
|
+
* You may obtain a copy of the License at
|
|
9
|
+
*
|
|
10
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
*
|
|
12
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
* See the License for the specific language governing permissions and
|
|
16
|
+
* limitations under the License.
|
|
17
|
+
*/
|
|
18
|
+
|
|
19
|
+
/**
|
|
20
|
+
* Given a time series, say a complete monthly data for 12 months, the Holt-Winters smoothing and forecasting
|
|
21
|
+
* technique is built on the following formulae (multiplicative version):
|
|
22
|
+
*
|
|
23
|
+
* St[i] = alpha * y[i] / It[i - period] + (1.0 - alpha) * (St[i - 1] + Bt[i - 1])
|
|
24
|
+
* Bt[i] = gamma * (St[i] - St[i - 1]) + (1 - gamma) * Bt[i - 1]
|
|
25
|
+
* It[i] = beta * y[i] / St[i] + (1.0 - beta) * It[i - period]
|
|
26
|
+
* Ft[i + m] = (St[i] + (m * Bt[i])) * It[i - period + m]
|
|
27
|
+
*
|
|
28
|
+
* Note: Many authors suggest calculating initial values of St, Bt and It in a variety of ways, but
|
|
29
|
+
* some of them are incorrect e.g. determination of It parameter using regression. I have used
|
|
30
|
+
* the NIST recommended methods.
|
|
31
|
+
*
|
|
32
|
+
* For more details, see:
|
|
33
|
+
* http://adorio-research.org/wordpress/?p=1230
|
|
34
|
+
* http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
35
|
+
*
|
|
36
|
+
* @author Nishant Chandra
|
|
37
|
+
*
|
|
38
|
+
*/
|
|
39
|
+
public class HoltWintersTripleExponentialImpl {
|
|
40
|
+
|
|
41
|
+
/**
|
|
42
|
+
* This method is the entry point. It calculates the initial values and returns the forecast
|
|
43
|
+
* for the m periods.
|
|
44
|
+
*
|
|
45
|
+
* @param y - Time series data.
|
|
46
|
+
* @param alpha - Exponential smoothing coefficients for level, trend, seasonal components.
|
|
47
|
+
* @param beta - Exponential smoothing coefficients for level, trend, seasonal components.
|
|
48
|
+
* @param gamma - Exponential smoothing coefficients for level, trend, seasonal components.
|
|
49
|
+
* @param perdiod - A complete season's data consists of L periods. And we need to estimate
|
|
50
|
+
* the trend factor from one period to the next. To accomplish this, it is advisable to use
|
|
51
|
+
* two complete seasons; that is, 2L periods.
|
|
52
|
+
* @param m - Extrapolated future data points.
|
|
53
|
+
* @param debug - Print debug values. Useful for testing.
|
|
54
|
+
*
|
|
55
|
+
* 4 quarterly
|
|
56
|
+
* 7 weekly.
|
|
57
|
+
* 12 monthly
|
|
58
|
+
*/
|
|
59
|
+
public static double[] forecast(int[] y, double alpha, double beta,
|
|
60
|
+
double gamma, int period, int m, boolean debug) {
|
|
61
|
+
|
|
62
|
+
if (y == null) {
|
|
63
|
+
return null;
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
int seasons = y.length / period;
|
|
67
|
+
double a0 = calculateInitialLevel(y, period);
|
|
68
|
+
double b0 = calculateInitialTrend(y, period);
|
|
69
|
+
double[] initialSeasonalIndices = calculateSeasonalIndices(y, period, seasons);
|
|
70
|
+
|
|
71
|
+
if (debug) {
|
|
72
|
+
System.out.println(String.format(
|
|
73
|
+
"Total observations: %d, Seasons %d, Periods %d", y.length,
|
|
74
|
+
seasons, period));
|
|
75
|
+
System.out.println("Initial level value a0: " + a0);
|
|
76
|
+
System.out.println("Initial trend value b0: " + b0);
|
|
77
|
+
printArray("Seasonal Indices: ", initialSeasonalIndices);
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
double[] forecast = calculateHoltWinters(y, a0, b0, alpha, beta, gamma,
|
|
81
|
+
initialSeasonalIndices, period, m, debug);
|
|
82
|
+
|
|
83
|
+
if (debug) {
|
|
84
|
+
printArray("Forecast", forecast);
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
return forecast;
|
|
88
|
+
}
|
|
89
|
+
|
|
90
|
+
/**
|
|
91
|
+
* This method realizes the Holt-Winters equations.
|
|
92
|
+
*
|
|
93
|
+
* @param y
|
|
94
|
+
* @param a0
|
|
95
|
+
* @param b0
|
|
96
|
+
* @param alpha
|
|
97
|
+
* @param beta
|
|
98
|
+
* @param gamma
|
|
99
|
+
* @param initialSeasonalIndices
|
|
100
|
+
* @param period
|
|
101
|
+
* @param m
|
|
102
|
+
* @param debug
|
|
103
|
+
* @return - Forecast for m periods.
|
|
104
|
+
*/
|
|
105
|
+
private static double[] calculateHoltWinters(int[] y, double a0, double b0, double alpha,
|
|
106
|
+
double beta, double gamma, double[] initialSeasonalIndices, int period, int m, boolean debug) {
|
|
107
|
+
|
|
108
|
+
double[] St = new double[y.length];
|
|
109
|
+
double[] Bt = new double[y.length];
|
|
110
|
+
double[] It = new double[y.length];
|
|
111
|
+
double[] Ft = new double[y.length + m];
|
|
112
|
+
|
|
113
|
+
//Initialize base values
|
|
114
|
+
St[1] = a0;
|
|
115
|
+
Bt[1] = b0;
|
|
116
|
+
|
|
117
|
+
for (int i = 0; i < period; i++) {
|
|
118
|
+
It[i] = initialSeasonalIndices[i];
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
Ft[m] = (St[0] + (m * Bt[0])) * It[0];//This is actually 0 since Bt[0] = 0
|
|
122
|
+
Ft[m + 1] = (St[1] + (m * Bt[1])) * It[1];//Forecast starts from period + 2
|
|
123
|
+
|
|
124
|
+
//Start calculations
|
|
125
|
+
for (int i = 2; i < y.length; i++) {
|
|
126
|
+
|
|
127
|
+
//Calculate overall smoothing
|
|
128
|
+
if((i - period) >= 0) {
|
|
129
|
+
St[i] = alpha * y[i] / It[i - period] + (1.0 - alpha) * (St[i - 1] + Bt[i - 1]);
|
|
130
|
+
} else {
|
|
131
|
+
St[i] = alpha * y[i] + (1.0 - alpha) * (St[i - 1] + Bt[i - 1]);
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
//Calculate trend smoothing
|
|
135
|
+
Bt[i] = gamma * (St[i] - St[i - 1]) + (1 - gamma) * Bt[i - 1];
|
|
136
|
+
|
|
137
|
+
//Calculate seasonal smoothing
|
|
138
|
+
if((i - period) >= 0) {
|
|
139
|
+
It[i] = beta * y[i] / St[i] + (1.0 - beta) * It[i - period];
|
|
140
|
+
}
|
|
141
|
+
|
|
142
|
+
//Calculate forecast
|
|
143
|
+
if( ((i + m) >= period) ){
|
|
144
|
+
Ft[i + m] = (St[i] + (m * Bt[i])) * It[i - period + m];
|
|
145
|
+
}
|
|
146
|
+
|
|
147
|
+
if(debug){
|
|
148
|
+
System.out.println(String.format(
|
|
149
|
+
"i = %d, y = %d, S = %f, Bt = %f, It = %f, F = %f", i,
|
|
150
|
+
y[i], St[i], Bt[i], It[i], Ft[i]));
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
return Ft;
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
/**
|
|
158
|
+
* See: http://robjhyndman.com/researchtips/hw-initialization/
|
|
159
|
+
* 1st period's average can be taken. But y[0] works better.
|
|
160
|
+
*
|
|
161
|
+
* @return - Initial Level value i.e. St[1]
|
|
162
|
+
*/
|
|
163
|
+
private static double calculateInitialLevel(int[] y, int period) {
|
|
164
|
+
|
|
165
|
+
/**
|
|
166
|
+
double sum = 0;
|
|
167
|
+
|
|
168
|
+
for (int i = 0; i < period; i++) {
|
|
169
|
+
sum += y[i];
|
|
170
|
+
}
|
|
171
|
+
|
|
172
|
+
return sum / period;
|
|
173
|
+
**/
|
|
174
|
+
return y[0];
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
/**
|
|
178
|
+
* See: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
179
|
+
*
|
|
180
|
+
* @return - Initial trend - Bt[1]
|
|
181
|
+
*/
|
|
182
|
+
private static double calculateInitialTrend(int[] y, int period){
|
|
183
|
+
|
|
184
|
+
double sum = 0;
|
|
185
|
+
|
|
186
|
+
for (int i = 0; i < period; i++) {
|
|
187
|
+
sum += (y[period + i] - y[i]);
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
return sum / (period * period);
|
|
191
|
+
}
|
|
192
|
+
|
|
193
|
+
/**
|
|
194
|
+
* See: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
195
|
+
*
|
|
196
|
+
* @return - Seasonal Indices.
|
|
197
|
+
*/
|
|
198
|
+
private static double[] calculateSeasonalIndices(int[] y, int period, int seasons){
|
|
199
|
+
|
|
200
|
+
double[] seasonalAverage = new double[seasons];
|
|
201
|
+
double[] seasonalIndices = new double[period];
|
|
202
|
+
|
|
203
|
+
double[] averagedObservations = new double[y.length];
|
|
204
|
+
|
|
205
|
+
for (int i = 0; i < seasons; i++) {
|
|
206
|
+
for (int j = 0; j < period; j++) {
|
|
207
|
+
seasonalAverage[i] += y[(i * period) + j];
|
|
208
|
+
}
|
|
209
|
+
seasonalAverage[i] /= period;
|
|
210
|
+
}
|
|
211
|
+
|
|
212
|
+
for (int i = 0; i < seasons; i++) {
|
|
213
|
+
for (int j = 0; j < period; j++) {
|
|
214
|
+
averagedObservations[(i * period) + j] = y[(i * period) + j] / seasonalAverage[i];
|
|
215
|
+
}
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
for (int i = 0; i < period; i++) {
|
|
219
|
+
for (int j = 0; j < seasons; j++) {
|
|
220
|
+
seasonalIndices[i] += averagedObservations[(j * period) + i];
|
|
221
|
+
}
|
|
222
|
+
seasonalIndices[i] /= seasons;
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
return seasonalIndices;
|
|
226
|
+
}
|
|
227
|
+
|
|
228
|
+
/**
|
|
229
|
+
* Utility method to pring array values.
|
|
230
|
+
*
|
|
231
|
+
* @param description
|
|
232
|
+
* @param data
|
|
233
|
+
*/
|
|
234
|
+
private static void printArray(String description, double[] data){
|
|
235
|
+
|
|
236
|
+
System.out.println(String.format("******************* %s *********************", description));
|
|
237
|
+
|
|
238
|
+
for (int i = 0; i < data.length; i++) {
|
|
239
|
+
System.out.println(data[i]);
|
|
240
|
+
}
|
|
241
|
+
|
|
242
|
+
System.out.println(String.format("*****************************************************************", description));
|
|
243
|
+
}
|
|
244
|
+
}
|
data/ext/holt_winters.c
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
#include <string.h>
|
|
2
|
+
#include <stdlib.h>
|
|
3
|
+
#include <stdio.h>
|
|
4
|
+
|
|
5
|
+
/*
|
|
6
|
+
* Based on th R implementation
|
|
7
|
+
*
|
|
8
|
+
* a: level component
|
|
9
|
+
* b: trend component
|
|
10
|
+
* s: seasonal component
|
|
11
|
+
*
|
|
12
|
+
* Additive:
|
|
13
|
+
*
|
|
14
|
+
* Yhat[t+h] = a[t] + h * b[t] + s[t + 1 + (h - 1) mod p],
|
|
15
|
+
* a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])
|
|
16
|
+
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
|
|
17
|
+
* s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
|
|
18
|
+
*
|
|
19
|
+
* Multiplicative:
|
|
20
|
+
*
|
|
21
|
+
* Yhat[t+h] = (a[t] + h * b[t]) * s[t + 1 + (h - 1) mod p],
|
|
22
|
+
* a[t] = α (Y[t] / s[t-p]) + (1-α) (a[t-1] + b[t-1])
|
|
23
|
+
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
|
|
24
|
+
* s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p]
|
|
25
|
+
*/
|
|
26
|
+
void HoltWinters (
|
|
27
|
+
double *x,
|
|
28
|
+
int *xl, // Time t + h
|
|
29
|
+
double *alpha, // alpha parameter of Holt-Winters Filter.
|
|
30
|
+
double *beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing.
|
|
31
|
+
double *gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted.
|
|
32
|
+
int *start_time, // Time t
|
|
33
|
+
int *seasonal,
|
|
34
|
+
int *period,
|
|
35
|
+
double *a, // Start value for level (a[0]).
|
|
36
|
+
double *b, // Start value for trend (b[0]).
|
|
37
|
+
double *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0])
|
|
38
|
+
|
|
39
|
+
/* return values */
|
|
40
|
+
double *SSE, // The final sum of squared errors achieved in optimizing
|
|
41
|
+
double *level, // Estimated values for the level component (size xl - t + 1)
|
|
42
|
+
double *trend, // Estimated values for the trend component (size xl - t + 1)
|
|
43
|
+
double *season // Estimated values for the seasonal component (size xl - t + 1)
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
{
|
|
47
|
+
double res = 0, xhat = 0, stmp = 0;
|
|
48
|
+
int i, i0, s0;
|
|
49
|
+
|
|
50
|
+
/* copy start values to the beginning of the vectors */
|
|
51
|
+
level[0] = *a;
|
|
52
|
+
if (*beta > 0) trend[0] = *b;
|
|
53
|
+
if (*gamma > 0) memcpy(season, s, *period * sizeof(double));
|
|
54
|
+
|
|
55
|
+
for (i = *start_time - 1; i < *xl; i++) {
|
|
56
|
+
/* indices for period i */
|
|
57
|
+
i0 = i - *start_time + 2;
|
|
58
|
+
s0 = i0 + *period - 1;
|
|
59
|
+
|
|
60
|
+
/* forecast *for* period i */
|
|
61
|
+
xhat = level[i0 - 1] + (*beta > 0 ? trend[i0 - 1] : 0);
|
|
62
|
+
stmp = *gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
|
|
63
|
+
if (*seasonal == 1)
|
|
64
|
+
xhat += stmp;
|
|
65
|
+
else
|
|
66
|
+
xhat *= stmp;
|
|
67
|
+
|
|
68
|
+
/* Sum of Squared Errors */
|
|
69
|
+
res = x[i] - xhat;
|
|
70
|
+
*SSE += res * res;
|
|
71
|
+
|
|
72
|
+
/* estimate of level *in* period i */
|
|
73
|
+
if (*seasonal == 1)
|
|
74
|
+
level[i0] = *alpha * (x[i] - stmp)
|
|
75
|
+
+ (1 - *alpha) * (level[i0 - 1] + trend[i0 - 1]);
|
|
76
|
+
else
|
|
77
|
+
level[i0] = *alpha * (x[i] / stmp)
|
|
78
|
+
+ (1 - *alpha) * (level[i0 - 1] + trend[i0 - 1]);
|
|
79
|
+
|
|
80
|
+
/* estimate of trend *in* period i */
|
|
81
|
+
if (*beta > 0)
|
|
82
|
+
trend[i0] = *beta * (level[i0] - level[i0 - 1])
|
|
83
|
+
+ (1 - *beta) * trend[i0 - 1];
|
|
84
|
+
|
|
85
|
+
/* estimate of seasonal component *in* period i */
|
|
86
|
+
if (*gamma > 0) {
|
|
87
|
+
if (*seasonal == 1)
|
|
88
|
+
season[s0] = *gamma * (x[i] - level[i0])
|
|
89
|
+
+ (1 - *gamma) * stmp;
|
|
90
|
+
else
|
|
91
|
+
season[s0] = *gamma * (x[i] / level[i0])
|
|
92
|
+
+ (1 - *gamma) * stmp;
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
|
|
97
|
+
int main() {
|
|
98
|
+
// US population in millions
|
|
99
|
+
double series[] = {3.93, 5.31, 7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 122.80, 131.70, 151.30, 179.30, 203.20};
|
|
100
|
+
|
|
101
|
+
int forecast = 19;
|
|
102
|
+
double alpha = 0.9999208;
|
|
103
|
+
double beta = 0;
|
|
104
|
+
double gamma = 0;
|
|
105
|
+
int start_time = 2;
|
|
106
|
+
int seasonal = 0;
|
|
107
|
+
int period = 0;
|
|
108
|
+
double a0 = series[0];
|
|
109
|
+
double b0 = 0;
|
|
110
|
+
double s[] = {};
|
|
111
|
+
|
|
112
|
+
double errors;
|
|
113
|
+
int nb_computations = forecast - start_time - 1;
|
|
114
|
+
double *estimated_level = malloc(nb_computations * sizeof(double));
|
|
115
|
+
double *estimated_trend = malloc(nb_computations * sizeof(double));
|
|
116
|
+
double *estimated_season = malloc(nb_computations * sizeof(double));
|
|
117
|
+
|
|
118
|
+
HoltWinters(
|
|
119
|
+
series,
|
|
120
|
+
&forecast,
|
|
121
|
+
&alpha,
|
|
122
|
+
&beta,
|
|
123
|
+
&gamma,
|
|
124
|
+
&start_time,
|
|
125
|
+
&seasonal,
|
|
126
|
+
&period,
|
|
127
|
+
&a0,
|
|
128
|
+
&b0,
|
|
129
|
+
s,
|
|
130
|
+
&errors,
|
|
131
|
+
estimated_level,
|
|
132
|
+
estimated_trend,
|
|
133
|
+
estimated_season
|
|
134
|
+
);
|
|
135
|
+
|
|
136
|
+
int i = 0;
|
|
137
|
+
int first_year = 1800;
|
|
138
|
+
printf("Estimated:\n");
|
|
139
|
+
for (i = 0; i < nb_computations; i++) {
|
|
140
|
+
printf("\tyear = %d, level: %f, trend: %f\n", first_year + i * 10, estimated_level[i], estimated_trend[i]);
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
free(estimated_level);
|
|
144
|
+
free(estimated_trend);
|
|
145
|
+
free(estimated_season);
|
|
146
|
+
|
|
147
|
+
return 0;
|
|
148
|
+
}
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
/* R : A Computer Language for Statistical Data Analysis
|
|
2
|
+
*
|
|
3
|
+
* Copyright (C) 2003-7 The R Development Core Team
|
|
4
|
+
*
|
|
5
|
+
* This program is free software; you can redistribute it and/or modify
|
|
6
|
+
* it under the terms of the GNU General Public License as published by
|
|
7
|
+
* the Free Software Foundation; either version 2 of the License, or
|
|
8
|
+
* (at your option) any later version.
|
|
9
|
+
*
|
|
10
|
+
* This program is distributed in the hope that it will be useful,
|
|
11
|
+
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
* GNU General Public License for more details.
|
|
14
|
+
*
|
|
15
|
+
* You should have received a copy of the GNU General Public License
|
|
16
|
+
* along with this program; if not, a copy is available at
|
|
17
|
+
* http://www.r-project.org/Licenses/.
|
|
18
|
+
*/
|
|
19
|
+
|
|
20
|
+
#include <R.h>
|
|
21
|
+
#include "ts.h"
|
|
22
|
+
#include <stdlib.h>
|
|
23
|
+
|
|
24
|
+
void HoltWinters (
|
|
25
|
+
double *x,
|
|
26
|
+
int *xl,
|
|
27
|
+
double *alpha,
|
|
28
|
+
double *beta,
|
|
29
|
+
double *gamma,
|
|
30
|
+
int *start_time,
|
|
31
|
+
int *seasonal,
|
|
32
|
+
int *period,
|
|
33
|
+
double *a,
|
|
34
|
+
double *b,
|
|
35
|
+
double *s,
|
|
36
|
+
|
|
37
|
+
/* return values */
|
|
38
|
+
double *SSE,
|
|
39
|
+
double *level,
|
|
40
|
+
double *trend,
|
|
41
|
+
double *season
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
{
|
|
45
|
+
double res = 0, xhat = 0, stmp = 0;
|
|
46
|
+
int i, i0, s0;
|
|
47
|
+
|
|
48
|
+
/* copy start values to the beginning of the vectors */
|
|
49
|
+
level[0] = *a;
|
|
50
|
+
if (*beta > 0) trend[0] = *b;
|
|
51
|
+
if (*gamma > 0) memcpy(season, s, *period * sizeof(double));
|
|
52
|
+
|
|
53
|
+
for (i = *start_time - 1; i < *xl; i++) {
|
|
54
|
+
/* indices for period i */
|
|
55
|
+
i0 = i - *start_time + 2;
|
|
56
|
+
s0 = i0 + *period - 1;
|
|
57
|
+
|
|
58
|
+
/* forecast *for* period i */
|
|
59
|
+
xhat = level[i0 - 1] + (*beta > 0 ? trend[i0 - 1] : 0);
|
|
60
|
+
stmp = *gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
|
|
61
|
+
if (*seasonal == 1)
|
|
62
|
+
xhat += stmp;
|
|
63
|
+
else
|
|
64
|
+
xhat *= stmp;
|
|
65
|
+
|
|
66
|
+
/* Sum of Squared Errors */
|
|
67
|
+
res = x[i] - xhat;
|
|
68
|
+
*SSE += res * res;
|
|
69
|
+
|
|
70
|
+
/* estimate of level *in* period i */
|
|
71
|
+
if (*seasonal == 1)
|
|
72
|
+
level[i0] = *alpha * (x[i] - stmp)
|
|
73
|
+
+ (1 - *alpha) * (level[i0 - 1] + trend[i0 - 1]);
|
|
74
|
+
else
|
|
75
|
+
level[i0] = *alpha * (x[i] / stmp)
|
|
76
|
+
+ (1 - *alpha) * (level[i0 - 1] + trend[i0 - 1]);
|
|
77
|
+
|
|
78
|
+
/* estimate of trend *in* period i */
|
|
79
|
+
if (*beta > 0)
|
|
80
|
+
trend[i0] = *beta * (level[i0] - level[i0 - 1])
|
|
81
|
+
+ (1 - *beta) * trend[i0 - 1];
|
|
82
|
+
|
|
83
|
+
/* estimate of seasonal component *in* period i */
|
|
84
|
+
if (*gamma > 0) {
|
|
85
|
+
if (*seasonal == 1)
|
|
86
|
+
season[s0] = *gamma * (x[i] - level[i0])
|
|
87
|
+
+ (1 - *gamma) * stmp;
|
|
88
|
+
else
|
|
89
|
+
season[s0] = *gamma * (x[i] / level[i0])
|
|
90
|
+
+ (1 - *gamma) * stmp;
|
|
91
|
+
}
|
|
92
|
+
}
|
|
93
|
+
}
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# -*- mode: ruby; encoding: utf-8 -*-
|
|
2
|
+
$:.push File.expand_path("../lib", __FILE__)
|
|
3
|
+
require "holt_winters/version"
|
|
4
|
+
|
|
5
|
+
Gem::Specification.new do |s|
|
|
6
|
+
s.name = "holt_winters"
|
|
7
|
+
s.version = HoltWinters::VERSION
|
|
8
|
+
s.platform = Gem::Platform::RUBY
|
|
9
|
+
s.authors = ["Brandon Keene"]
|
|
10
|
+
s.email = ["bkeene@gmail.com"]
|
|
11
|
+
s.homepage = ""
|
|
12
|
+
s.summary = %q{Holt-Winters Triple Exponential Smoothing}
|
|
13
|
+
|
|
14
|
+
s.rubyforge_project = "holt_winters"
|
|
15
|
+
|
|
16
|
+
s.files = `git ls-files`.split("\n")
|
|
17
|
+
s.test_files = `git ls-files -- {test,spec,features}/*`.split("\n")
|
|
18
|
+
s.executables = `git ls-files -- bin/*`.split("\n").map{ |f| File.basename(f) }
|
|
19
|
+
s.require_paths = ["lib"]
|
|
20
|
+
|
|
21
|
+
s.add_development_dependency "rspec", "~> 2.6.0"
|
|
22
|
+
end
|
data/lib/holt_winters.rb
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
# Given a time series, say a complete monthly data for 12 months, the Holt-Winters smoothing and forecasting
|
|
2
|
+
# technique is built on the following formulae (multiplicative version):
|
|
3
|
+
#
|
|
4
|
+
# St[i] = alpha * y[i] / It[i - period] + (1.0 - alpha) * (St[i - 1] + Bt[i - 1])
|
|
5
|
+
# Bt[i] = gamma * (St[i] - St[i - 1]) + (1 - gamma) * Bt[i - 1]
|
|
6
|
+
# It[i] = beta * y[i] / St[i] + (1.0 - beta) * It[i - period]
|
|
7
|
+
# Ft[i + m] = (St[i] + (m * Bt[i])) * It[i - period + m]
|
|
8
|
+
#
|
|
9
|
+
# Note: Many authors suggest calculating initial values of St, Bt and It in a variety of ways, but
|
|
10
|
+
# some of them are incorrect e.g. determination of It parameter using regression. I have used
|
|
11
|
+
# the NIST recommended methods.
|
|
12
|
+
#
|
|
13
|
+
# For more details, see:
|
|
14
|
+
# http://adorio-research.org/wordpress/?p=1230
|
|
15
|
+
# http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
16
|
+
#
|
|
17
|
+
module HoltWinters
|
|
18
|
+
class << self
|
|
19
|
+
# Calculate initial values and return the forecast for m periods.
|
|
20
|
+
#
|
|
21
|
+
# y Time series array
|
|
22
|
+
# alpha Level smoothing coefficient
|
|
23
|
+
# beta Trend smoothing coefficient (increasing beta tightens fit)
|
|
24
|
+
# gamma Seasonal smoothing coefficient
|
|
25
|
+
# period A complete season's data consists of L periods. And we need
|
|
26
|
+
# to estimate the trend factor from one period to the next. To
|
|
27
|
+
# accomplish this, it is advisable to use two complete seasons;
|
|
28
|
+
# that is, 2L periods.
|
|
29
|
+
# m Extrapolated future data points
|
|
30
|
+
# - 4 quarterly
|
|
31
|
+
# - 7 weekly
|
|
32
|
+
# - 12 monthly
|
|
33
|
+
#
|
|
34
|
+
def forecast(y, alpha, beta, gamma, period, m)
|
|
35
|
+
return nil if y.empty?
|
|
36
|
+
|
|
37
|
+
seasons = y.size / period
|
|
38
|
+
a0 = initial_level(y, period)
|
|
39
|
+
b0 = initial_trend(y, period)
|
|
40
|
+
|
|
41
|
+
seasonal = seasonal_indicies(y, period, seasons)
|
|
42
|
+
|
|
43
|
+
holt_winters(y, a0, b0, alpha, beta, gamma, seasonal, period, m);
|
|
44
|
+
end
|
|
45
|
+
|
|
46
|
+
def holt_winters(y, a0, b0, alpha, beta, gamma, seasonal, period, m)
|
|
47
|
+
st = Array.new(y.length, 0.0)
|
|
48
|
+
bt = Array.new(y.length, 0.0)
|
|
49
|
+
it = Array.new(y.length, 0.0)
|
|
50
|
+
ft = Array.new(y.length + m, 0.0)
|
|
51
|
+
|
|
52
|
+
st[1] = a0
|
|
53
|
+
bt[1] = b0
|
|
54
|
+
|
|
55
|
+
(0..period - 1).each do |i|
|
|
56
|
+
it[i] = seasonal[i]
|
|
57
|
+
end
|
|
58
|
+
|
|
59
|
+
ft[m] = (st[0] + (m * bt[0])) * it[0] # This is actually 0 since bt[0] = 0
|
|
60
|
+
ft[m + 1] = (st[1] + (m * bt[1])) * it[1] # Forecast starts from period + 2
|
|
61
|
+
|
|
62
|
+
(2..(y.size - 1)).each do |i|
|
|
63
|
+
# Calculate overall smoothing
|
|
64
|
+
if (i - period) >= 0
|
|
65
|
+
st[i] = alpha * y[i] / it[i - period] + (1.0 - alpha) * (st[i - 1] + bt[i - 1])
|
|
66
|
+
else
|
|
67
|
+
st[i] = alpha * y[i] + (1.0 - alpha) * (st[i - 1] + bt[i - 1])
|
|
68
|
+
end
|
|
69
|
+
|
|
70
|
+
# Calculate trend smoothing
|
|
71
|
+
bt[i] = gamma * (st[i] - st[i - 1]) + (1 - gamma) * bt[i - 1]
|
|
72
|
+
|
|
73
|
+
# Calculate seasonal smoothing
|
|
74
|
+
if (i - period) >= 0
|
|
75
|
+
it[i] = beta * y[i] / st[i] + (1.0 - beta) * it[i - period]
|
|
76
|
+
end
|
|
77
|
+
|
|
78
|
+
# Calculate forecast
|
|
79
|
+
if (i + m) >= period
|
|
80
|
+
ft[i + m] = (st[i] + (m * bt[i])) * it[i - period + m]
|
|
81
|
+
end
|
|
82
|
+
end
|
|
83
|
+
|
|
84
|
+
ft
|
|
85
|
+
end
|
|
86
|
+
|
|
87
|
+
# See: http://robjhyndman.com/researchtips/hw-initialization/
|
|
88
|
+
# 1st period's average can be taken. But y[0] works better.
|
|
89
|
+
def initial_level(y, period)
|
|
90
|
+
y.first
|
|
91
|
+
end
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
# See: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
95
|
+
def initial_trend(y, period)
|
|
96
|
+
sum = 0
|
|
97
|
+
|
|
98
|
+
(0..period - 1).each do |i|
|
|
99
|
+
sum += (y[period + i] - y[i])
|
|
100
|
+
end
|
|
101
|
+
|
|
102
|
+
sum / (period * period)
|
|
103
|
+
end
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
# See: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
|
|
107
|
+
def seasonal_indicies(y, period, seasons)
|
|
108
|
+
seasonal_average = Array.new(seasons, 0.0)
|
|
109
|
+
seasonal_indices = Array.new(period, 0.0)
|
|
110
|
+
averaged_observations = Array.new(y.size, 0.0)
|
|
111
|
+
|
|
112
|
+
(0..seasons - 1).each do |i|
|
|
113
|
+
(0..period - 1).each do |j|
|
|
114
|
+
seasonal_average[i] += y[(i * period) + j]
|
|
115
|
+
end
|
|
116
|
+
seasonal_average[i] /= period
|
|
117
|
+
end
|
|
118
|
+
|
|
119
|
+
(0..seasons - 1).each do |i|
|
|
120
|
+
(0..period - 1).each do |j|
|
|
121
|
+
averaged_observations[(i * period) + j] = y[(i * period) + j] / seasonal_average[i]
|
|
122
|
+
end
|
|
123
|
+
end
|
|
124
|
+
|
|
125
|
+
(0..period - 1).each do |i|
|
|
126
|
+
(0..seasons - 1).each do |j|
|
|
127
|
+
seasonal_indices[i] += averaged_observations[(j * period) + i]
|
|
128
|
+
end
|
|
129
|
+
seasonal_indices[i] /= seasons
|
|
130
|
+
end
|
|
131
|
+
|
|
132
|
+
seasonal_indices
|
|
133
|
+
end
|
|
134
|
+
end
|
|
135
|
+
end
|
metadata
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
|
2
|
+
name: holt_winters
|
|
3
|
+
version: !ruby/object:Gem::Version
|
|
4
|
+
version: 0.0.0
|
|
5
|
+
platform: ruby
|
|
6
|
+
authors:
|
|
7
|
+
- Brandon Keene
|
|
8
|
+
autorequire:
|
|
9
|
+
bindir: bin
|
|
10
|
+
cert_chain: []
|
|
11
|
+
date: 2013-10-02 00:00:00.000000000 Z
|
|
12
|
+
dependencies:
|
|
13
|
+
- !ruby/object:Gem::Dependency
|
|
14
|
+
name: rspec
|
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
|
16
|
+
requirements:
|
|
17
|
+
- - ~>
|
|
18
|
+
- !ruby/object:Gem::Version
|
|
19
|
+
version: 2.6.0
|
|
20
|
+
type: :development
|
|
21
|
+
prerelease: false
|
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
23
|
+
requirements:
|
|
24
|
+
- - ~>
|
|
25
|
+
- !ruby/object:Gem::Version
|
|
26
|
+
version: 2.6.0
|
|
27
|
+
description:
|
|
28
|
+
email:
|
|
29
|
+
- bkeene@gmail.com
|
|
30
|
+
executables: []
|
|
31
|
+
extensions: []
|
|
32
|
+
extra_rdoc_files: []
|
|
33
|
+
files:
|
|
34
|
+
- Gemfile
|
|
35
|
+
- LICENSE
|
|
36
|
+
- README.md
|
|
37
|
+
- ext/holtWinters.java
|
|
38
|
+
- ext/holt_winters.c
|
|
39
|
+
- ext/holt_winters_R_language.c
|
|
40
|
+
- holt_winters.gemspec
|
|
41
|
+
- lib/holt_winters.rb
|
|
42
|
+
- lib/holt_winters/version.rb
|
|
43
|
+
homepage: ''
|
|
44
|
+
licenses: []
|
|
45
|
+
metadata: {}
|
|
46
|
+
post_install_message:
|
|
47
|
+
rdoc_options: []
|
|
48
|
+
require_paths:
|
|
49
|
+
- lib
|
|
50
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
|
51
|
+
requirements:
|
|
52
|
+
- - ! '>='
|
|
53
|
+
- !ruby/object:Gem::Version
|
|
54
|
+
version: '0'
|
|
55
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
|
56
|
+
requirements:
|
|
57
|
+
- - ! '>='
|
|
58
|
+
- !ruby/object:Gem::Version
|
|
59
|
+
version: '0'
|
|
60
|
+
requirements: []
|
|
61
|
+
rubyforge_project: holt_winters
|
|
62
|
+
rubygems_version: 2.0.7
|
|
63
|
+
signing_key:
|
|
64
|
+
specification_version: 4
|
|
65
|
+
summary: Holt-Winters Triple Exponential Smoothing
|
|
66
|
+
test_files: []
|