hanny 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +15 -0
- data/.rspec +3 -0
- data/.rubocop.yml +39 -0
- data/.travis.yml +11 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +6 -0
- data/LICENSE.txt +23 -0
- data/README.md +150 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/hanny.gemspec +38 -0
- data/lib/hanny.rb +8 -0
- data/lib/hanny/lsh_index.rb +273 -0
- data/lib/hanny/utils.rb +44 -0
- data/lib/hanny/version.rb +7 -0
- metadata +136 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 76848de111777349352ddeb7aa269ad3694504661ac2fe1c45729ebcd0f27414
|
4
|
+
data.tar.gz: a911da20689134ebecdd01b88827a2d2cc65149b497103f32f528fa754590c15
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 6c1e4fde8dc03f439454a476d16be7b48f384cb0adf24a17fce47e09387d4583e31ba66b3a9b7f6d9fb5ff6e386e9282fba68f05c9ff0cb74f88013e19d65b91
|
7
|
+
data.tar.gz: 30441f1aef6a05bc0a609d4b2176f4e04d7d0d9882579de8909aae9076dbdf68670eb4275da1a863dffa13454997597e83d229a1371f6a51bee0f58aa3740abd
|
data/.coveralls.yml
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
service_name: travis-ci
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.rubocop.yml
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
AllCops:
|
2
|
+
TargetRubyVersion: 2.1
|
3
|
+
DisplayCopNames: true
|
4
|
+
DisplayStyleGuide: true
|
5
|
+
|
6
|
+
Documentation:
|
7
|
+
Enabled: false
|
8
|
+
|
9
|
+
Metrics/LineLength:
|
10
|
+
Max: 140
|
11
|
+
IgnoredPatterns: ['(\A|\s)#']
|
12
|
+
|
13
|
+
Metrics/ModuleLength:
|
14
|
+
Max: 200
|
15
|
+
|
16
|
+
Metrics/ClassLength:
|
17
|
+
Max: 200
|
18
|
+
|
19
|
+
Metrics/MethodLength:
|
20
|
+
Max: 40
|
21
|
+
|
22
|
+
Metrics/AbcSize:
|
23
|
+
Max: 60
|
24
|
+
|
25
|
+
Metrics/BlockLength:
|
26
|
+
Exclude:
|
27
|
+
- 'spec/**/*'
|
28
|
+
|
29
|
+
ParameterLists:
|
30
|
+
Max: 10
|
31
|
+
|
32
|
+
Security/MarshalLoad:
|
33
|
+
Enabled: false
|
34
|
+
|
35
|
+
Naming/UncommunicativeMethodParamName:
|
36
|
+
Enabled: false
|
37
|
+
|
38
|
+
Style/FormatStringToken:
|
39
|
+
Enabled: false
|
data/.travis.yml
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
In the interest of fostering an open and welcoming environment, we as
|
6
|
+
contributors and maintainers pledge to making participation in our project and
|
7
|
+
our community a harassment-free experience for everyone, regardless of age, body
|
8
|
+
size, disability, ethnicity, gender identity and expression, level of experience,
|
9
|
+
nationality, personal appearance, race, religion, or sexual identity and
|
10
|
+
orientation.
|
11
|
+
|
12
|
+
## Our Standards
|
13
|
+
|
14
|
+
Examples of behavior that contributes to creating a positive environment
|
15
|
+
include:
|
16
|
+
|
17
|
+
* Using welcoming and inclusive language
|
18
|
+
* Being respectful of differing viewpoints and experiences
|
19
|
+
* Gracefully accepting constructive criticism
|
20
|
+
* Focusing on what is best for the community
|
21
|
+
* Showing empathy towards other community members
|
22
|
+
|
23
|
+
Examples of unacceptable behavior by participants include:
|
24
|
+
|
25
|
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26
|
+
advances
|
27
|
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28
|
+
* Public or private harassment
|
29
|
+
* Publishing others' private information, such as a physical or electronic
|
30
|
+
address, without explicit permission
|
31
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
32
|
+
professional setting
|
33
|
+
|
34
|
+
## Our Responsibilities
|
35
|
+
|
36
|
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37
|
+
behavior and are expected to take appropriate and fair corrective action in
|
38
|
+
response to any instances of unacceptable behavior.
|
39
|
+
|
40
|
+
Project maintainers have the right and responsibility to remove, edit, or
|
41
|
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42
|
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43
|
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44
|
+
threatening, offensive, or harmful.
|
45
|
+
|
46
|
+
## Scope
|
47
|
+
|
48
|
+
This Code of Conduct applies both within project spaces and in public spaces
|
49
|
+
when an individual is representing the project or its community. Examples of
|
50
|
+
representing a project or community include using an official project e-mail
|
51
|
+
address, posting via an official social media account, or acting as an appointed
|
52
|
+
representative at an online or offline event. Representation of a project may be
|
53
|
+
further defined and clarified by project maintainers.
|
54
|
+
|
55
|
+
## Enforcement
|
56
|
+
|
57
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58
|
+
reported by contacting the project team at yoshoku@outlook.com. All
|
59
|
+
complaints will be reviewed and investigated and will result in a response that
|
60
|
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61
|
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62
|
+
Further details of specific enforcement policies may be posted separately.
|
63
|
+
|
64
|
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65
|
+
faith may face temporary or permanent repercussions as determined by other
|
66
|
+
members of the project's leadership.
|
67
|
+
|
68
|
+
## Attribution
|
69
|
+
|
70
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71
|
+
available at [http://contributor-covenant.org/version/1/4][version]
|
72
|
+
|
73
|
+
[homepage]: http://contributor-covenant.org
|
74
|
+
[version]: http://contributor-covenant.org/version/1/4/
|
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,23 @@
|
|
1
|
+
Copyright (c) 2017 yoshoku
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
15
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
16
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
17
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
18
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
19
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
20
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
21
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
22
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
23
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,150 @@
|
|
1
|
+
# Hanny
|
2
|
+
|
3
|
+
[![Build Status](https://travis-ci.org/yoshoku/Hanny.svg?branch=master)](https://travis-ci.org/yoshoku/Hanny)
|
4
|
+
[![Coverage Status](https://coveralls.io/repos/github/yoshoku/Hanny/badge.svg?branch=master)](https://coveralls.io/github/yoshoku/Hanny?branch=master)
|
5
|
+
[![Gem Version](https://badge.fury.io/rb/hanny.svg)](https://badge.fury.io/rb/hanny)
|
6
|
+
[![BSD 2-Clause License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://github.com/yoshoku/Hanny/blob/master/LICENSE.txt)
|
7
|
+
|
8
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
9
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
10
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
11
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
12
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
13
|
+
|
14
|
+
## Installation
|
15
|
+
|
16
|
+
Add this line to your application's Gemfile:
|
17
|
+
|
18
|
+
```ruby
|
19
|
+
gem 'hanny'
|
20
|
+
```
|
21
|
+
|
22
|
+
And then execute:
|
23
|
+
|
24
|
+
$ bundle
|
25
|
+
|
26
|
+
Or install it yourself as:
|
27
|
+
|
28
|
+
$ gem install hanny
|
29
|
+
|
30
|
+
## Usage
|
31
|
+
|
32
|
+
```ruby
|
33
|
+
require 'hanny'
|
34
|
+
|
35
|
+
# Prepare vector data for search targets and queries with Numo::DFloat (shape: [n_samples, n_features]).
|
36
|
+
targets = Numo::DFloat.new(5000, 512).rand
|
37
|
+
queries = Numo::DFloat.new(10, 512).rand
|
38
|
+
|
39
|
+
# Build a search index with 256-bit binary code.
|
40
|
+
index = Hanny::LSHIndex.new(code_length: 256)
|
41
|
+
index.build_index(targets)
|
42
|
+
|
43
|
+
# Obtain the Array<Integer> that has the data indices of 10-nearest neighbors for each query.
|
44
|
+
candidates = index.search_knn(queries, n_neighbors: 10)
|
45
|
+
|
46
|
+
# Obtain the Array<Integer> that has the data indices whithin Hamming radius of 4 for each query.
|
47
|
+
candidates = index.search_radius(queries, radius: 4)
|
48
|
+
|
49
|
+
# Calculate pairwise euclidean distances between the query and its neighbors.
|
50
|
+
query_id = 0
|
51
|
+
distances = Hanny::Utils.euclidean_distance(queries[query_id, true], targets[candidates[query_id], true])
|
52
|
+
|
53
|
+
# Add new data to the search index.
|
54
|
+
appended_data_ids = index.append_data(new_data)
|
55
|
+
|
56
|
+
# Remove the data from the search index.
|
57
|
+
removed_data_ids = index.remove_data([0, 1, 2])
|
58
|
+
|
59
|
+
# Save and load the search index with Marshal.
|
60
|
+
File.open('index.dat', 'wb') { |f| f.write(Marshal.dump(index)) }
|
61
|
+
index = Marshal.load(File.binread('index.dat'))
|
62
|
+
```
|
63
|
+
|
64
|
+
## Experiment
|
65
|
+
|
66
|
+
I confirmed the search speed of Hanny's LSH with [MNIST](https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist) data set.
|
67
|
+
The experiment is carried out on MacBook Early 2016 (Core m3 1.1 GHz CPU and 8 GB memory).
|
68
|
+
|
69
|
+
Code:
|
70
|
+
```ruby
|
71
|
+
require 'benchmark'
|
72
|
+
require 'svmkit'
|
73
|
+
require 'hanny'
|
74
|
+
|
75
|
+
# Load MNIST data set.
|
76
|
+
samples, labels = SVMKit::Dataset.load_libsvm_file('mnist')
|
77
|
+
samples = Numo::DFloat.cast(samples)
|
78
|
+
queries = samples[0..5, true]
|
79
|
+
targets = samples[6..-1, true]
|
80
|
+
qlabels = labels[0..5]
|
81
|
+
tlabels = labels[6..-1]
|
82
|
+
|
83
|
+
# Build LSH search index.
|
84
|
+
index = Hanny::LSHIndex.new(code_length: 128, random_seed: 1)
|
85
|
+
index.build_index(targets)
|
86
|
+
|
87
|
+
# Run a benchmark test for finding 5-nearest neighbors.
|
88
|
+
n_queries = queries.shape[0]
|
89
|
+
n_neighbors = 5
|
90
|
+
Benchmark.bm 50 do |r|
|
91
|
+
r.report 'LSH' do
|
92
|
+
candidates = index.search_knn(queries, n_neighbors: n_neighbors)
|
93
|
+
n_queries.times do |m|
|
94
|
+
STDERR.write("\nquery label: %d, neighbors label: " % qlabels[m])
|
95
|
+
candidates[m].each { |n| STDERR.write("%d, " % tlabels[n]) }
|
96
|
+
end
|
97
|
+
STDERR.write("\n")
|
98
|
+
end
|
99
|
+
r.report 'Brute-force' do
|
100
|
+
distance_mat = Hanny::Utils.euclidean_distance(queries, targets)
|
101
|
+
candidates = Array.new(n_queries) do |n|
|
102
|
+
distance_mat[n, true].to_a.map.with_index.sort_by(&:first).map(&:last)[0...n_neighbors]
|
103
|
+
end
|
104
|
+
n_queries.times do |m|
|
105
|
+
STDERR.write("\nquery label: %d, neighbors label: " % qlabels[m])
|
106
|
+
candidates[m].each { |n| STDERR.write("%d, " % tlabels[n]) }
|
107
|
+
end
|
108
|
+
STDERR.write("\n")
|
109
|
+
end
|
110
|
+
end
|
111
|
+
```
|
112
|
+
|
113
|
+
Result:
|
114
|
+
```bash
|
115
|
+
user system total real
|
116
|
+
LSH
|
117
|
+
query label: 5, neighbors label: 5, 5, 5, 5, 5,
|
118
|
+
query label: 0, neighbors label: 0, 0, 0, 0, 0,
|
119
|
+
query label: 4, neighbors label: 4, 4, 4, 4, 4,
|
120
|
+
query label: 1, neighbors label: 1, 1, 1, 1, 1,
|
121
|
+
query label: 9, neighbors label: 9, 9, 9, 9, 9,
|
122
|
+
query label: 2, neighbors label: 2, 2, 2, 2, 2,
|
123
|
+
0.290000 0.010000 0.300000 ( 0.307445)
|
124
|
+
Brute-force
|
125
|
+
query label: 5, neighbors label: 5, 5, 5, 3, 5,
|
126
|
+
query label: 0, neighbors label: 0, 0, 0, 0, 0,
|
127
|
+
query label: 4, neighbors label: 4, 4, 4, 4, 4,
|
128
|
+
query label: 1, neighbors label: 1, 1, 1, 1, 1,
|
129
|
+
query label: 9, neighbors label: 9, 9, 9, 9, 9,
|
130
|
+
query label: 2, neighbors label: 2, 2, 2, 2, 2,
|
131
|
+
6.350000 0.280000 6.630000 ( 6.682365)
|
132
|
+
```
|
133
|
+
|
134
|
+
## Development
|
135
|
+
|
136
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
137
|
+
|
138
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
139
|
+
|
140
|
+
## Contributing
|
141
|
+
|
142
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/Hanny. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
143
|
+
|
144
|
+
## License
|
145
|
+
|
146
|
+
The gem is available as open source under the terms of the [BSD 2-clause License](https://opensource.org/licenses/BSD-2-Clause).
|
147
|
+
|
148
|
+
## Code of Conduct
|
149
|
+
|
150
|
+
Everyone interacting in the Hanny project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/yoshoku/Hanny/blob/master/CODE_OF_CONDUCT.md).
|
data/Rakefile
ADDED
data/bin/console
ADDED
@@ -0,0 +1,14 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require 'bundler/setup'
|
4
|
+
require 'hanny'
|
5
|
+
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
8
|
+
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
10
|
+
# require "pry"
|
11
|
+
# Pry.start
|
12
|
+
|
13
|
+
require 'irb'
|
14
|
+
IRB.start(__FILE__)
|
data/bin/setup
ADDED
data/hanny.gemspec
ADDED
@@ -0,0 +1,38 @@
|
|
1
|
+
|
2
|
+
lib = File.expand_path('lib', __dir__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require 'hanny/version'
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = 'hanny'
|
8
|
+
spec.version = Hanny::VERSION
|
9
|
+
spec.authors = ['yoshoku']
|
10
|
+
spec.email = ['yoshoku@outlook.com']
|
11
|
+
|
12
|
+
spec.summary = 'Hanny is a Hash-based Approximate Nearest Neighbor search library in Ruby.'
|
13
|
+
spec.description = <<MSG
|
14
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
15
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
16
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
17
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
18
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
19
|
+
MSG
|
20
|
+
spec.homepage = 'https://github.com/yoshoku/hanny'
|
21
|
+
spec.license = 'BSD-2-Clause'
|
22
|
+
|
23
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
24
|
+
f.match(%r{^(test|spec|features)/})
|
25
|
+
end
|
26
|
+
spec.bindir = 'exe'
|
27
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
28
|
+
spec.require_paths = ['lib']
|
29
|
+
|
30
|
+
spec.required_ruby_version = '>= 2.1'
|
31
|
+
|
32
|
+
spec.add_runtime_dependency 'numo-narray', '>= 0.9.0'
|
33
|
+
|
34
|
+
spec.add_development_dependency 'bundler', '~> 1.16'
|
35
|
+
spec.add_development_dependency 'coveralls', '~> 0.8'
|
36
|
+
spec.add_development_dependency 'rake', '~> 10.0'
|
37
|
+
spec.add_development_dependency 'rspec', '~> 3.0'
|
38
|
+
end
|
data/lib/hanny.rb
ADDED
@@ -0,0 +1,273 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Hanny
|
4
|
+
# LSHIndex is a class that builds a search index with Locality Sensitive Hashing (LSH) [1].
|
5
|
+
# It is known that if the code length is sufficiently long (ex. greater than 128-bit),
|
6
|
+
# LSH can obtain higher search performance than many popular hashing methods [2].
|
7
|
+
# In search process, LSHIndex obtains search results by sorting the data stored in hash table with Hamming distances
|
8
|
+
# between query binary code and binary hash keys.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# # Prepare vector data for search targets and queries with Numo::DFloat (shape: [n_samples, n_features]).
|
12
|
+
# targets = Numo::DFloat.new(5000, 512).rand
|
13
|
+
# queries = Numo::DFloat.new(10, 512).rand
|
14
|
+
#
|
15
|
+
# # Build a search index with 256-bit binary code via LSH.
|
16
|
+
# # Although LSHIndex works without setting random_seed, it recommends setting random_seed for reproducibility.
|
17
|
+
# index = Hanny::LSHIndex.new(code_length: 256, random_seed: 1)
|
18
|
+
# index.build_index(targets)
|
19
|
+
#
|
20
|
+
# # Obtain the Array<Integer> that has the data indices of 10-neighbors for each query.
|
21
|
+
# candidates = index.search_knn(queries, n_neighbors: 10)
|
22
|
+
#
|
23
|
+
# # Save and load the search index with Marshal.
|
24
|
+
# File.open('index.dat', 'wb') { |f| f.write(Marshal.dump(index)) }
|
25
|
+
# index = Marshal.load(File.binread('index.dat'))
|
26
|
+
#
|
27
|
+
# *References:*
|
28
|
+
# 1. Moses S. Charikar, "Similarity Estimation Techniques from Rounding Algorithms," Proc. of the 34-th Annual ACM Symposium on Theory of Computing, pp. 380--388, (2002).
|
29
|
+
# 1. Deng Cai, "A Revisit of Hashing Algorithms for Approximate Nearest Neighbor Search," CoRR abs/1612.07545 (2016).
|
30
|
+
class LSHIndex
|
31
|
+
# Return the code length of hash key.
|
32
|
+
# @return [Integer]
|
33
|
+
attr_reader :code_length
|
34
|
+
|
35
|
+
# Return the number of samples of indexed data.
|
36
|
+
# @return [Integer]
|
37
|
+
attr_reader :n_samples
|
38
|
+
|
39
|
+
# Return the number of features of indexed data.
|
40
|
+
# @return [Integer]
|
41
|
+
attr_reader :n_features
|
42
|
+
|
43
|
+
# Return the number of hash keys.
|
44
|
+
# @return [Integer]
|
45
|
+
attr_reader :n_keys
|
46
|
+
|
47
|
+
# Return the hash table.
|
48
|
+
# @return [Hash]
|
49
|
+
attr_reader :hash_table
|
50
|
+
|
51
|
+
# Return the binary hash codes.
|
52
|
+
# @return [Numo::Bit]
|
53
|
+
attr_reader :hash_codes
|
54
|
+
|
55
|
+
# Return the seed to initialize random number generator.
|
56
|
+
# @return [Integer]
|
57
|
+
attr_reader :random_seed
|
58
|
+
|
59
|
+
# Return the random generator to generate random matrix.
|
60
|
+
# @return [Random]
|
61
|
+
attr_reader :rng
|
62
|
+
|
63
|
+
# Create a new nearest neighbor index.
|
64
|
+
# @param code_length [Integer] The length of binary code for hash key.
|
65
|
+
# @param random_seed [Integer/NilClass] The seed value using to initialize the random generator.
|
66
|
+
def initialize(code_length: 256, random_seed: nil)
|
67
|
+
@code_length = code_length
|
68
|
+
@n_samples = nil
|
69
|
+
@n_features = nil
|
70
|
+
@n_keys = nil
|
71
|
+
@last_id = nil
|
72
|
+
@weight_mat = nil
|
73
|
+
@hash_table = nil
|
74
|
+
@hash_codes = nil
|
75
|
+
@random_seed = random_seed
|
76
|
+
@random_seed ||= srand
|
77
|
+
@rng = Random.new(@random_seed)
|
78
|
+
end
|
79
|
+
|
80
|
+
# Convert data into binary codes.
|
81
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be converted to binary codes.
|
82
|
+
# @return [Numo::Bit] The binary codes converted from given data.
|
83
|
+
def hash_function(x)
|
84
|
+
x.dot(@weight_mat).ge(0.0)
|
85
|
+
end
|
86
|
+
|
87
|
+
# Build a search index.
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The dataset for building search index.
|
89
|
+
# @return [SVC] The search index itself that has constructed the hash table.
|
90
|
+
def build_index(x)
|
91
|
+
# Initialize some variables.
|
92
|
+
@n_samples, @n_features = x.shape
|
93
|
+
@hash_table = {}
|
94
|
+
@hash_codes = []
|
95
|
+
@weight_mat = Utils.rand_normal([@n_features, @code_length], @rng)
|
96
|
+
# Convert samples to binary codes.
|
97
|
+
bin_x = hash_function(x)
|
98
|
+
# Store samples to binary hash table.
|
99
|
+
@n_samples.times do |m|
|
100
|
+
bin_code = bin_x[m, true]
|
101
|
+
hash_key = symbolized_hash_key(bin_code)
|
102
|
+
unless @hash_table.key?(hash_key)
|
103
|
+
@hash_codes.push(bin_code.to_a)
|
104
|
+
@hash_table[hash_key] = []
|
105
|
+
end
|
106
|
+
@hash_table[hash_key].push(m)
|
107
|
+
end
|
108
|
+
@hash_codes = Numo::Bit.cast(@hash_codes)
|
109
|
+
# Update some variables.
|
110
|
+
@n_keys = @hash_codes.shape[0]
|
111
|
+
@last_id = @n_samples
|
112
|
+
self
|
113
|
+
end
|
114
|
+
|
115
|
+
# Append new data to the search index.
|
116
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The dataset to append to search index.
|
117
|
+
# @return [Array<Integer>] The indices of appended data in search index
|
118
|
+
def append_data(x)
|
119
|
+
# Initialize some variables.
|
120
|
+
n_new_samples, = x.shape
|
121
|
+
bin_x = hash_function(x)
|
122
|
+
added_data_ids = []
|
123
|
+
# Store samples to binary hash table.
|
124
|
+
new_codes = []
|
125
|
+
n_new_samples.times do |m|
|
126
|
+
bin_code = bin_x[m, true]
|
127
|
+
hash_key = symbolized_hash_key(bin_code)
|
128
|
+
unless @hash_table.key?(hash_key)
|
129
|
+
new_codes.push(bin_code.to_a)
|
130
|
+
@hash_table[hash_key] = []
|
131
|
+
end
|
132
|
+
new_data_id = @last_id + m
|
133
|
+
@hash_table[hash_key].push(new_data_id)
|
134
|
+
added_data_ids.push(new_data_id)
|
135
|
+
end
|
136
|
+
# Update hash codes.
|
137
|
+
unless new_codes.empty?
|
138
|
+
new_codes = Numo::Bit.cast(new_codes)
|
139
|
+
@hash_codes = @hash_codes.concatenate(new_codes)
|
140
|
+
@n_keys = @hash_codes.shape[0]
|
141
|
+
end
|
142
|
+
@last_id += n_new_samples
|
143
|
+
@n_samples += n_new_samples
|
144
|
+
added_data_ids
|
145
|
+
end
|
146
|
+
|
147
|
+
# Remove data from the search index.
|
148
|
+
# The indices of removed data will never be assigned unless the search index is rebuilt.
|
149
|
+
# @param data_ids [Array<Integer>] The data indices to be removed.
|
150
|
+
# @return [Array<Integer>] The indices of removed data in search index
|
151
|
+
def remove_data(data_ids)
|
152
|
+
removed_data_ids = []
|
153
|
+
data_ids.each do |query_id|
|
154
|
+
# Remove data id from hash table.
|
155
|
+
hash_key = @hash_table.keys.select { |k| @hash_table[k].include?(query_id) }.first
|
156
|
+
next if hash_key.nil?
|
157
|
+
@hash_table[hash_key].delete(query_id)
|
158
|
+
removed_data_ids.push(query_id)
|
159
|
+
# Remove the hash key if there is no data.
|
160
|
+
next unless @hash_table[hash_key].empty?
|
161
|
+
target_id = distances_to_hash_codes(decoded_hash_key(hash_key)).index(0)
|
162
|
+
@hash_codes = @hash_codes.delete(target_id, 0)
|
163
|
+
end
|
164
|
+
@n_samples -= removed_data_ids.size
|
165
|
+
removed_data_ids
|
166
|
+
end
|
167
|
+
|
168
|
+
# Perform k-nearest neighbor search.
|
169
|
+
# @param q [Numo::DFloat] (shape: [n_queries, n_features]) The data for search queries.
|
170
|
+
# @param n_neighbors [Integer] The number of neighbors.
|
171
|
+
# @return [Array<Integer>] The data indices of search result.
|
172
|
+
def search_knn(q, n_neighbors: 10)
|
173
|
+
# Initialize some variables.
|
174
|
+
n_queries, = q.shape
|
175
|
+
candidates = Array.new(n_queries) { [] }
|
176
|
+
# Binarize queries.
|
177
|
+
bin_q = hash_function(q)
|
178
|
+
# Find k-nearest neighbors for each query.
|
179
|
+
n_queries.times do |m|
|
180
|
+
sort_with_index(distances_to_hash_codes(bin_q[m, true])).each do |_, n|
|
181
|
+
candidates[m] = candidates[m] | @hash_table[symbolized_hash_key(@hash_codes[n, true])]
|
182
|
+
break if candidates[m].size >= n_neighbors
|
183
|
+
end
|
184
|
+
candidates[m] = candidates[m].shift(n_neighbors)
|
185
|
+
end
|
186
|
+
candidates
|
187
|
+
end
|
188
|
+
|
189
|
+
# Perform hamming radius nearest neighbor search.
|
190
|
+
# @param q [Numo::DFloat] (shape: [n_queries, n_features]) The data for search queries.
|
191
|
+
# @param radius [Float] The hamming radius for search range.
|
192
|
+
# @return [Array<Integer>] The data indices of search result.
|
193
|
+
def search_radius(q, radius: 1)
|
194
|
+
# Initialize some variables.
|
195
|
+
n_queries, = q.shape
|
196
|
+
candidates = Array.new(n_queries) { [] }
|
197
|
+
# Binarize queries.
|
198
|
+
bin_q = hash_function(q)
|
199
|
+
# Find k-nearest neighbors for each query.
|
200
|
+
n_queries.times do |m|
|
201
|
+
sort_with_index(distances_to_hash_codes(bin_q[m, true])).each do |d, n|
|
202
|
+
break if d > radius
|
203
|
+
candidates[m] = candidates[m] | @hash_table[symbolized_hash_key(@hash_codes[n, true])]
|
204
|
+
end
|
205
|
+
end
|
206
|
+
candidates
|
207
|
+
end
|
208
|
+
|
209
|
+
# Dump marshal data.
|
210
|
+
# @return [Hash] The marshal data for search index.
|
211
|
+
def marshal_dump
|
212
|
+
{ code_length: @code_length,
|
213
|
+
n_samples: @n_samples,
|
214
|
+
n_features: @n_features,
|
215
|
+
n_keys: @n_keys,
|
216
|
+
last_id: @last_id,
|
217
|
+
weight_mat: @weight_mat,
|
218
|
+
bias_vec: @bias_vec,
|
219
|
+
hash_table: @hash_table,
|
220
|
+
hash_codes: @hash_codes,
|
221
|
+
random_seed: @random_seed,
|
222
|
+
rng: @rng }
|
223
|
+
end
|
224
|
+
|
225
|
+
# Load marshal data.
|
226
|
+
# @return [nil]
|
227
|
+
def marshal_load(obj)
|
228
|
+
@code_length = obj[:code_length]
|
229
|
+
@n_samples = obj[:n_samples]
|
230
|
+
@n_features = obj[:n_features]
|
231
|
+
@n_keys = obj[:n_keys]
|
232
|
+
@last_id = obj[:last_id]
|
233
|
+
@weight_mat = obj[:weight_mat]
|
234
|
+
@bias_vec = obj[:bias_vec]
|
235
|
+
@hash_table = obj[:hash_table]
|
236
|
+
@hash_codes = obj[:hash_codes]
|
237
|
+
@random_seed = obj[:random_seed]
|
238
|
+
@rng = obj[:rng]
|
239
|
+
nil
|
240
|
+
end
|
241
|
+
|
242
|
+
private
|
243
|
+
|
244
|
+
# Convert binary code to symbol as hash key.
|
245
|
+
# @param bin_code [Numo::Bit]
|
246
|
+
# @return [Symbol]
|
247
|
+
def symbolized_hash_key(bin_code)
|
248
|
+
Zlib::Deflate.deflate(bin_code.to_a.join, Zlib::BEST_SPEED).to_sym
|
249
|
+
end
|
250
|
+
|
251
|
+
# Calculate hamming distances between binary code and binary hash keys.
|
252
|
+
# @param bin_code [Numo::Bit]
|
253
|
+
# @return [Array<Float>]
|
254
|
+
def distances_to_hash_codes(bin_code)
|
255
|
+
(bin_code ^ @hash_codes).count(1).to_a
|
256
|
+
end
|
257
|
+
|
258
|
+
# Sort array elements with indices.
|
259
|
+
# @param arr [Array<Float>]
|
260
|
+
# @return [Array<Float, Integer>]
|
261
|
+
def sort_with_index(arr)
|
262
|
+
arr.map.with_index.sort_by(&:first)
|
263
|
+
end
|
264
|
+
|
265
|
+
# Convert hash key symbol to binary code.
|
266
|
+
# @param hash_key [Symbol]
|
267
|
+
# @return [Numo::Bit]
|
268
|
+
def decoded_hash_key(hash_key)
|
269
|
+
bin_code = Zlib::Inflate.inflate(hash_key.to_s).split('').map(&:to_i)
|
270
|
+
Numo::Bit[*bin_code]
|
271
|
+
end
|
272
|
+
end
|
273
|
+
end
|
data/lib/hanny/utils.rb
ADDED
@@ -0,0 +1,44 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Hanny
|
4
|
+
# This module consists of utility methods.
|
5
|
+
module Utils
|
6
|
+
class << self
|
7
|
+
# Calculate pairwise euclidean distances between x and y.
|
8
|
+
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
9
|
+
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
10
|
+
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
11
|
+
def euclidean_distance(x, y = nil)
|
12
|
+
y = x if y.nil?
|
13
|
+
x = Numo::DFloat[x] if x.shape[1].nil?
|
14
|
+
y = Numo::DFloat[y] if y.shape[1].nil?
|
15
|
+
sum_x_vec = (x**2).sum(1)
|
16
|
+
sum_y_vec = (y**2).sum(1)
|
17
|
+
dot_xy_mat = x.dot(y.transpose)
|
18
|
+
distance_matrix = dot_xy_mat * -2.0 +
|
19
|
+
sum_x_vec.tile(y.shape[0], 1).transpose +
|
20
|
+
sum_y_vec.tile(x.shape[0], 1)
|
21
|
+
Numo::NMath.sqrt(distance_matrix.abs)
|
22
|
+
end
|
23
|
+
|
24
|
+
# Generate a uniform random matrix with random number generator.
|
25
|
+
# @param shape [Array<Integer>] The size of random matrix.
|
26
|
+
# @param rng [Random] The random number generator
|
27
|
+
# @return [Numo::DFloat] The generated uniform random matrix.
|
28
|
+
def rand_uniform(shape, rng)
|
29
|
+
rnd_vals = Array.new(shape.inject(:*)) { rng.rand }
|
30
|
+
Numo::DFloat.asarray(rnd_vals).reshape(shape[0], shape[1])
|
31
|
+
end
|
32
|
+
|
33
|
+
# Generate a normal random matrix with random number generator.
|
34
|
+
# @param shape [Array<Integer>] The size of random matrix.
|
35
|
+
# @param rng [Random] The random number generator
|
36
|
+
# @return [Numo::DFloat] The generated normal random matrix.
|
37
|
+
def rand_normal(shape, rng, mu = 0.0, sigma = 1.0)
|
38
|
+
a = rand_uniform(shape, rng)
|
39
|
+
b = rand_uniform(shape, rng)
|
40
|
+
(Numo::NMath.sqrt(Numo::NMath.log(a) * -2.0) * Numo::NMath.sin(b * 2.0 * Math::PI)) * sigma + mu
|
41
|
+
end
|
42
|
+
end
|
43
|
+
end
|
44
|
+
end
|
metadata
ADDED
@@ -0,0 +1,136 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: hanny
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-05-04 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.0
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.0
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.16'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.16'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: coveralls
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0.8'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0.8'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rake
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '10.0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '10.0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: rspec
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - "~>"
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '3.0'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - "~>"
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '3.0'
|
83
|
+
description: |
|
84
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
85
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
86
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
87
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
88
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
89
|
+
email:
|
90
|
+
- yoshoku@outlook.com
|
91
|
+
executables: []
|
92
|
+
extensions: []
|
93
|
+
extra_rdoc_files: []
|
94
|
+
files:
|
95
|
+
- ".coveralls.yml"
|
96
|
+
- ".gitignore"
|
97
|
+
- ".rspec"
|
98
|
+
- ".rubocop.yml"
|
99
|
+
- ".travis.yml"
|
100
|
+
- CODE_OF_CONDUCT.md
|
101
|
+
- Gemfile
|
102
|
+
- LICENSE.txt
|
103
|
+
- README.md
|
104
|
+
- Rakefile
|
105
|
+
- bin/console
|
106
|
+
- bin/setup
|
107
|
+
- hanny.gemspec
|
108
|
+
- lib/hanny.rb
|
109
|
+
- lib/hanny/lsh_index.rb
|
110
|
+
- lib/hanny/utils.rb
|
111
|
+
- lib/hanny/version.rb
|
112
|
+
homepage: https://github.com/yoshoku/hanny
|
113
|
+
licenses:
|
114
|
+
- BSD-2-Clause
|
115
|
+
metadata: {}
|
116
|
+
post_install_message:
|
117
|
+
rdoc_options: []
|
118
|
+
require_paths:
|
119
|
+
- lib
|
120
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
121
|
+
requirements:
|
122
|
+
- - ">="
|
123
|
+
- !ruby/object:Gem::Version
|
124
|
+
version: '2.1'
|
125
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
126
|
+
requirements:
|
127
|
+
- - ">="
|
128
|
+
- !ruby/object:Gem::Version
|
129
|
+
version: '0'
|
130
|
+
requirements: []
|
131
|
+
rubyforge_project:
|
132
|
+
rubygems_version: 2.7.6
|
133
|
+
signing_key:
|
134
|
+
specification_version: 4
|
135
|
+
summary: Hanny is a Hash-based Approximate Nearest Neighbor search library in Ruby.
|
136
|
+
test_files: []
|