hensel_code 0.1.0 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.codecov.yml +6 -0
- data/CHANGELOG.md +26 -2
- data/Gemfile.lock +1 -1
- data/README.md +472 -16
- data/lib/hensel_code/finite_padic_expansion.rb +106 -0
- data/lib/hensel_code/gadic_base.rb +86 -0
- data/lib/hensel_code/gadic_verifier.rb +36 -0
- data/lib/hensel_code/modular_arithmetic.rb +75 -0
- data/lib/hensel_code/padic_base.rb +85 -0
- data/lib/hensel_code/{tfpe_verifier.rb → padic_verifier.rb} +1 -1
- data/lib/hensel_code/polynomial.rb +103 -0
- data/lib/hensel_code/tools.rb +24 -6
- data/lib/hensel_code/truncated_finite_gadic_expansion.rb +64 -0
- data/lib/hensel_code/truncated_finite_padic_expansion.rb +21 -77
- data/lib/hensel_code/version.rb +1 -1
- data/lib/hensel_code.rb +12 -3
- metadata +11 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 50f6a13e6cba426fca07fa46a610b85ef7fae043a4a380481cb20ab6df14de3a
|
4
|
+
data.tar.gz: 89ac88e608472e67fe00238d1e974462747870bf13aa6f85d2391c559656cfcf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: d67e6bdb32a0a1c70fecc6b00a6d5a3e7b7a6ca426446b02c9b44e3c84f059dccf79e17d6567013ec61f2ddb2641fdc41f34b0887dc36bc287cba89452329398
|
7
|
+
data.tar.gz: 7f4c9d9deb9edb968e99ad1c67e7cb597789169af91c6c83c9c1288990c531d7fcd732065cd71ce4a7f3cb6fd364667d2cd92932a5c20a4b0dad89bdf0b088d7
|
data/.codecov.yml
ADDED
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,29 @@
|
|
1
|
-
## [
|
1
|
+
## [0.3.0] - 2022-03-12
|
2
2
|
|
3
|
-
|
3
|
+
- Add the `Polynomial` class for arithmetic with fixed-length polynomials
|
4
|
+
- Change the class `TruncatedFinitePadicExpansion` for carrying all computaitons over fixed-length polynomials reduced modulo `p`
|
5
|
+
- Add the third type of supported Hensel code: the truncated finite-segment g-adic Hensel code.
|
6
|
+
- Add `GAdicBase` as the parent class of `TruncatedFiniteGadicExpansion`.
|
7
|
+
- Allow converting a finite-segment p-adic Hensel code into a truncated p-adic Hensel code.
|
8
|
+
- Add the Chinese Remainder Theorem algorithm (CRT) to the module `Tools`
|
9
|
+
- Improve helpers for generating distinct random numbers (integers, primes, and rationals)
|
10
|
+
- Add the inverse function for all three currently supported types of Hensel codes
|
11
|
+
- Overall improvements in the code
|
12
|
+
|
13
|
+
## [0.2.1] - 2022-03-05
|
14
|
+
- Fix version build
|
15
|
+
|
16
|
+
## [0.2.0] - 2022-03-05
|
17
|
+
|
18
|
+
- Add the second type of supported Hensel code: the finite-segment p-adic Hensel code.
|
19
|
+
- Allow converting a finite-segment p-adic Hensel code into a truncated p-adic Hensel code.
|
20
|
+
- Support all four arithemtic operations.
|
21
|
+
- Add `PAdicBase` as the parent class of `FinitePadicExpansion` and `TruncatedFinitePadicExpansion`.
|
22
|
+
|
23
|
+
|
24
|
+
## [0.1.0] - 2022-03-03
|
4
25
|
|
5
26
|
- Initial release
|
27
|
+
- Contain general tools for integer manipulation such us random number generation, random integer generation, extended gcd, and modular multiplicative inverse.
|
28
|
+
- Add the first type of supported Hensel code: the truncated finite-segment p-adic expansion Hensel code or simply truncated p-adic Hensel code.
|
29
|
+
- Allow encoding rational numbers with the classs `TruncatedFinitePadicExpansion` and perform all four basic arithmetic operations on truncated p-adic Hensel codes: addition, subtraction, multiplication, and division.
|
data/Gemfile.lock
CHANGED
data/README.md
CHANGED
@@ -1,9 +1,19 @@
|
|
1
1
|
# HenselCode
|
2
2
|
|
3
|
-
![example workflow](https://github.com/davidwilliam/hensel_code/actions/workflows/main.yml/badge.svg) [![codecov](https://codecov.io/gh/davidwilliam/hensel_code/branch/main/graph/badge.svg?token=XJ0C0U7P2M)](https://codecov.io/gh/davidwilliam/hensel_code) [![Ruby Style Guide](https://img.shields.io/badge/code_style-rubocop-brightgreen.svg)](https://github.com/rubocop/rubocop) ![GitHub](https://img.shields.io/github/license/davidwilliam/hensel_code)
|
3
|
+
![example workflow](https://github.com/davidwilliam/hensel_code/actions/workflows/main.yml/badge.svg) [![codecov](https://codecov.io/gh/davidwilliam/hensel_code/branch/main/graph/badge.svg?token=XJ0C0U7P2M)](https://codecov.io/gh/davidwilliam/hensel_code) [![Ruby Style Guide](https://img.shields.io/badge/code_style-rubocop-brightgreen.svg)](https://github.com/rubocop/rubocop) ![GitHub](https://img.shields.io/github/license/davidwilliam/hensel_code) ![Gem](https://img.shields.io/gem/v/hensel_code) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/davidwilliam/hensel_code)
|
4
|
+
|
5
|
+
***NOTICE:*** this README is beign constantly updated. I am currently focused on coding since I want to release as many different types of Hensel codes as possible. At the same time, I want this README to be as informative as possible even for those completely unfamiliar with p-adic numbers and Hensel codes. Therefore, even not in the pace I would want, I will continue to add information to the README to facilitate the use of the gem and to give some practical ideas of the computational possibilities enabled by it.
|
4
6
|
|
5
7
|
Hensel Code allows you to homomorphically encode rational numbers as integers using the finite-segment p-adic arithmetic, also known as Hensel codes.
|
6
8
|
|
9
|
+
T. M. Rao describes the use of finite-segment p-adic arithmetic as a practical method for performing error-free computation and the term *Hensel code* as the first `r` digits of the infinite p-adic expansion of a rational number `x/y`. The use of Hensel codes allows us to replace the arithmetic opertations on rational numbers by corresponding aritmetic operation over the integers under certain conditions.
|
10
|
+
|
11
|
+
Rao also remarks that the theory of Hensel codes, although lifted from the p-adic number theory, can be introduced without the need of a complete undertanding of the theoretical aspects of p-adic numbers if the goal is to work with Hensel codes alone. This is due to the fact that the finite-segment p-adic arithmetic is well-defined, self-contained, and it has immediate pratical applications in a wide range of real-world scenarios.
|
12
|
+
|
13
|
+
Ç. K. Koç remarks that the p-adic arithmetic allows error-free representation of fractions and error-ree arithmetic using fractions where infinite-precision p-adic arithemtic is more suitable for software implementation and finite-precision p-adic arithmetic is more suitable for hardware implementations.
|
14
|
+
|
15
|
+
A p-adic number can be uniquely written as a inifite p-adic expansion, for `p` prime, where the associated coefficients are integers between `0` and `p - 1`. When this p-adic expansion is finite in length, then we have a finite-segment p-adic expansion. When we only consider the constant term of a p-adic expansion, then we have a truncated finite-segment p-adic expansion. There many types of representations of rationals lifted from the p-adic number theory, and therefore many types of Hensel codes.
|
16
|
+
|
7
17
|
## Mathematical Background
|
8
18
|
|
9
19
|
In our Wiki, you can find a brief [introduction to the mathematical background on Hensel codes](https://github.com/davidwilliam/hensel_code/wiki/Mathematical-Background). We will continue to update that area as we update the gem.
|
@@ -28,15 +38,43 @@ Or install it yourself as:
|
|
28
38
|
|
29
39
|
$ gem install hensel_code
|
30
40
|
|
31
|
-
|
41
|
+
# HenselCode
|
42
|
+
|
43
|
+
There are several types of Hensel codes in the finite-segment p-adic number theory. There are currently three of them available in the gem HenselCode:
|
44
|
+
|
45
|
+
1. Truncated finite-segment p-adic Hensel codes
|
46
|
+
2. Finite-segment p-adic Hensel codes
|
47
|
+
3. Truncated finite-segment g-adic Hensel codes
|
48
|
+
|
49
|
+
For each type of supported Hensel code I will briefly discuss their properties and capabilities as well as unique features that make each type of Hensel code distinct from each other.
|
50
|
+
|
51
|
+
## Truncated finite-segment p-adic Hensel codes
|
52
|
+
|
53
|
+
### Description
|
54
|
+
|
55
|
+
The truncated finite-segment p-adic Hensel codes are integer representations of rationals with respect to a prime `p` and a positive exponent `r`. This integer representation of any given rational is equivalent to a constant term of the finite-segment p-adic expansion that represents that rational.
|
56
|
+
|
57
|
+
### Unique Benefits
|
58
|
+
|
59
|
+
The truncated finite-segment p-adic Hensel codes are the simplest type of Hensel codes and the easiest ones to perform computations on it. Given a prime `p` and an exponent `r`, Hensel codes are integers between `0` and `p^r - 1`. In Ruby, as in many other modern scripting languages, integers can be arbitarily large, and therefore `p` can be as large as computationally affordable. Addition, subtraction, multiplication, and division on Hensel codes are simply these operations modulo `p^r`. Encoding and decoding are also straightforward. Its use is ideal for applications with very large numbers and/or many consecutive homomorphic computations on Hensel codes, which can be achieved with the efficincy of computations over the integers.
|
60
|
+
|
61
|
+
### Usage
|
32
62
|
|
33
63
|
Let `p=257` and `r=3`. Given two rational numbers `rat1 = Rational(3,5)` and `rat2 = Rational(4,3)`, we encode `rat1` and `rat2` as follows:
|
34
64
|
|
35
65
|
```ruby
|
36
66
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new(p, r, rat1)
|
37
|
-
# =>
|
67
|
+
# => <HenselCode: 13579675>
|
38
68
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new(p, r, rat1)
|
39
|
-
# =>
|
69
|
+
# => <HenselCode: 5658199>
|
70
|
+
h1.n
|
71
|
+
# => 2913
|
72
|
+
h1.prime
|
73
|
+
# => 257
|
74
|
+
h1.exponent
|
75
|
+
# => 3
|
76
|
+
h1.modulus
|
77
|
+
# => 16974593
|
40
78
|
h1.class
|
41
79
|
# => HenselCode::TruncatedFinitePadicExpansion
|
42
80
|
h2.class
|
@@ -51,9 +89,19 @@ Now we can carry arithmetic computations on the `h1` and `h2` objects as if we w
|
|
51
89
|
|
52
90
|
```ruby
|
53
91
|
h1_plus_h2 = h1 + h2
|
92
|
+
# => <HenselCode: 2263281>
|
54
93
|
h1_minus_h2 = h1 - h2
|
94
|
+
# => <HenselCode: 7921476>
|
55
95
|
h1_times_h2 = h1 * h2
|
96
|
+
# => <HenselCode: 6789838>
|
56
97
|
h1_div_h2 = h1 / h2
|
98
|
+
# => <HenselCode: 5941108>
|
99
|
+
h2.inverse
|
100
|
+
# => <HenselCode: 4243649>
|
101
|
+
h1 * h2.inverse
|
102
|
+
# => <HenselCode: 5941108>
|
103
|
+
h2 * h2.inverse
|
104
|
+
# => <HenselCode: 1>
|
57
105
|
```
|
58
106
|
|
59
107
|
All the computations are reduced modulo `p^r`.
|
@@ -80,21 +128,114 @@ rat1 - rat2
|
|
80
128
|
# => (-11/15)
|
81
129
|
rat1 * rat2
|
82
130
|
# => (4/5)
|
131
|
+
rat1 / rat2
|
132
|
+
# => (9/20)
|
133
|
+
```
|
134
|
+
|
135
|
+
### Which Prime Should I Use?
|
136
|
+
|
137
|
+
The choice of the prime you should use for encoding rationals into integers depends on two factors:
|
138
|
+
|
139
|
+
1. What rationals you want to encode,
|
140
|
+
2. What computations you want to perform over the encoded rationals.
|
141
|
+
|
142
|
+
To help you in this decision, given any Hensel code object `h`, you can check `h.n`:
|
143
|
+
|
144
|
+
```ruby
|
145
|
+
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, Rational(2,3)
|
146
|
+
# => <HenselCode: 11316396>
|
147
|
+
h.n
|
148
|
+
# => 2913
|
149
|
+
```
|
150
|
+
|
151
|
+
In the mathematical background provided on our Wiki, you will see that the fractions associated with any choise of `p` and `r` are bounded by a value of `N`. In the HenselCode gem we refer to `n`, since capital letters are reserved to constants in Ruby. In the above example, we can encode fractions with numerator and denominator bounded in absolute value to `n` and we can perform computations on Hensel codes until a result that encodes a rational number with numerator and denominator bounded in absolute value to `n`.
|
152
|
+
|
153
|
+
### Correctness Depends on the Choices for `p` and `r`
|
154
|
+
|
155
|
+
If `p = 7` and `r = 2`, then `n = 4`. If I try to encode a rational number `rat = Rational(11,23)` with my choices of `p` and `r` I will not obtain the intended result:
|
156
|
+
|
157
|
+
```ruby
|
158
|
+
rat = Rational(11,23)
|
159
|
+
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
160
|
+
# => <HenselCode: 9>
|
161
|
+
h.to_r
|
162
|
+
# => (-4/5)
|
163
|
+
```
|
164
|
+
|
165
|
+
So, instead of `11/23`, we obtain `-4/5` and this happens because `n = 4` and the rational number `11/23` does not have numerator and denominator bounded in absolute value to `n`. Therefore correctness fails.
|
166
|
+
|
167
|
+
The same occurs with computation on Hensel codes. If `rat1 = Rational(2,3)` and `rat2 = Rational(3,4)`, both `rat1` and `rat2` can be correctly encoded and decoded with our choice of `p` and `r` since they both have numerators and denominators bounded in absolute value to `n = 4`. However, computation addition of `rat1` and `rat2` will fail correctness since the result violates the bound imposed by `n`:
|
168
|
+
|
169
|
+
```ruby
|
170
|
+
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
171
|
+
# => <HenselCode: 17>
|
172
|
+
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat2
|
173
|
+
# => <HenselCode: 13>
|
174
|
+
h1_plus_h2 = h1 + h2
|
175
|
+
# => <HenselCode: 30>
|
176
|
+
h1_plus_h2.to_r
|
177
|
+
# => (3/5)
|
178
|
+
```
|
179
|
+
|
180
|
+
We obtain the incorrect result because `2/3 + 2/4 = 17/12` and this result is not supported by `p = 7` and `r = 2`.
|
181
|
+
|
182
|
+
If instead we define `p = 56807` and `r = 3`, we have:
|
183
|
+
|
184
|
+
```ruby
|
185
|
+
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
186
|
+
# => <HenselCode: 122212127593296>
|
187
|
+
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat2
|
188
|
+
# => <HenselCode: 137488643542458>
|
189
|
+
h1_plus_h2 = h1 + h2
|
190
|
+
# => <HenselCode: 76382579745811>
|
191
|
+
h1_plus_h2.to_r
|
192
|
+
# => (17/12)
|
193
|
+
```
|
194
|
+
|
195
|
+
This time we obtain the correct result because `h1.n = 9573875`, and therefore correctness is guaranteed to any result associated with a numerator and a denominator bounded in absolute value to `9573875`.
|
196
|
+
|
197
|
+
Thefore, the larger `p` and `r` are, the larger the rationals one can correctly encode and decode and the more computations on Hensel codes will be perfomed and correctly decoded.
|
198
|
+
|
199
|
+
### It Could Be Any Integer, But...
|
200
|
+
|
201
|
+
The p-adic number theory establishes that `p` is a prime number. The fact that a prime number does not share any common divisor (other than `1`) with any other number smaller than itself makes it a very special number.
|
202
|
+
|
203
|
+
However, as an example, one could decided that `p = 25` and `r = 3`. Notice that `25` is not prime, yet, will work for some cases:
|
204
|
+
|
205
|
+
```ruby
|
206
|
+
p = 25
|
207
|
+
r = 3
|
208
|
+
rat1 = Rational(1,2)
|
209
|
+
h1 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat1
|
210
|
+
# => <HenselCode: 7813>
|
211
|
+
h1.to_r
|
212
|
+
# => (1/2)
|
83
213
|
```
|
84
214
|
|
215
|
+
However, it will fail in the following case:
|
216
|
+
|
217
|
+
```ruby
|
218
|
+
rat2 = Rational(2,5)
|
219
|
+
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat2
|
220
|
+
# => 5 has no inverse modulo 15625 (ZeroDivisionError)
|
221
|
+
```
|
222
|
+
|
223
|
+
We can't compute a Hensel code for `2/5` with `p = 25` and `r = 3` because `gcd(5,25) = 5` and therefore there is no modular multiplicative inverse of `5` modulo `25`.
|
224
|
+
|
225
|
+
Therefore it is important that `p` is a prime (preferred), or a prime power power (less interesting since we already have `r`), or a prime composite (it can be useful for larger prime factors).
|
85
226
|
### Constraints
|
86
227
|
|
87
228
|
In order to operate on two or more Hensel codes, they all must be of the same object type and have the same prime and exponent, otherwise HenselCode will raise an exception. Again, let `rat1 = Rational(3,5)` and `rat2 = Rational(4,3)`, and `p1 = 241`, `p2 = 251`, `r1 = 3`, and `r2 = 4`:
|
88
229
|
|
89
230
|
```ruby
|
90
231
|
h1 = HenselCode::TruncatedFinitePadicExpansion.new(p1, r1, rat1)
|
91
|
-
# =>
|
232
|
+
# => <HenselCode: 5599009>
|
92
233
|
h2 = HenselCode::TruncatedFinitePadicExpansion.new(p1, r2, rat1)
|
93
|
-
# =>
|
234
|
+
# => <HenselCode: 1349361025>
|
94
235
|
h3 = HenselCode::TruncatedFinitePadicExpansion.new(p2, r1, rat1)
|
95
|
-
# =>
|
236
|
+
# => <HenselCode: 6325301>
|
96
237
|
h4 = HenselCode::TruncatedFinitePadicExpansion.new(p2, r2, rat1)
|
97
|
-
=>
|
238
|
+
# => <HenselCode: 1587650401>
|
98
239
|
```
|
99
240
|
|
100
241
|
The following operations will raise exceptions:
|
@@ -117,7 +258,7 @@ Let `p = 541`, `r = 3`, `rat = Rational(11,5)`. We create a Hensel code as befor
|
|
117
258
|
|
118
259
|
```ruby
|
119
260
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
120
|
-
# =>
|
261
|
+
# => <HenselCode: 126672339>
|
121
262
|
```
|
122
263
|
|
123
264
|
We can change the prime and the exponent:
|
@@ -126,9 +267,9 @@ We can change the prime and the exponent:
|
|
126
267
|
p = 1223
|
127
268
|
r = 4
|
128
269
|
h.replace_prime(p)
|
129
|
-
# =>
|
270
|
+
# => <HenselCode: 731710629>
|
130
271
|
h.replace_exponent(r)
|
131
|
-
# =>
|
272
|
+
# => <HenselCode: 1789764193155>
|
132
273
|
```
|
133
274
|
|
134
275
|
Any change in the prime and/or the exponent of a Hensel code object will change the Hensel code value and the modulus as well, however, the Hensel code object continues to refer to represent the same rational number:
|
@@ -143,7 +284,7 @@ We can also change the rational number:
|
|
143
284
|
```ruby
|
144
285
|
rat = Rational(13,7)
|
145
286
|
h.replace_rational(rat)
|
146
|
-
# =>
|
287
|
+
# => <HenselCode: 1278402995111>
|
147
288
|
h.to_r
|
148
289
|
# => (13/7)
|
149
290
|
```
|
@@ -152,6 +293,7 @@ We can initiate a Hensel code object with its Hensel code value, instead of a ra
|
|
152
293
|
|
153
294
|
```ruby
|
154
295
|
h = HenselCode::TruncatedFinitePadicExpansion.new p, r, 53673296543
|
296
|
+
# => <HenselCode: 53673296543>
|
155
297
|
```
|
156
298
|
|
157
299
|
and then we can check what is the rational number represented by the resulting object:
|
@@ -165,12 +307,326 @@ We can update the Hensel code value of an existing Hensel code object:
|
|
165
307
|
|
166
308
|
```ruby
|
167
309
|
h.replace_hensel_code(38769823656)
|
168
|
-
# =>
|
310
|
+
# => <HenselCode: 38769823656>
|
311
|
+
```
|
312
|
+
|
313
|
+
## Polynomials
|
314
|
+
|
315
|
+
In order to support finite-segment p-adic Hensel codes, the HenselCode gem offers an engine for computing fixed-length polynomials where all the computations ared reduced modulo `p`.
|
316
|
+
|
317
|
+
Let `p = 257`. We intantiate polynomials as follows:
|
318
|
+
|
319
|
+
```ruby
|
320
|
+
f = HenselCode::Polynomial.new p, [29, 102, 232]
|
321
|
+
# => <Polynomial: 29 + 102p + 232p^2>
|
322
|
+
g = HenselCode::Polynomial.new p, [195, 83, 244]
|
323
|
+
# => <Polynomial: 195 + 83p + 244p^2>
|
324
|
+
f.prime
|
325
|
+
# => 257
|
326
|
+
f.coefficients
|
327
|
+
# => [29, 102, 232]
|
328
|
+
f.degree
|
329
|
+
# => 2
|
330
|
+
puts f
|
331
|
+
# => 29 + 102p + 232p^2
|
332
|
+
```
|
333
|
+
|
334
|
+
### Arithmetic
|
335
|
+
|
336
|
+
All the mathematical oeprations objects of the `Polynomial` are over fixed-length single-variable polynomails in non-standard form (the terms are in ascending order with respect to their degrees). All the computation on the polynomial coefficients are reduced modulo `p` in every single step of unitary calculations, that is, no indivudal step of computation exceeds an addition followed by a binary multiplication in which the operands are bounded by `p` (a carry + a product of two integers). Therefore, if `p` has bit length `b`, the maximum space required for expanding the result of each step of computation is `1 + 2b` bits.
|
337
|
+
|
338
|
+
```ruby
|
339
|
+
f + g
|
340
|
+
# => <Polynomial: 224 + 185p + 219p^2>
|
341
|
+
f - g
|
342
|
+
# => <Polynomial: 91 + 18p + 245p^2>
|
343
|
+
f * g
|
344
|
+
# => <Polynomial: 1 + 217p + 216p^2>
|
345
|
+
f / g
|
346
|
+
# => <Polynomial: 70 + 238p + 233p^2>
|
347
|
+
g.inverse
|
348
|
+
# => <Polynomial: 29 + 234p + 219p^2
|
349
|
+
f * g.inverse
|
350
|
+
# => <Polynomial: 70 + 238p + 233p^2>
|
351
|
+
g * g.inverse
|
352
|
+
# => <Polynomial: 1 + 0p + 0p^2>
|
169
353
|
```
|
170
354
|
|
171
|
-
###
|
355
|
+
### Constraints
|
356
|
+
|
357
|
+
Operations with fixed-length polynomials require operands with the same degree:
|
358
|
+
|
359
|
+
```ruby
|
360
|
+
f = HenselCode::Polynomial.new p, [29, 102, 232]
|
361
|
+
# => <Polynomial: 29 + 102p + 232p^2>
|
362
|
+
g = HenselCode::Polynomial.new p, [195, 83, 244, 99]
|
363
|
+
# => <Polynomial: 195 + 83p + 244p^2 + 99p^3>
|
364
|
+
f.degree
|
365
|
+
# => 2
|
366
|
+
g.degree
|
367
|
+
# => 3
|
368
|
+
f + g
|
369
|
+
# => polynomials must have same degree (HenselCode::WrongHenselCodeInputType)
|
370
|
+
```
|
371
|
+
|
372
|
+
Operations with fixed-length polynomials also require operands with the same prime:
|
373
|
+
|
374
|
+
```ruby
|
375
|
+
f = HenselCode::Polynomial.new 251, [133, 206, 58]
|
376
|
+
# => <Polynomial: 133 + 206p + 58p^2>
|
377
|
+
g = HenselCode::Polynomial.new 257, [105, 129, 238]
|
378
|
+
# => <Polynomial: 105 + 129p + 238p^2>
|
379
|
+
f + g
|
380
|
+
# => polynomials must have same prime (HenselCode::WrongHenselCodeInputType)
|
381
|
+
g.prime = 251
|
382
|
+
# => 251
|
383
|
+
f + g
|
384
|
+
# => <Polynomial: 238 + 84p + 46p^2>
|
385
|
+
```
|
386
|
+
|
387
|
+
## Finite-segment p-adic Hensel codes
|
388
|
+
|
389
|
+
### Description
|
390
|
+
The finite-segment p-adic Hensel code is a p-adic integer that can be seen as a polynomial of degree `r - 1` in non-standard form (increasing degree order). Each coefficient of such polynomials are called *p-adic digits* ranging from `0` to `p - 1`. Computations on p-adic digits reduced modulo `p` must take the *carry* into consideration so we can guarantee that the results of addition, subtraction, multiplication, and division also range from `0` to `p - 1`.
|
391
|
+
|
392
|
+
### Unique Benefits
|
393
|
+
The finite-segment p-adic Hensel code takes advantage of the finite-segmenet p-adic number system in which we can compute all four basic arithemtic operations (and consequently, any function) without requiring a substantial expansion in space for each individual computation. In fact, as mentioned in the section on Polynomials, given a prime `p` of bit length `b`, all unitary computations will take at most `1 + 2b` bits.
|
394
|
+
|
395
|
+
In Ruby, as is several other scripting languages, we can work with arbitrarily large integers and therefore the truncated p-adic Hensel code can be a good choice for representing large rational numbers. However, Ruby can run in a variety of systems, some of which will have limited resources, such as many instances in the IoT world. Additionally, a Ruby application can be one amongts many other components that together compose a larger application. Some of these other components might run in systems with integers limited to small bit lengths, say, 16. This is where finite-segment p-adic Hensel codes can be intrumental by allowing arbitrarily large p-adic expansions with coefficients bounded to a small prime.
|
396
|
+
|
397
|
+
### Usage
|
398
|
+
|
399
|
+
Let `p = 359`, `r = 3`, and `rat = Rational(2,3)`:
|
400
|
+
|
401
|
+
```ruby
|
402
|
+
h1 = HenselCode::FinitePadicExpansion.new p, r, rat
|
403
|
+
# => <HenselCode: 240 + 119p + 239p^2>
|
404
|
+
puts h1
|
405
|
+
# => 240 + 119p + 239p^2
|
406
|
+
```
|
407
|
+
|
408
|
+
We say that `h` is a p-adic number with `r` digits. We clearly see the correspondence of p-adic digits if we compute a truncated Hensel code with the same `p` but `r=1`:
|
409
|
+
|
410
|
+
```ruby
|
411
|
+
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
412
|
+
# => <HenselCode: 240>
|
413
|
+
```
|
414
|
+
|
415
|
+
Notice that the truncated Hensel code `h2` equals the first digit of the finite-segment Hensel code `h1`, which is also the same of computing
|
416
|
+
|
417
|
+
```ruby
|
418
|
+
HenselCode::FinitePadicExpansion.new p, 1, rat
|
419
|
+
# => <HenselCode: 240>
|
420
|
+
```
|
421
|
+
|
422
|
+
The following expressions are equivalent (they represent the same quantity):
|
423
|
+
|
424
|
+
```ruby
|
425
|
+
r = 3
|
426
|
+
h1 = HenselCode::FinitePadicExpansion.new p, r, rat
|
427
|
+
# => <HenselCode: 240 + 119p + 239p^2>
|
428
|
+
h1.to_r
|
429
|
+
# => (2/3)
|
430
|
+
h2 = HenselCode::TruncatedFinitePadicExpansion.new p, r, rat
|
431
|
+
# => <HenselCode: 30845520>
|
432
|
+
h2.to_r
|
433
|
+
# => (2/3)
|
434
|
+
```
|
435
|
+
|
436
|
+
that is, they not only represent the same rational but also `30845520` is just the evaluation of the polynomial `240 + 119p + 239p^2`.
|
437
|
+
|
438
|
+
We can obtain just the coefficients of `h1` as follows:
|
439
|
+
|
440
|
+
```ruby
|
441
|
+
h1.to_a
|
442
|
+
# => => [240, 119, 239]
|
443
|
+
```
|
444
|
+
|
445
|
+
We can obtain the truncated version of `h1` as follows:
|
446
|
+
|
447
|
+
```ruby
|
448
|
+
h1.to_truncated
|
449
|
+
# => <HenselCode: 30845520>
|
450
|
+
h1.to_truncated.class
|
451
|
+
# => HenselCode::TruncatedFinitePadicExpansion
|
452
|
+
```
|
453
|
+
|
454
|
+
#### Arithmetic
|
455
|
+
|
456
|
+
Let `p = 409`, `r = 5`, `rat1 = Rational(2,3)` and `rat2 = Rational(11,7)` such that
|
457
|
+
|
458
|
+
```ruby
|
459
|
+
h1 = HenselCode::FinitePadicExpansion.new p, r, rat1
|
460
|
+
# => <HenselCode: 137 + 136p + 136p^2 + 136p^3 + 136p^4>
|
461
|
+
h2 = HenselCode::FinitePadicExpansion.new p, r, rat2
|
462
|
+
# => <HenselCode: 60 + 292p + 233p^2 + 350p^3 + 116p^4>
|
463
|
+
```
|
464
|
+
|
465
|
+
We compute addition, subtraction, multiplication, and division as follows:
|
466
|
+
|
467
|
+
```ruby
|
468
|
+
h1_plus_h2 = h1 + h2
|
469
|
+
# => <HenselCode: 197 + 19p + 370p^2 + 77p^3 + 253p^4>
|
470
|
+
h1_minus_h2 = h1 - h2
|
471
|
+
# => <HenselCode: 77 + 253p + 311p^2 + 194p^3 + 19p^4>
|
472
|
+
h1_times_h2 = h1 * h2
|
473
|
+
# => <HenselCode: 40 + 331p + 155p^2 + 97p^3 + 214p^4>
|
474
|
+
h1_div_h2 = h1 / h2
|
475
|
+
# => <HenselCode: 50 + 161p + 12p^2 + 347p^3 + 309p^4>
|
476
|
+
h2.inverse
|
477
|
+
# => <HenselCode: 75 + 37p + 223p^2 + 111p^3 + 260p^4>
|
478
|
+
h1 * h2.inverse
|
479
|
+
# => <HenselCode: 50 + 161p + 12p^2 + 347p^3 + 309p^4>
|
480
|
+
h2 * h2.inverse
|
481
|
+
# => <HenselCode: 1 + 0p + 0p^2 + 0p^3 + 0p^4>
|
482
|
+
```
|
483
|
+
|
484
|
+
And we can verify that
|
485
|
+
|
486
|
+
```ruby
|
487
|
+
h1_plus_h2.to_r
|
488
|
+
# => (47/21)
|
489
|
+
rat1 + rat2
|
490
|
+
# => (47/21)
|
491
|
+
rat1 - rat2
|
492
|
+
# => (-19/21)
|
493
|
+
h1_minus_h2.to_r
|
494
|
+
# => (-19/21)
|
495
|
+
h1_times_h2.to_r
|
496
|
+
# => (22/21)
|
497
|
+
rat1 * rat2
|
498
|
+
# => (22/21)
|
499
|
+
h1_div_h2.to_r
|
500
|
+
# => (14/33)
|
501
|
+
rat1 / rat2
|
502
|
+
# => (14/33)
|
503
|
+
```
|
504
|
+
|
505
|
+
## Truncated finite-segment g-adic Hensel codes
|
506
|
+
### Description
|
507
|
+
Kurt Mahler refers to p-adic numbers based on multiple distinct primes as `g-adic numbers` (Lectures on Diophantine Approximations, 1961 and Introduction to p-adic Numbers and Their Functions, 1973). John F. Morrison, 1988, remarks that `g` is the product of `k` distinct primes, which are used to generate a g-adic number with a unique g-adic representation.
|
508
|
+
|
509
|
+
### Unique Benefits
|
510
|
+
|
511
|
+
Since each digit of a truncated finite-segment g-adic Expansion (or simply truncated g-adic Hensel codes) is independently computed with respect to their corresponding prime, we can carry computations on each digit also independetly. This makes the truncated g-adic Hensel codes ideal for parallel/distributed processing, that is, given a rational number, several g-adic digits of that rational are independently computed and computations can be carried on those digits, also indpendently.
|
512
|
+
|
513
|
+
### Usage
|
514
|
+
|
515
|
+
Let `primes = [241, 251, 257]`, `r = 3`, `rat1 = Rational(2,3)`, and `rat2 = Rational(5,4)`:
|
516
|
+
|
517
|
+
```ruby
|
518
|
+
h1 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat1
|
519
|
+
# => <HenselCode: [4665841, 10542168, 11316396]>
|
520
|
+
h2 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat2
|
521
|
+
# => <HenselCode: [10498142, 3953314, 12730946]>
|
522
|
+
h1.primes
|
523
|
+
# => [241, 251, 257]
|
524
|
+
h1.exponent
|
525
|
+
# => 3
|
526
|
+
h1.g
|
527
|
+
# => 15546187
|
528
|
+
h1.n
|
529
|
+
# => 43343186168
|
530
|
+
h1.hensel_code
|
531
|
+
# => [<HenselCode: 4665841>, <HenselCode: 10542168>, <HenselCode: 11316396>]
|
532
|
+
h1.to_r
|
533
|
+
# => (2/3)
|
534
|
+
h2.to_r
|
535
|
+
# => (5/4)
|
536
|
+
```
|
537
|
+
|
538
|
+
### Arithmetic
|
539
|
+
|
540
|
+
We compute addition, subtraction, multiplication, and division as follows:
|
541
|
+
|
542
|
+
```ruby
|
543
|
+
h1_plus_h2 = h1 + h2
|
544
|
+
# => <HenselCode: [1166462, 14495482, 7072749]>
|
545
|
+
h1_minus_h2 = h1 - h2
|
546
|
+
# => <HenselCode: [8165220, 6588854, 15560043]>
|
547
|
+
h1_times_h2 = h1 * h2
|
548
|
+
# => <HenselCode: [2332921, 13177710, 14145495]>
|
549
|
+
h1_div_h2 = h1 / h2
|
550
|
+
# => <HenselCode: [6532177, 2108434, 15842954]>
|
551
|
+
h2.inverse
|
552
|
+
# => <HenselCode: [2799505, 3162651, 6789838]>
|
553
|
+
h1 * h2.inverse
|
554
|
+
# => <HenselCode: [6532177, 2108434, 15842954]>
|
555
|
+
h2 * h2.inverse
|
556
|
+
# => <HenselCode: [1, 1, 1]>
|
557
|
+
```
|
558
|
+
|
559
|
+
And we can verify that
|
560
|
+
|
561
|
+
```ruby
|
562
|
+
h1_plus_h2.to_r
|
563
|
+
# => (23/12)
|
564
|
+
rat1 + rat2
|
565
|
+
# => (23/12)
|
566
|
+
rat1 - rat2
|
567
|
+
# => (-7/12)
|
568
|
+
h1_minus_h2.to_r
|
569
|
+
# => (-7/12)
|
570
|
+
h1_times_h2.to_r
|
571
|
+
# => (5/6)
|
572
|
+
rat1 * rat2
|
573
|
+
# => (5/6)
|
574
|
+
h1_div_h2.to_r
|
575
|
+
# => (8/15)
|
576
|
+
rat1 / rat2
|
577
|
+
# => (8/15)
|
578
|
+
```
|
579
|
+
|
580
|
+
### Relatable, and yet, Unique
|
581
|
+
|
582
|
+
When we execute the following:
|
583
|
+
|
584
|
+
```ruby
|
585
|
+
h1.hensel_code
|
586
|
+
# => [<HenselCode: 4665841>, <HenselCode: 10542168>, <HenselCode: 11316396>]
|
587
|
+
```
|
588
|
+
|
589
|
+
it is clear that the truncated g-adic Hensel code is a collection of individual Hensel codes, each one computed for the same rational but with distinct primes. One can be tempted to think that these multiple independent Hensel codes are "extra" material, not really needed for representing the given rational. This is far from the truth. Besides enabling parallel/distributed computaitons over Hensel codes (which is already a great benefit to have), to illustrate another aspect of working with truncated g-adic Hensel codes, consider the rational `rat3 = Rational(37897,52234)`:
|
590
|
+
|
591
|
+
```ruby
|
592
|
+
h3 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat3
|
593
|
+
# => <HenselCode: [3698890, 5577355, 7406440]>
|
594
|
+
h3.hensel_code
|
595
|
+
# => [<HenselCode: 3698890>, <HenselCode: 5577355>, <HenselCode: 7406440>]
|
596
|
+
```
|
597
|
+
|
598
|
+
We can clearly see that each Hensel code in the truncated g-adic Hensel code is only a partial representation of `rat3` when we decode each individual Hensel code to see which rational they are representing:
|
599
|
+
|
600
|
+
```ruby
|
601
|
+
h3.hensel_code.map(&:to_r)
|
602
|
+
# => [(1471/4613), (409/981), (-207/3298)]
|
603
|
+
```
|
604
|
+
|
605
|
+
None of the above rationals equals `rat3`. The reason is that each individual prime in `primes` are insufficient for representing `rat3` and therefore they can only, individually, partially represent `rat3`. However, when considered as part of the same g-adic number system, they can jointly represent much larger rationals, yet independently:
|
606
|
+
|
607
|
+
```ruby
|
608
|
+
h3.to_r
|
609
|
+
=> (37897/52234)
|
610
|
+
```
|
611
|
+
|
612
|
+
Therefore, even without increasing the size of each individual prime, we can homomorphically represent very large rationals by considering more primes in the g-adic system:
|
613
|
+
|
614
|
+
```ruby
|
615
|
+
rat4 = Rational(84245698732457344123,198437243845987593234524
|
616
|
+
primes = [349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409]
|
617
|
+
h4 = HenselCode::TruncatedFiniteGadicExpansion.new primes, r, rat4
|
618
|
+
# => HenselCode: [16442637, 10524943, 2432723, 10742241, 37389750, 10164016, 7690494, 32341841, 26459590, 50463786, 28362831]>
|
619
|
+
h4.to_r
|
620
|
+
# => (84245698732457344123/198437243845987593234524)
|
621
|
+
```
|
622
|
+
|
623
|
+
### Class Aliases
|
624
|
+
|
625
|
+
Since some classes can have long names, here are some aliases that can be used for keeping the lines of code shorter:
|
172
626
|
|
173
|
-
|
627
|
+
- `HenselCode::TruncatedFinitePadicExpansion` => `HenselCode::TFPE`
|
628
|
+
- `HenselCode::HenselCodesWithDifferentPrimesAndExponents` => `HenselCode::HCWDPAE`
|
629
|
+
- `HenselCode::WrongHenselCodeInputType` => `HenselCode::WHIT`
|
174
630
|
|
175
631
|
## Coming Soon
|
176
632
|
|
@@ -188,4 +644,4 @@ Bug reports and pull requests are welcome on GitHub at https://github.com/davidw
|
|
188
644
|
|
189
645
|
## License
|
190
646
|
|
191
|
-
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
647
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|