hensel_code 0.2.1 → 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.codecov.yml +6 -0
- data/CHANGELOG.md +32 -2
- data/Gemfile +2 -2
- data/Gemfile.lock +11 -2
- data/README.md +365 -42
- data/hensel_code.gemspec +39 -0
- data/lib/hensel_code/finite_gadic_expansion.rb +66 -0
- data/lib/hensel_code/finite_padic_expansion.rb +39 -12
- data/lib/hensel_code/gadic_base.rb +86 -0
- data/lib/hensel_code/gadic_verifier.rb +36 -0
- data/lib/hensel_code/modular_arithmetic.rb +75 -0
- data/lib/hensel_code/padic_base.rb +7 -0
- data/lib/hensel_code/polynomial.rb +103 -0
- data/lib/hensel_code/tools.rb +24 -6
- data/lib/hensel_code/truncated_finite_gadic_expansion.rb +65 -0
- data/lib/hensel_code/truncated_finite_padic_expansion.rb +6 -1
- data/lib/hensel_code/version.rb +1 -1
- data/lib/hensel_code.rb +8 -0
- metadata +42 -5
data/README.md
CHANGED
@@ -2,12 +2,24 @@
|
|
2
2
|
|
3
3
|
![example workflow](https://github.com/davidwilliam/hensel_code/actions/workflows/main.yml/badge.svg) [![codecov](https://codecov.io/gh/davidwilliam/hensel_code/branch/main/graph/badge.svg?token=XJ0C0U7P2M)](https://codecov.io/gh/davidwilliam/hensel_code) [![Ruby Style Guide](https://img.shields.io/badge/code_style-rubocop-brightgreen.svg)](https://github.com/rubocop/rubocop) ![GitHub](https://img.shields.io/github/license/davidwilliam/hensel_code) ![Gem](https://img.shields.io/gem/v/hensel_code) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/davidwilliam/hensel_code)
|
4
4
|
|
5
|
+
***NOTICE:*** this README is beign constantly updated. I am currently focused on coding since I want to release as many different types of Hensel codes and as many interesting features as time allows. At the same time, I want this README to be as informative as possible even for those completely unfamiliar with p-adic numbers and Hensel codes.
|
6
|
+
|
5
7
|
Hensel Code allows you to homomorphically encode rational numbers as integers using the finite-segment p-adic arithmetic, also known as Hensel codes.
|
6
8
|
|
7
9
|
T. M. Rao describes the use of finite-segment p-adic arithmetic as a practical method for performing error-free computation and the term *Hensel code* as the first `r` digits of the infinite p-adic expansion of a rational number `x/y`. The use of Hensel codes allows us to replace the arithmetic opertations on rational numbers by corresponding aritmetic operation over the integers under certain conditions.
|
8
10
|
|
9
11
|
Rao also remarks that the theory of Hensel codes, although lifted from the p-adic number theory, can be introduced without the need of a complete undertanding of the theoretical aspects of p-adic numbers if the goal is to work with Hensel codes alone. This is due to the fact that the finite-segment p-adic arithmetic is well-defined, self-contained, and it has immediate pratical applications in a wide range of real-world scenarios.
|
10
12
|
|
13
|
+
Ç. K. Koç remarks that the p-adic arithmetic allows error-free representation of fractions and error-ree arithmetic using fractions where infinite-precision p-adic arithemtic is more suitable for software implementation and finite-precision p-adic arithmetic is more suitable for hardware implementations.
|
14
|
+
|
15
|
+
A p-adic number can be uniquely written as a inifite p-adic expansion, for `p` prime, where the associated coefficients are integers between `0` and `p - 1`. When this p-adic expansion is finite in length, then we have a finite-segment p-adic expansion. When we only consider the constant term of a p-adic expansion, then we have a truncated finite-segment p-adic expansion. There many types of representations of rationals lifted from the p-adic number theory, and therefore many types of Hensel codes.
|
16
|
+
|
17
|
+
## History
|
18
|
+
|
19
|
+
The theory of p-adic numbers was introduced by Kurt Hensel in the early 1900's ([Theorie der algebraischen Zahlen](https://books.google.com/books?hl=en&lr=&id=0w3vAAAAMAAJ&oi=fnd&pg=PR3&dq=Theorie+der+algebraischen+Zahlen&ots=kQfsAd0GYZ&sig=dGsTggln9njYkc2zNYT5hkk2lXU#v=onepage&q=Theorie%20der%20algebraischen%20Zahlen&f=false)). Introductions to p-adic numbers are provided by George Bachman (Introduction to p-Adic Numbers and Valuation Theory), Neal Koblitz ([P-Adic Numbers, P-Adic Analysis, and Zeta Functions](https://books.google.com/books?hl=en&lr=&id=8sTgBwAAQBAJ&oi=fnd&pg=PA1&dq=P-Adic+Numbers,+P-Adic+Analysis,+and+Zeta+Functions&ots=fWIImSqW7-&sig=29LdWtpjSkmQ2kWvVFDmmG5SsOo#v=onepage&q=P-Adic%20Numbers%2C%20P-Adic%20Analysis%2C%20and%20Zeta%20Functions&f=false)), Kurt Mahler ([Introduction to p-adic numbers and their functions](https://books.google.com/books?hl=en&lr=&id=kbc8AAAAIAAJ&oi=fnd&pg=PA1&dq=Introduction+to+P-Adic+Numbers+and+Their+Functions&ots=GFpDeD8vMG&sig=TNSPVG0YA676rlflM9CfogQP7t8)), and Fernando Gouveia ([p-adic Number](https://books.google.com/books?hl=en&lr=&id=VWjsDwAAQBAJ&oi=fnd&pg=PR5&ots=MdgpeNTWLX&sig=9LzgTUkSzN76E1EOD7wna0c8S0I#v=onepage&q&f=false)).
|
20
|
+
|
21
|
+
The foundation of the particular application of finite-segement p-adic arithemetic (also known as Hensel codes) for error-free computation can be found in the works of Alparslan, Krishnamurthy, Rao, and Subramanian (Finite p-adic number systems with possible applications, [Finite segmentp-adic number systems with applications to exact computation](https://link.springer.com/article/10.1007/BF03051174), [p-Adic arithmetic procedures for exact matrix computations](https://link.springer.com/article/10.1007/BF03046725), [Error-Free Polynomial Matrix Computations](https://link.springer.com/book/10.1007/978-1-4612-5118-7)), Gregory ([Methods and Applications of Error-Free Computation](https://link.springer.com/book/10.1007/978-1-4612-5242-9), [Error-free computation with rational numbers](https://link.springer.com/article/10.1007/BF01933164), [Error-free computation with finite number systems](https://dl.acm.org/doi/abs/10.1145/1057502.1057503?casa_token=LTLotJJYEPAAAAAA:PQwNY8-RcpuSQyfCkEMv1xIpd10RlR-y7JeTWkCkYNQ3c1IroGEGzk4TVH_5JJ954sJsvcHRlTldtQ), [The use of finite-segmentp-adic arithmetic for exact computation](https://link.springer.com/article/10.1007/BF01930898)), Miola ([Algebraic approach to p-adic conversion of rational numbers](https://www.sciencedirect.com/science/article/abs/pii/002001908490022X)), Morrison ([Parallel p-adic computation](https://www.sciencedirect.com/science/article/abs/pii/0020019088901597)). Many algorithms, ideas, and concepts in Hensel codes are greatly benefitted by the remarkable series The Art of Computer Programming by Donald Knuth.
|
22
|
+
|
11
23
|
## Mathematical Background
|
12
24
|
|
13
25
|
In our Wiki, you can find a brief [introduction to the mathematical background on Hensel codes](https://github.com/davidwilliam/hensel_code/wiki/Mathematical-Background). We will continue to update that area as we update the gem.
|
@@ -32,22 +44,44 @@ Or install it yourself as:
|
|
32
44
|
|
33
45
|
$ gem install hensel_code
|
34
46
|
|
35
|
-
#
|
47
|
+
# HenselCode
|
48
|
+
|
49
|
+
There are several types of Hensel codes in the finite-segment p-adic number theory. There are currently three of them available in the gem HenselCode:
|
36
50
|
|
37
|
-
|
51
|
+
1. Truncated finite-segment p-adic Hensel codes
|
52
|
+
2. Finite-segment p-adic Hensel codes
|
53
|
+
3. Truncated finite-segment g-adic Hensel codes
|
54
|
+
4. Finite-segmenet g-adic Hensel codes
|
38
55
|
|
39
|
-
|
40
|
-
2. Finite-segment p-adic Hensel codes (added in v0.2.0)
|
56
|
+
For each type of supported Hensel code I will briefly discuss their properties and capabilities as well as unique features that make each type of Hensel code distinct from each other.
|
41
57
|
|
42
58
|
## Truncated finite-segment p-adic Hensel codes
|
43
59
|
|
60
|
+
### Description
|
61
|
+
|
62
|
+
The truncated finite-segment p-adic Hensel codes are integer representations of rationals with respect to a prime `p` and a positive exponent `r`. This integer representation of any given rational is equivalent to a constant term of the finite-segment p-adic expansion that represents that rational.
|
63
|
+
|
64
|
+
### Unique Benefits
|
65
|
+
|
66
|
+
The truncated finite-segment p-adic Hensel codes are the simplest type of Hensel codes and the easiest ones to perform computations on it. Given a prime `p` and an exponent `r`, Hensel codes are integers between `0` and `p^r - 1`. In Ruby, as in many other modern scripting languages, integers can be arbitarily large, and therefore `p` can be as large as computationally affordable. Addition, subtraction, multiplication, and division on Hensel codes are simply these operations modulo `p^r`. Encoding and decoding are also straightforward. Its use is ideal for applications with very large numbers and/or many consecutive homomorphic computations on Hensel codes, which can be achieved with the efficincy of computations over the integers.
|
67
|
+
|
68
|
+
### Usage
|
69
|
+
|
44
70
|
Let `p=257` and `r=3`. Given two rational numbers `rat1 = Rational(3,5)` and `rat2 = Rational(4,3)`, we encode `rat1` and `rat2` as follows:
|
45
71
|
|
46
72
|
```ruby
|
47
73
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new(p, r, rat1)
|
48
|
-
# =>
|
74
|
+
# => <HenselCode: 13579675>
|
49
75
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new(p, r, rat1)
|
50
|
-
# =>
|
76
|
+
# => <HenselCode: 5658199>
|
77
|
+
h1.n
|
78
|
+
# => 2913
|
79
|
+
h1.prime
|
80
|
+
# => 257
|
81
|
+
h1.exponent
|
82
|
+
# => 3
|
83
|
+
h1.modulus
|
84
|
+
# => 16974593
|
51
85
|
h1.class
|
52
86
|
# => HenselCode::TruncatedFinitePadicExpansion
|
53
87
|
h2.class
|
@@ -62,9 +96,19 @@ Now we can carry arithmetic computations on the `h1` and `h2` objects as if we w
|
|
62
96
|
|
63
97
|
```ruby
|
64
98
|
h1_plus_h2 = h1 + h2
|
99
|
+
# => <HenselCode: 2263281>
|
65
100
|
h1_minus_h2 = h1 - h2
|
101
|
+
# => <HenselCode: 7921476>
|
66
102
|
h1_times_h2 = h1 * h2
|
103
|
+
# => <HenselCode: 6789838>
|
67
104
|
h1_div_h2 = h1 / h2
|
105
|
+
# => <HenselCode: 5941108>
|
106
|
+
h2.inverse
|
107
|
+
# => <HenselCode: 4243649>
|
108
|
+
h1 * h2.inverse
|
109
|
+
# => <HenselCode: 5941108>
|
110
|
+
h2 * h2.inverse
|
111
|
+
# => <HenselCode: 1>
|
68
112
|
```
|
69
113
|
|
70
114
|
All the computations are reduced modulo `p^r`.
|
@@ -106,7 +150,7 @@ To help you in this decision, given any Hensel code object `h`, you can check `h
|
|
106
150
|
|
107
151
|
```ruby
|
108
152
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, Rational(2,3)
|
109
|
-
# =>
|
153
|
+
# => <HenselCode: 11316396>
|
110
154
|
h.n
|
111
155
|
# => 2913
|
112
156
|
```
|
@@ -120,7 +164,7 @@ If `p = 7` and `r = 2`, then `n = 4`. If I try to encode a rational number `rat
|
|
120
164
|
```ruby
|
121
165
|
rat = Rational(11,23)
|
122
166
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
123
|
-
# =>
|
167
|
+
# => <HenselCode: 9>
|
124
168
|
h.to_r
|
125
169
|
# => (-4/5)
|
126
170
|
```
|
@@ -131,11 +175,11 @@ The same occurs with computation on Hensel codes. If `rat1 = Rational(2,3)` and
|
|
131
175
|
|
132
176
|
```ruby
|
133
177
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
134
|
-
# =>
|
178
|
+
# => <HenselCode: 17>
|
135
179
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat2
|
136
|
-
# =>
|
180
|
+
# => <HenselCode: 13>
|
137
181
|
h1_plus_h2 = h1 + h2
|
138
|
-
# =>
|
182
|
+
# => <HenselCode: 30>
|
139
183
|
h1_plus_h2.to_r
|
140
184
|
# => (3/5)
|
141
185
|
```
|
@@ -146,11 +190,11 @@ If instead we define `p = 56807` and `r = 3`, we have:
|
|
146
190
|
|
147
191
|
```ruby
|
148
192
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
149
|
-
=>
|
193
|
+
# => <HenselCode: 122212127593296>
|
150
194
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat2
|
151
|
-
=>
|
195
|
+
# => <HenselCode: 137488643542458>
|
152
196
|
h1_plus_h2 = h1 + h2
|
153
|
-
=>
|
197
|
+
# => <HenselCode: 76382579745811>
|
154
198
|
h1_plus_h2.to_r
|
155
199
|
# => (17/12)
|
156
200
|
```
|
@@ -170,7 +214,7 @@ p = 25
|
|
170
214
|
r = 3
|
171
215
|
rat1 = Rational(1,2)
|
172
216
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
173
|
-
# =>
|
217
|
+
# => <HenselCode: 7813>
|
174
218
|
h1.to_r
|
175
219
|
# => (1/2)
|
176
220
|
```
|
@@ -192,13 +236,13 @@ In order to operate on two or more Hensel codes, they all must be of the same ob
|
|
192
236
|
|
193
237
|
```ruby
|
194
238
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new(p1, r1, rat1)
|
195
|
-
# =>
|
239
|
+
# => <HenselCode: 5599009>
|
196
240
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new(p1, r2, rat1)
|
197
|
-
# =>
|
241
|
+
# => <HenselCode: 1349361025>
|
198
242
|
h3 = HenselCode::TruncatedFinitePadicExpansion.new(p2, r1, rat1)
|
199
|
-
# =>
|
243
|
+
# => <HenselCode: 6325301>
|
200
244
|
h4 = HenselCode::TruncatedFinitePadicExpansion.new(p2, r2, rat1)
|
201
|
-
# =>
|
245
|
+
# => <HenselCode: 1587650401>
|
202
246
|
```
|
203
247
|
|
204
248
|
The following operations will raise exceptions:
|
@@ -221,7 +265,7 @@ Let `p = 541`, `r = 3`, `rat = Rational(11,5)`. We create a Hensel code as befor
|
|
221
265
|
|
222
266
|
```ruby
|
223
267
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
224
|
-
# =>
|
268
|
+
# => <HenselCode: 126672339>
|
225
269
|
```
|
226
270
|
|
227
271
|
We can change the prime and the exponent:
|
@@ -230,9 +274,9 @@ We can change the prime and the exponent:
|
|
230
274
|
p = 1223
|
231
275
|
r = 4
|
232
276
|
h.replace_prime(p)
|
233
|
-
# =>
|
277
|
+
# => <HenselCode: 731710629>
|
234
278
|
h.replace_exponent(r)
|
235
|
-
# =>
|
279
|
+
# => <HenselCode: 1789764193155>
|
236
280
|
```
|
237
281
|
|
238
282
|
Any change in the prime and/or the exponent of a Hensel code object will change the Hensel code value and the modulus as well, however, the Hensel code object continues to refer to represent the same rational number:
|
@@ -247,7 +291,7 @@ We can also change the rational number:
|
|
247
291
|
```ruby
|
248
292
|
rat = Rational(13,7)
|
249
293
|
h.replace_rational(rat)
|
250
|
-
# =>
|
294
|
+
# => <HenselCode: 1278402995111>
|
251
295
|
h.to_r
|
252
296
|
# => (13/7)
|
253
297
|
```
|
@@ -256,6 +300,7 @@ We can initiate a Hensel code object with its Hensel code value, instead of a ra
|
|
256
300
|
|
257
301
|
```ruby
|
258
302
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, 53673296543
|
303
|
+
# => <HenselCode: 53673296543>
|
259
304
|
```
|
260
305
|
|
261
306
|
and then we can check what is the rational number represented by the resulting object:
|
@@ -269,18 +314,100 @@ We can update the Hensel code value of an existing Hensel code object:
|
|
269
314
|
|
270
315
|
```ruby
|
271
316
|
h.replace_hensel_code(38769823656)
|
272
|
-
# =>
|
317
|
+
# => <HenselCode: 38769823656>
|
318
|
+
```
|
319
|
+
|
320
|
+
## Polynomials
|
321
|
+
|
322
|
+
In order to support finite-segment p-adic Hensel codes, the HenselCode gem offers an engine for computing fixed-length polynomials where all the computations ared reduced modulo `p`.
|
323
|
+
|
324
|
+
Let `p = 257`. We intantiate polynomials as follows:
|
325
|
+
|
326
|
+
```ruby
|
327
|
+
f = HenselCode::Polynomial.new p, [29, 102, 232]
|
328
|
+
# => <Polynomial: 29 + 102p + 232p^2>
|
329
|
+
g = HenselCode::Polynomial.new p, [195, 83, 244]
|
330
|
+
# => <Polynomial: 195 + 83p + 244p^2>
|
331
|
+
f.prime
|
332
|
+
# => 257
|
333
|
+
f.coefficients
|
334
|
+
# => [29, 102, 232]
|
335
|
+
f.degree
|
336
|
+
# => 2
|
337
|
+
puts f
|
338
|
+
# => 29 + 102p + 232p^2
|
339
|
+
```
|
340
|
+
|
341
|
+
### Arithmetic
|
342
|
+
|
343
|
+
All the mathematical oeprations objects of the `Polynomial` are over fixed-length single-variable polynomails in non-standard form (the terms are in ascending order with respect to their degrees). All the computation on the polynomial coefficients are reduced modulo `p` in every single step of unitary calculations, that is, no indivudal step of computation exceeds an addition followed by a binary multiplication in which the operands are bounded by `p` (a carry + a product of two integers). Therefore, if `p` has bit length `b`, the maximum space required for expanding the result of each step of computation is `1 + 2b` bits.
|
344
|
+
|
345
|
+
```ruby
|
346
|
+
f + g
|
347
|
+
# => <Polynomial: 224 + 185p + 219p^2>
|
348
|
+
f - g
|
349
|
+
# => <Polynomial: 91 + 18p + 245p^2>
|
350
|
+
f * g
|
351
|
+
# => <Polynomial: 1 + 217p + 216p^2>
|
352
|
+
f / g
|
353
|
+
# => <Polynomial: 70 + 238p + 233p^2>
|
354
|
+
g.inverse
|
355
|
+
# => <Polynomial: 29 + 234p + 219p^2
|
356
|
+
f * g.inverse
|
357
|
+
# => <Polynomial: 70 + 238p + 233p^2>
|
358
|
+
g * g.inverse
|
359
|
+
# => <Polynomial: 1 + 0p + 0p^2>
|
360
|
+
```
|
361
|
+
|
362
|
+
### Constraints
|
363
|
+
|
364
|
+
Operations with fixed-length polynomials require operands with the same degree:
|
365
|
+
|
366
|
+
```ruby
|
367
|
+
f = HenselCode::Polynomial.new p, [29, 102, 232]
|
368
|
+
# => <Polynomial: 29 + 102p + 232p^2>
|
369
|
+
g = HenselCode::Polynomial.new p, [195, 83, 244, 99]
|
370
|
+
# => <Polynomial: 195 + 83p + 244p^2 + 99p^3>
|
371
|
+
f.degree
|
372
|
+
# => 2
|
373
|
+
g.degree
|
374
|
+
# => 3
|
375
|
+
f + g
|
376
|
+
# => polynomials must have same degree (HenselCode::WrongHenselCodeInputType)
|
377
|
+
```
|
378
|
+
|
379
|
+
Operations with fixed-length polynomials also require operands with the same prime:
|
380
|
+
|
381
|
+
```ruby
|
382
|
+
f = HenselCode::Polynomial.new 251, [133, 206, 58]
|
383
|
+
# => <Polynomial: 133 + 206p + 58p^2>
|
384
|
+
g = HenselCode::Polynomial.new 257, [105, 129, 238]
|
385
|
+
# => <Polynomial: 105 + 129p + 238p^2>
|
386
|
+
f + g
|
387
|
+
# => polynomials must have same prime (HenselCode::WrongHenselCodeInputType)
|
388
|
+
g.prime = 251
|
389
|
+
# => 251
|
390
|
+
f + g
|
391
|
+
# => <Polynomial: 238 + 84p + 46p^2>
|
273
392
|
```
|
274
393
|
|
275
394
|
## Finite-segment p-adic Hensel codes
|
276
395
|
|
277
|
-
|
396
|
+
### Description
|
397
|
+
The finite-segment p-adic Hensel code is a p-adic integer that can be seen as a polynomial of degree `r - 1` in non-standard form (increasing degree order). Each coefficient of such polynomials are called *p-adic digits* ranging from `0` to `p - 1`. Computations on p-adic digits reduced modulo `p` must take the *carry* into consideration so we can guarantee that the results of addition, subtraction, multiplication, and division also range from `0` to `p - 1`.
|
398
|
+
|
399
|
+
### Unique Benefits
|
400
|
+
The finite-segment p-adic Hensel code takes advantage of the finite-segmenet p-adic number system in which we can compute all four basic arithemtic operations (and consequently, any function) without requiring a substantial expansion in space for each individual computation. In fact, as mentioned in the section on Polynomials, given a prime `p` of bit length `b`, all unitary computations will take at most `1 + 2b` bits.
|
401
|
+
|
402
|
+
In Ruby, as is several other scripting languages, we can work with arbitrarily large integers and therefore the truncated p-adic Hensel code can be a good choice for representing large rational numbers. However, Ruby can run in a variety of systems, some of which will have limited resources, such as many instances in the IoT world. Additionally, a Ruby application can be one amongts many other components that together compose a larger application. Some of these other components might run in systems with integers limited to small bit lengths, say, 16. This is where finite-segment p-adic Hensel codes can be intrumental by allowing arbitrarily large p-adic expansions with coefficients bounded to a small prime.
|
403
|
+
|
404
|
+
### Usage
|
278
405
|
|
279
406
|
Let `p = 359`, `r = 3`, and `rat = Rational(2,3)`:
|
280
407
|
|
281
408
|
```ruby
|
282
409
|
h1 = HenselCode::FinitePadicExpansion.new p, r, rat
|
283
|
-
# =>
|
410
|
+
# => <HenselCode: 240 + 119p + 239p^2>
|
284
411
|
puts h1
|
285
412
|
# => 240 + 119p + 239p^2
|
286
413
|
```
|
@@ -289,26 +416,26 @@ We say that `h` is a p-adic number with `r` digits. We clearly see the correspon
|
|
289
416
|
|
290
417
|
```ruby
|
291
418
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
292
|
-
# =>
|
419
|
+
# => <HenselCode: 240>
|
293
420
|
```
|
294
421
|
|
295
422
|
Notice that the truncated Hensel code `h2` equals the first digit of the finite-segment Hensel code `h1`, which is also the same of computing
|
296
423
|
|
297
424
|
```ruby
|
298
425
|
HenselCode::FinitePadicExpansion.new p, 1, rat
|
299
|
-
# =>
|
426
|
+
# => <HenselCode: 240>
|
300
427
|
```
|
301
428
|
|
302
|
-
The following expressions are equivalent:
|
429
|
+
The following expressions are equivalent (they represent the same quantity):
|
303
430
|
|
304
431
|
```ruby
|
305
432
|
r = 3
|
306
433
|
h1 = HenselCode::FinitePadicExpansion.new p, r, rat
|
307
|
-
# =>
|
434
|
+
# => <HenselCode: 240 + 119p + 239p^2>
|
308
435
|
h1.to_r
|
309
436
|
# => (2/3)
|
310
437
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
311
|
-
# =>
|
438
|
+
# => <HenselCode: 30845520>
|
312
439
|
h2.to_r
|
313
440
|
# => (2/3)
|
314
441
|
```
|
@@ -326,7 +453,7 @@ We can obtain the truncated version of `h1` as follows:
|
|
326
453
|
|
327
454
|
```ruby
|
328
455
|
h1.to_truncated
|
329
|
-
# =>
|
456
|
+
# => <HenselCode: 30845520>
|
330
457
|
h1.to_truncated.class
|
331
458
|
# => HenselCode::TruncatedFinitePadicExpansion
|
332
459
|
```
|
@@ -337,22 +464,28 @@ Let `p = 409`, `r = 5`, `rat1 = Rational(2,3)` and `rat2 = Rational(11,7)` such
|
|
337
464
|
|
338
465
|
```ruby
|
339
466
|
h1 = HenselCode::FinitePadicExpansion.new p, r, rat1
|
340
|
-
# =>
|
467
|
+
# => <HenselCode: 137 + 136p + 136p^2 + 136p^3 + 136p^4>
|
341
468
|
h2 = HenselCode::FinitePadicExpansion.new p, r, rat2
|
342
|
-
# =>
|
469
|
+
# => <HenselCode: 60 + 292p + 233p^2 + 350p^3 + 116p^4>
|
343
470
|
```
|
344
471
|
|
345
472
|
We compute addition, subtraction, multiplication, and division as follows:
|
346
473
|
|
347
474
|
```ruby
|
348
|
-
h1_plus_h2 =h1 + h2
|
349
|
-
# =>
|
475
|
+
h1_plus_h2 = h1 + h2
|
476
|
+
# => <HenselCode: 197 + 19p + 370p^2 + 77p^3 + 253p^4>
|
350
477
|
h1_minus_h2 = h1 - h2
|
351
|
-
# =>
|
478
|
+
# => <HenselCode: 77 + 253p + 311p^2 + 194p^3 + 19p^4>
|
352
479
|
h1_times_h2 = h1 * h2
|
353
|
-
# =>
|
480
|
+
# => <HenselCode: 40 + 331p + 155p^2 + 97p^3 + 214p^4>
|
354
481
|
h1_div_h2 = h1 / h2
|
355
|
-
# =>
|
482
|
+
# => <HenselCode: 50 + 161p + 12p^2 + 347p^3 + 309p^4>
|
483
|
+
h2.inverse
|
484
|
+
# => <HenselCode: 75 + 37p + 223p^2 + 111p^3 + 260p^4>
|
485
|
+
h1 * h2.inverse
|
486
|
+
# => <HenselCode: 50 + 161p + 12p^2 + 347p^3 + 309p^4>
|
487
|
+
h2 * h2.inverse
|
488
|
+
# => <HenselCode: 1 + 0p + 0p^2 + 0p^3 + 0p^4>
|
356
489
|
```
|
357
490
|
|
358
491
|
And we can verify that
|
@@ -376,9 +509,199 @@ rat1 / rat2
|
|
376
509
|
# => (14/33)
|
377
510
|
```
|
378
511
|
|
379
|
-
|
512
|
+
## Truncated finite-segment g-adic Hensel codes
|
513
|
+
### Description
|
514
|
+
Kurt Mahler refers to p-adic numbers based on multiple distinct primes as `g-adic numbers` (Lectures on Diophantine Approximations, 1961 and Introduction to p-adic Numbers and Their Functions, 1973). John F. Morrison, 1988, remarks that `g` is the product of `k` distinct primes, which are used to generate a g-adic number with a unique g-adic representation.
|
515
|
+
|
516
|
+
### Unique Benefits
|
517
|
+
|
518
|
+
Since each digit of a truncated finite-segment g-adic Expansion (or simply truncated g-adic Hensel codes) is independently computed with respect to their corresponding prime, we can carry computations on each digit also independetly. This makes the truncated g-adic Hensel codes ideal for parallel/distributed processing, that is, given a rational number, several g-adic digits of that rational are independently computed and computations can be carried on those digits, also indpendently.
|
519
|
+
|
520
|
+
### Usage
|
521
|
+
|
522
|
+
Let `primes = [241, 251, 257]`, `r = 3`, `rat1 = Rational(2,3)`, and `rat2 = Rational(5,4)`:
|
523
|
+
|
524
|
+
```ruby
|
525
|
+
h1 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat1
|
526
|
+
# => <HenselCode: [4665841, 10542168, 11316396]>
|
527
|
+
h2 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat2
|
528
|
+
# => <HenselCode: [10498142, 3953314, 12730946]>
|
529
|
+
h1.primes
|
530
|
+
# => [241, 251, 257]
|
531
|
+
h1.exponent
|
532
|
+
# => 3
|
533
|
+
h1.g
|
534
|
+
# => 15546187
|
535
|
+
h1.n
|
536
|
+
# => 43343186168
|
537
|
+
h1.hensel_code
|
538
|
+
# => [<HenselCode: 4665841>, <HenselCode: 10542168>, <HenselCode: 11316396>]
|
539
|
+
h1.to_r
|
540
|
+
# => (2/3)
|
541
|
+
h2.to_r
|
542
|
+
# => (5/4)
|
543
|
+
```
|
544
|
+
|
545
|
+
### Arithmetic
|
546
|
+
|
547
|
+
We compute addition, subtraction, multiplication, and division as follows:
|
548
|
+
|
549
|
+
```ruby
|
550
|
+
h1_plus_h2 = h1 + h2
|
551
|
+
# => <HenselCode: [1166462, 14495482, 7072749]>
|
552
|
+
h1_minus_h2 = h1 - h2
|
553
|
+
# => <HenselCode: [8165220, 6588854, 15560043]>
|
554
|
+
h1_times_h2 = h1 * h2
|
555
|
+
# => <HenselCode: [2332921, 13177710, 14145495]>
|
556
|
+
h1_div_h2 = h1 / h2
|
557
|
+
# => <HenselCode: [6532177, 2108434, 15842954]>
|
558
|
+
h2.inverse
|
559
|
+
# => <HenselCode: [2799505, 3162651, 6789838]>
|
560
|
+
h1 * h2.inverse
|
561
|
+
# => <HenselCode: [6532177, 2108434, 15842954]>
|
562
|
+
h2 * h2.inverse
|
563
|
+
# => <HenselCode: [1, 1, 1]>
|
564
|
+
```
|
565
|
+
|
566
|
+
And we can verify that
|
567
|
+
|
568
|
+
```ruby
|
569
|
+
h1_plus_h2.to_r
|
570
|
+
# => (23/12)
|
571
|
+
rat1 + rat2
|
572
|
+
# => (23/12)
|
573
|
+
rat1 - rat2
|
574
|
+
# => (-7/12)
|
575
|
+
h1_minus_h2.to_r
|
576
|
+
# => (-7/12)
|
577
|
+
h1_times_h2.to_r
|
578
|
+
# => (5/6)
|
579
|
+
rat1 * rat2
|
580
|
+
# => (5/6)
|
581
|
+
h1_div_h2.to_r
|
582
|
+
# => (8/15)
|
583
|
+
rat1 / rat2
|
584
|
+
# => (8/15)
|
585
|
+
```
|
586
|
+
|
587
|
+
### Relatable, and yet, Unique
|
588
|
+
|
589
|
+
When we execute the following:
|
590
|
+
|
591
|
+
```ruby
|
592
|
+
h1.hensel_code
|
593
|
+
# => [<HenselCode: 4665841>, <HenselCode: 10542168>, <HenselCode: 11316396>]
|
594
|
+
```
|
595
|
+
|
596
|
+
it is clear that the truncated g-adic Hensel code is a collection of individual Hensel codes, each one computed for the same rational but with distinct primes. One can be tempted to think that these multiple independent Hensel codes are "extra" material, not really needed for representing the given rational. This is far from the truth. Besides enabling parallel/distributed computaitons over Hensel codes (which is already a great benefit to have), to illustrate another aspect of working with truncated g-adic Hensel codes, consider the rational `rat3 = Rational(37897,52234)`:
|
597
|
+
|
598
|
+
```ruby
|
599
|
+
h3 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat3
|
600
|
+
# => <HenselCode: [3698890, 5577355, 7406440]>
|
601
|
+
h3.hensel_code
|
602
|
+
# => [<HenselCode: 3698890>, <HenselCode: 5577355>, <HenselCode: 7406440>]
|
603
|
+
```
|
604
|
+
|
605
|
+
We can clearly see that each Hensel code in the truncated g-adic Hensel code is only a partial representation of `rat3` when we decode each individual Hensel code to see which rational they are representing:
|
606
|
+
|
607
|
+
```ruby
|
608
|
+
h3.hensel_code.map(&:to_r)
|
609
|
+
# => [(1471/4613), (409/981), (-207/3298)]
|
610
|
+
```
|
611
|
+
|
612
|
+
None of the above rationals equals `rat3`. The reason is that each individual prime in `primes` are insufficient for representing `rat3` and therefore they can only, individually, partially represent `rat3`. However, when considered as part of the same g-adic number system, they can jointly represent much larger rationals, yet independently:
|
613
|
+
|
614
|
+
```ruby
|
615
|
+
h3.to_r
|
616
|
+
=> (37897/52234)
|
617
|
+
```
|
618
|
+
|
619
|
+
Therefore, even without increasing the size of each individual prime, we can homomorphically represent very large rationals by considering more primes in the g-adic system:
|
620
|
+
|
621
|
+
```ruby
|
622
|
+
rat4 = Rational(84245698732457344123,198437243845987593234524
|
623
|
+
primes = [349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409]
|
624
|
+
h4 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat4
|
625
|
+
# => HenselCode: [16442637, 10524943, 2432723, 10742241, 37389750, 10164016, 7690494, 32341841, 26459590, 50463786, 28362831]>
|
626
|
+
h4.to_r
|
627
|
+
# => (84245698732457344123/198437243845987593234524)
|
628
|
+
```
|
629
|
+
|
630
|
+
## Finite-segment g-adic Hensel codes
|
631
|
+
|
632
|
+
### Description
|
633
|
+
The finite-segment g-adic Hensel codes are analogous to the relationship between truncated finite p-adic expansions and finite p-adic expansions. With the finite-segement g-adic Hensel codes, we have a collection of fixed-degree univariate polynomials for each one of `k` distinct primes used to compute a g-adic Hensel code.
|
634
|
+
|
635
|
+
### Unique Benefits
|
636
|
+
|
637
|
+
Finite-segement g-adic Hensel codes combine the best of two worlds: multiple independent Hensel codes which can be computed in parallel / in a distributed manner and computations using fixed-degree polynomials where for each `b`-bit prime `p_i`, the maximum expansion of all computations will take at most `1 + 2b` bits. Combining parallel/distributed computation with minimal computation expansion can be beneficial for a number of applications including massive parallel computations and egde computing.
|
638
|
+
|
639
|
+
### Usage
|
640
|
+
```ruby
|
641
|
+
primes = [241, 251, 257]
|
642
|
+
r = 3
|
643
|
+
rat1 = Rational(2,3)
|
644
|
+
rat2 = Rational(5,9)
|
645
|
+
h1 = HenselCode::FiniteGadicExpansion.new primes, r, rat1
|
646
|
+
# => <HenselCode: ["81 + 80p + 80p^2", "168 + 83p + 167p^2", "172 + 85p + 171p^2"]>
|
647
|
+
h2 = HenselCode::FiniteGadicExpansion.new primes, r, rat2
|
648
|
+
# => <HenselCode: ["188 + 26p + 107p^2", "140 + 111p + 139p^2", "229 + 199p + 142p^2"]>
|
649
|
+
h1.to_r
|
650
|
+
# => (2/3)
|
651
|
+
h2.to_r
|
652
|
+
# => (5/9)
|
653
|
+
h1.to_a
|
654
|
+
# => [[81, 80, 80], [168, 83, 167], [172, 85, 171]]
|
655
|
+
h2.to_a
|
656
|
+
# => [[188, 26, 107], [140, 111, 139], [229, 199, 142]]
|
657
|
+
```
|
658
|
+
|
659
|
+
### Arithmetic
|
660
|
+
```ruby
|
661
|
+
h1_plus_h2 = h1 + h2
|
662
|
+
# => <HenselCode: ["28 + 107p + 187p^2", "57 + 195p + 55p^2", "144 + 28p + 57p^2"]>
|
663
|
+
h1_minus_h2 = h1 - h2
|
664
|
+
# => <HenselCode: ["134 + 53p + 214p^2", "28 + 223p + 27p^2", "200 + 142p + 28p^2"]>
|
665
|
+
h1_times_h2 = h1 * h2
|
666
|
+
# => <HenselCode: ["45 + 98p + 71p^2", "177 + 241p + 92p^2", "67 + 133p + 9p^2"]>
|
667
|
+
h1_div_h2 = h1 / h2
|
668
|
+
# => <HenselCode: ["194 + 192p + 192p^2", "202 + 200p + 200p^2", "104 + 51p + 154p^2"]>
|
669
|
+
h2.inverse
|
670
|
+
# => <HenselCode: ["50 + 48p + 48p^2", "52 + 50p + 50p^2", "156 + 205p + 102p^2"]>
|
671
|
+
h1 * h2.inverse
|
672
|
+
# => <HenselCode: ["194 + 192p + 192p^2", "202 + 200p + 200p^2", "104 + 51p + 154p^2"]>
|
673
|
+
h2 * h2.inverse
|
674
|
+
# => <HenselCode: ["1 + 0p + 0p^2", "1 + 0p + 0p^2", "1 + 0p + 0p^2"]>
|
675
|
+
```
|
676
|
+
|
677
|
+
and we can check that
|
678
|
+
|
679
|
+
```ruby
|
680
|
+
h1_plus_h2.to_r
|
681
|
+
# => (11/9)
|
682
|
+
rat1 + rat2
|
683
|
+
# => (11/9)
|
684
|
+
h1_minus_h2.to_r
|
685
|
+
# => (1/9)
|
686
|
+
rat1 - rat2
|
687
|
+
# => (1/9)
|
688
|
+
h1_times_h2.to_r
|
689
|
+
# => (10/27)
|
690
|
+
rat1 * rat2
|
691
|
+
# => (10/27)
|
692
|
+
h1_div_h2.to_r
|
693
|
+
# => (6/5)
|
694
|
+
rat1 / rat2
|
695
|
+
# => (6/5)
|
696
|
+
```
|
697
|
+
|
698
|
+
## Class Aliases
|
699
|
+
|
700
|
+
Since some classes can have long names, here are some aliases that can be used for keeping the lines of code shorter:
|
380
701
|
|
381
|
-
|
702
|
+
- `HenselCode::TruncatedFinitePadicExpansion` => `HenselCode::TFPE`
|
703
|
+
- `HenselCode::HenselCodesWithDifferentPrimesAndExponents` => `HenselCode::HCWDPAE`
|
704
|
+
- `HenselCode::WrongHenselCodeInputType` => `HenselCode::WHIT`
|
382
705
|
|
383
706
|
## Coming Soon
|
384
707
|
|
@@ -396,4 +719,4 @@ Bug reports and pull requests are welcome on GitHub at https://github.com/davidw
|
|
396
719
|
|
397
720
|
## License
|
398
721
|
|
399
|
-
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
722
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
data/hensel_code.gemspec
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require_relative "lib/hensel_code/version"
|
4
|
+
|
5
|
+
Gem::Specification.new do |spec|
|
6
|
+
spec.name = "hensel_code"
|
7
|
+
spec.version = HenselCode::VERSION
|
8
|
+
spec.authors = ["David William Silva"]
|
9
|
+
spec.email = ["contact@davidwsilva.com"]
|
10
|
+
|
11
|
+
spec.summary = "Error-free computation with homomorphic encoding of rational numbers."
|
12
|
+
spec.description = "A Ruby library for error-free computation via homomorphic encoding of rational numbers as integers."
|
13
|
+
spec.homepage = "https://github.com/davidwilliam/hensel_code"
|
14
|
+
spec.license = "MIT"
|
15
|
+
spec.required_ruby_version = ">= 2.6.0"
|
16
|
+
|
17
|
+
spec.metadata["homepage_uri"] = spec.homepage
|
18
|
+
spec.metadata["source_code_uri"] = "https://github.com/davidwilliam/hensel_code"
|
19
|
+
spec.metadata["changelog_uri"] = "https://github.com/davidwilliam/hensel_code/blob/main/CHANGELOG.md"
|
20
|
+
|
21
|
+
# Specify which files should be added to the gem when it is released.
|
22
|
+
# The `git ls-files -z` loads the files in the RubyGem that have been added into git.
|
23
|
+
spec.files = Dir.chdir(File.expand_path(__dir__)) do
|
24
|
+
`git ls-files -z`.split("\x0").reject do |f|
|
25
|
+
(f == __FILE__) || f.match(%r{\A(?:(?:bin|test|spec|features)/|\.(?:git|travis|circleci)|appveyor)})
|
26
|
+
end
|
27
|
+
end
|
28
|
+
spec.bindir = "exe"
|
29
|
+
spec.executables = spec.files.grep(%r{\Aexe/}) { |f| File.basename(f) }
|
30
|
+
spec.require_paths = ["lib"]
|
31
|
+
|
32
|
+
# Uncomment to register a new dependency of your gem
|
33
|
+
spec.add_dependency "openssl", "~> 3.0.0"
|
34
|
+
spec.add_dependency "prime", "~> 0.1.2"
|
35
|
+
|
36
|
+
# For more information and examples about making a new gem, check out our
|
37
|
+
# guide at: https://bundler.io/guides/creating_gem.html
|
38
|
+
spec.metadata["rubygems_mfa_required"] = "true"
|
39
|
+
end
|