hanny 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +15 -0
- data/.rspec +3 -0
- data/.rubocop.yml +39 -0
- data/.travis.yml +11 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +6 -0
- data/LICENSE.txt +23 -0
- data/README.md +150 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/hanny.gemspec +38 -0
- data/lib/hanny.rb +8 -0
- data/lib/hanny/lsh_index.rb +273 -0
- data/lib/hanny/utils.rb +44 -0
- data/lib/hanny/version.rb +7 -0
- metadata +136 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 76848de111777349352ddeb7aa269ad3694504661ac2fe1c45729ebcd0f27414
|
4
|
+
data.tar.gz: a911da20689134ebecdd01b88827a2d2cc65149b497103f32f528fa754590c15
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 6c1e4fde8dc03f439454a476d16be7b48f384cb0adf24a17fce47e09387d4583e31ba66b3a9b7f6d9fb5ff6e386e9282fba68f05c9ff0cb74f88013e19d65b91
|
7
|
+
data.tar.gz: 30441f1aef6a05bc0a609d4b2176f4e04d7d0d9882579de8909aae9076dbdf68670eb4275da1a863dffa13454997597e83d229a1371f6a51bee0f58aa3740abd
|
data/.coveralls.yml
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
service_name: travis-ci
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.rubocop.yml
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
AllCops:
|
2
|
+
TargetRubyVersion: 2.1
|
3
|
+
DisplayCopNames: true
|
4
|
+
DisplayStyleGuide: true
|
5
|
+
|
6
|
+
Documentation:
|
7
|
+
Enabled: false
|
8
|
+
|
9
|
+
Metrics/LineLength:
|
10
|
+
Max: 140
|
11
|
+
IgnoredPatterns: ['(\A|\s)#']
|
12
|
+
|
13
|
+
Metrics/ModuleLength:
|
14
|
+
Max: 200
|
15
|
+
|
16
|
+
Metrics/ClassLength:
|
17
|
+
Max: 200
|
18
|
+
|
19
|
+
Metrics/MethodLength:
|
20
|
+
Max: 40
|
21
|
+
|
22
|
+
Metrics/AbcSize:
|
23
|
+
Max: 60
|
24
|
+
|
25
|
+
Metrics/BlockLength:
|
26
|
+
Exclude:
|
27
|
+
- 'spec/**/*'
|
28
|
+
|
29
|
+
ParameterLists:
|
30
|
+
Max: 10
|
31
|
+
|
32
|
+
Security/MarshalLoad:
|
33
|
+
Enabled: false
|
34
|
+
|
35
|
+
Naming/UncommunicativeMethodParamName:
|
36
|
+
Enabled: false
|
37
|
+
|
38
|
+
Style/FormatStringToken:
|
39
|
+
Enabled: false
|
data/.travis.yml
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
In the interest of fostering an open and welcoming environment, we as
|
6
|
+
contributors and maintainers pledge to making participation in our project and
|
7
|
+
our community a harassment-free experience for everyone, regardless of age, body
|
8
|
+
size, disability, ethnicity, gender identity and expression, level of experience,
|
9
|
+
nationality, personal appearance, race, religion, or sexual identity and
|
10
|
+
orientation.
|
11
|
+
|
12
|
+
## Our Standards
|
13
|
+
|
14
|
+
Examples of behavior that contributes to creating a positive environment
|
15
|
+
include:
|
16
|
+
|
17
|
+
* Using welcoming and inclusive language
|
18
|
+
* Being respectful of differing viewpoints and experiences
|
19
|
+
* Gracefully accepting constructive criticism
|
20
|
+
* Focusing on what is best for the community
|
21
|
+
* Showing empathy towards other community members
|
22
|
+
|
23
|
+
Examples of unacceptable behavior by participants include:
|
24
|
+
|
25
|
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26
|
+
advances
|
27
|
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28
|
+
* Public or private harassment
|
29
|
+
* Publishing others' private information, such as a physical or electronic
|
30
|
+
address, without explicit permission
|
31
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
32
|
+
professional setting
|
33
|
+
|
34
|
+
## Our Responsibilities
|
35
|
+
|
36
|
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37
|
+
behavior and are expected to take appropriate and fair corrective action in
|
38
|
+
response to any instances of unacceptable behavior.
|
39
|
+
|
40
|
+
Project maintainers have the right and responsibility to remove, edit, or
|
41
|
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42
|
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43
|
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44
|
+
threatening, offensive, or harmful.
|
45
|
+
|
46
|
+
## Scope
|
47
|
+
|
48
|
+
This Code of Conduct applies both within project spaces and in public spaces
|
49
|
+
when an individual is representing the project or its community. Examples of
|
50
|
+
representing a project or community include using an official project e-mail
|
51
|
+
address, posting via an official social media account, or acting as an appointed
|
52
|
+
representative at an online or offline event. Representation of a project may be
|
53
|
+
further defined and clarified by project maintainers.
|
54
|
+
|
55
|
+
## Enforcement
|
56
|
+
|
57
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58
|
+
reported by contacting the project team at yoshoku@outlook.com. All
|
59
|
+
complaints will be reviewed and investigated and will result in a response that
|
60
|
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61
|
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62
|
+
Further details of specific enforcement policies may be posted separately.
|
63
|
+
|
64
|
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65
|
+
faith may face temporary or permanent repercussions as determined by other
|
66
|
+
members of the project's leadership.
|
67
|
+
|
68
|
+
## Attribution
|
69
|
+
|
70
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71
|
+
available at [http://contributor-covenant.org/version/1/4][version]
|
72
|
+
|
73
|
+
[homepage]: http://contributor-covenant.org
|
74
|
+
[version]: http://contributor-covenant.org/version/1/4/
|
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,23 @@
|
|
1
|
+
Copyright (c) 2017 yoshoku
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
15
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
16
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
17
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
18
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
19
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
20
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
21
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
22
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
23
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,150 @@
|
|
1
|
+
# Hanny
|
2
|
+
|
3
|
+
[](https://travis-ci.org/yoshoku/Hanny)
|
4
|
+
[](https://coveralls.io/github/yoshoku/Hanny?branch=master)
|
5
|
+
[](https://badge.fury.io/rb/hanny)
|
6
|
+
[](https://github.com/yoshoku/Hanny/blob/master/LICENSE.txt)
|
7
|
+
|
8
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
9
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
10
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
11
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
12
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
13
|
+
|
14
|
+
## Installation
|
15
|
+
|
16
|
+
Add this line to your application's Gemfile:
|
17
|
+
|
18
|
+
```ruby
|
19
|
+
gem 'hanny'
|
20
|
+
```
|
21
|
+
|
22
|
+
And then execute:
|
23
|
+
|
24
|
+
$ bundle
|
25
|
+
|
26
|
+
Or install it yourself as:
|
27
|
+
|
28
|
+
$ gem install hanny
|
29
|
+
|
30
|
+
## Usage
|
31
|
+
|
32
|
+
```ruby
|
33
|
+
require 'hanny'
|
34
|
+
|
35
|
+
# Prepare vector data for search targets and queries with Numo::DFloat (shape: [n_samples, n_features]).
|
36
|
+
targets = Numo::DFloat.new(5000, 512).rand
|
37
|
+
queries = Numo::DFloat.new(10, 512).rand
|
38
|
+
|
39
|
+
# Build a search index with 256-bit binary code.
|
40
|
+
index = Hanny::LSHIndex.new(code_length: 256)
|
41
|
+
index.build_index(targets)
|
42
|
+
|
43
|
+
# Obtain the Array<Integer> that has the data indices of 10-nearest neighbors for each query.
|
44
|
+
candidates = index.search_knn(queries, n_neighbors: 10)
|
45
|
+
|
46
|
+
# Obtain the Array<Integer> that has the data indices whithin Hamming radius of 4 for each query.
|
47
|
+
candidates = index.search_radius(queries, radius: 4)
|
48
|
+
|
49
|
+
# Calculate pairwise euclidean distances between the query and its neighbors.
|
50
|
+
query_id = 0
|
51
|
+
distances = Hanny::Utils.euclidean_distance(queries[query_id, true], targets[candidates[query_id], true])
|
52
|
+
|
53
|
+
# Add new data to the search index.
|
54
|
+
appended_data_ids = index.append_data(new_data)
|
55
|
+
|
56
|
+
# Remove the data from the search index.
|
57
|
+
removed_data_ids = index.remove_data([0, 1, 2])
|
58
|
+
|
59
|
+
# Save and load the search index with Marshal.
|
60
|
+
File.open('index.dat', 'wb') { |f| f.write(Marshal.dump(index)) }
|
61
|
+
index = Marshal.load(File.binread('index.dat'))
|
62
|
+
```
|
63
|
+
|
64
|
+
## Experiment
|
65
|
+
|
66
|
+
I confirmed the search speed of Hanny's LSH with [MNIST](https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist) data set.
|
67
|
+
The experiment is carried out on MacBook Early 2016 (Core m3 1.1 GHz CPU and 8 GB memory).
|
68
|
+
|
69
|
+
Code:
|
70
|
+
```ruby
|
71
|
+
require 'benchmark'
|
72
|
+
require 'svmkit'
|
73
|
+
require 'hanny'
|
74
|
+
|
75
|
+
# Load MNIST data set.
|
76
|
+
samples, labels = SVMKit::Dataset.load_libsvm_file('mnist')
|
77
|
+
samples = Numo::DFloat.cast(samples)
|
78
|
+
queries = samples[0..5, true]
|
79
|
+
targets = samples[6..-1, true]
|
80
|
+
qlabels = labels[0..5]
|
81
|
+
tlabels = labels[6..-1]
|
82
|
+
|
83
|
+
# Build LSH search index.
|
84
|
+
index = Hanny::LSHIndex.new(code_length: 128, random_seed: 1)
|
85
|
+
index.build_index(targets)
|
86
|
+
|
87
|
+
# Run a benchmark test for finding 5-nearest neighbors.
|
88
|
+
n_queries = queries.shape[0]
|
89
|
+
n_neighbors = 5
|
90
|
+
Benchmark.bm 50 do |r|
|
91
|
+
r.report 'LSH' do
|
92
|
+
candidates = index.search_knn(queries, n_neighbors: n_neighbors)
|
93
|
+
n_queries.times do |m|
|
94
|
+
STDERR.write("\nquery label: %d, neighbors label: " % qlabels[m])
|
95
|
+
candidates[m].each { |n| STDERR.write("%d, " % tlabels[n]) }
|
96
|
+
end
|
97
|
+
STDERR.write("\n")
|
98
|
+
end
|
99
|
+
r.report 'Brute-force' do
|
100
|
+
distance_mat = Hanny::Utils.euclidean_distance(queries, targets)
|
101
|
+
candidates = Array.new(n_queries) do |n|
|
102
|
+
distance_mat[n, true].to_a.map.with_index.sort_by(&:first).map(&:last)[0...n_neighbors]
|
103
|
+
end
|
104
|
+
n_queries.times do |m|
|
105
|
+
STDERR.write("\nquery label: %d, neighbors label: " % qlabels[m])
|
106
|
+
candidates[m].each { |n| STDERR.write("%d, " % tlabels[n]) }
|
107
|
+
end
|
108
|
+
STDERR.write("\n")
|
109
|
+
end
|
110
|
+
end
|
111
|
+
```
|
112
|
+
|
113
|
+
Result:
|
114
|
+
```bash
|
115
|
+
user system total real
|
116
|
+
LSH
|
117
|
+
query label: 5, neighbors label: 5, 5, 5, 5, 5,
|
118
|
+
query label: 0, neighbors label: 0, 0, 0, 0, 0,
|
119
|
+
query label: 4, neighbors label: 4, 4, 4, 4, 4,
|
120
|
+
query label: 1, neighbors label: 1, 1, 1, 1, 1,
|
121
|
+
query label: 9, neighbors label: 9, 9, 9, 9, 9,
|
122
|
+
query label: 2, neighbors label: 2, 2, 2, 2, 2,
|
123
|
+
0.290000 0.010000 0.300000 ( 0.307445)
|
124
|
+
Brute-force
|
125
|
+
query label: 5, neighbors label: 5, 5, 5, 3, 5,
|
126
|
+
query label: 0, neighbors label: 0, 0, 0, 0, 0,
|
127
|
+
query label: 4, neighbors label: 4, 4, 4, 4, 4,
|
128
|
+
query label: 1, neighbors label: 1, 1, 1, 1, 1,
|
129
|
+
query label: 9, neighbors label: 9, 9, 9, 9, 9,
|
130
|
+
query label: 2, neighbors label: 2, 2, 2, 2, 2,
|
131
|
+
6.350000 0.280000 6.630000 ( 6.682365)
|
132
|
+
```
|
133
|
+
|
134
|
+
## Development
|
135
|
+
|
136
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
137
|
+
|
138
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
139
|
+
|
140
|
+
## Contributing
|
141
|
+
|
142
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/Hanny. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
143
|
+
|
144
|
+
## License
|
145
|
+
|
146
|
+
The gem is available as open source under the terms of the [BSD 2-clause License](https://opensource.org/licenses/BSD-2-Clause).
|
147
|
+
|
148
|
+
## Code of Conduct
|
149
|
+
|
150
|
+
Everyone interacting in the Hanny project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/yoshoku/Hanny/blob/master/CODE_OF_CONDUCT.md).
|
data/Rakefile
ADDED
data/bin/console
ADDED
@@ -0,0 +1,14 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require 'bundler/setup'
|
4
|
+
require 'hanny'
|
5
|
+
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
8
|
+
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
10
|
+
# require "pry"
|
11
|
+
# Pry.start
|
12
|
+
|
13
|
+
require 'irb'
|
14
|
+
IRB.start(__FILE__)
|
data/bin/setup
ADDED
data/hanny.gemspec
ADDED
@@ -0,0 +1,38 @@
|
|
1
|
+
|
2
|
+
lib = File.expand_path('lib', __dir__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require 'hanny/version'
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = 'hanny'
|
8
|
+
spec.version = Hanny::VERSION
|
9
|
+
spec.authors = ['yoshoku']
|
10
|
+
spec.email = ['yoshoku@outlook.com']
|
11
|
+
|
12
|
+
spec.summary = 'Hanny is a Hash-based Approximate Nearest Neighbor search library in Ruby.'
|
13
|
+
spec.description = <<MSG
|
14
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
15
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
16
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
17
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
18
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
19
|
+
MSG
|
20
|
+
spec.homepage = 'https://github.com/yoshoku/hanny'
|
21
|
+
spec.license = 'BSD-2-Clause'
|
22
|
+
|
23
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
24
|
+
f.match(%r{^(test|spec|features)/})
|
25
|
+
end
|
26
|
+
spec.bindir = 'exe'
|
27
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
28
|
+
spec.require_paths = ['lib']
|
29
|
+
|
30
|
+
spec.required_ruby_version = '>= 2.1'
|
31
|
+
|
32
|
+
spec.add_runtime_dependency 'numo-narray', '>= 0.9.0'
|
33
|
+
|
34
|
+
spec.add_development_dependency 'bundler', '~> 1.16'
|
35
|
+
spec.add_development_dependency 'coveralls', '~> 0.8'
|
36
|
+
spec.add_development_dependency 'rake', '~> 10.0'
|
37
|
+
spec.add_development_dependency 'rspec', '~> 3.0'
|
38
|
+
end
|
data/lib/hanny.rb
ADDED
@@ -0,0 +1,273 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Hanny
|
4
|
+
# LSHIndex is a class that builds a search index with Locality Sensitive Hashing (LSH) [1].
|
5
|
+
# It is known that if the code length is sufficiently long (ex. greater than 128-bit),
|
6
|
+
# LSH can obtain higher search performance than many popular hashing methods [2].
|
7
|
+
# In search process, LSHIndex obtains search results by sorting the data stored in hash table with Hamming distances
|
8
|
+
# between query binary code and binary hash keys.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# # Prepare vector data for search targets and queries with Numo::DFloat (shape: [n_samples, n_features]).
|
12
|
+
# targets = Numo::DFloat.new(5000, 512).rand
|
13
|
+
# queries = Numo::DFloat.new(10, 512).rand
|
14
|
+
#
|
15
|
+
# # Build a search index with 256-bit binary code via LSH.
|
16
|
+
# # Although LSHIndex works without setting random_seed, it recommends setting random_seed for reproducibility.
|
17
|
+
# index = Hanny::LSHIndex.new(code_length: 256, random_seed: 1)
|
18
|
+
# index.build_index(targets)
|
19
|
+
#
|
20
|
+
# # Obtain the Array<Integer> that has the data indices of 10-neighbors for each query.
|
21
|
+
# candidates = index.search_knn(queries, n_neighbors: 10)
|
22
|
+
#
|
23
|
+
# # Save and load the search index with Marshal.
|
24
|
+
# File.open('index.dat', 'wb') { |f| f.write(Marshal.dump(index)) }
|
25
|
+
# index = Marshal.load(File.binread('index.dat'))
|
26
|
+
#
|
27
|
+
# *References:*
|
28
|
+
# 1. Moses S. Charikar, "Similarity Estimation Techniques from Rounding Algorithms," Proc. of the 34-th Annual ACM Symposium on Theory of Computing, pp. 380--388, (2002).
|
29
|
+
# 1. Deng Cai, "A Revisit of Hashing Algorithms for Approximate Nearest Neighbor Search," CoRR abs/1612.07545 (2016).
|
30
|
+
class LSHIndex
|
31
|
+
# Return the code length of hash key.
|
32
|
+
# @return [Integer]
|
33
|
+
attr_reader :code_length
|
34
|
+
|
35
|
+
# Return the number of samples of indexed data.
|
36
|
+
# @return [Integer]
|
37
|
+
attr_reader :n_samples
|
38
|
+
|
39
|
+
# Return the number of features of indexed data.
|
40
|
+
# @return [Integer]
|
41
|
+
attr_reader :n_features
|
42
|
+
|
43
|
+
# Return the number of hash keys.
|
44
|
+
# @return [Integer]
|
45
|
+
attr_reader :n_keys
|
46
|
+
|
47
|
+
# Return the hash table.
|
48
|
+
# @return [Hash]
|
49
|
+
attr_reader :hash_table
|
50
|
+
|
51
|
+
# Return the binary hash codes.
|
52
|
+
# @return [Numo::Bit]
|
53
|
+
attr_reader :hash_codes
|
54
|
+
|
55
|
+
# Return the seed to initialize random number generator.
|
56
|
+
# @return [Integer]
|
57
|
+
attr_reader :random_seed
|
58
|
+
|
59
|
+
# Return the random generator to generate random matrix.
|
60
|
+
# @return [Random]
|
61
|
+
attr_reader :rng
|
62
|
+
|
63
|
+
# Create a new nearest neighbor index.
|
64
|
+
# @param code_length [Integer] The length of binary code for hash key.
|
65
|
+
# @param random_seed [Integer/NilClass] The seed value using to initialize the random generator.
|
66
|
+
def initialize(code_length: 256, random_seed: nil)
|
67
|
+
@code_length = code_length
|
68
|
+
@n_samples = nil
|
69
|
+
@n_features = nil
|
70
|
+
@n_keys = nil
|
71
|
+
@last_id = nil
|
72
|
+
@weight_mat = nil
|
73
|
+
@hash_table = nil
|
74
|
+
@hash_codes = nil
|
75
|
+
@random_seed = random_seed
|
76
|
+
@random_seed ||= srand
|
77
|
+
@rng = Random.new(@random_seed)
|
78
|
+
end
|
79
|
+
|
80
|
+
# Convert data into binary codes.
|
81
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be converted to binary codes.
|
82
|
+
# @return [Numo::Bit] The binary codes converted from given data.
|
83
|
+
def hash_function(x)
|
84
|
+
x.dot(@weight_mat).ge(0.0)
|
85
|
+
end
|
86
|
+
|
87
|
+
# Build a search index.
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The dataset for building search index.
|
89
|
+
# @return [SVC] The search index itself that has constructed the hash table.
|
90
|
+
def build_index(x)
|
91
|
+
# Initialize some variables.
|
92
|
+
@n_samples, @n_features = x.shape
|
93
|
+
@hash_table = {}
|
94
|
+
@hash_codes = []
|
95
|
+
@weight_mat = Utils.rand_normal([@n_features, @code_length], @rng)
|
96
|
+
# Convert samples to binary codes.
|
97
|
+
bin_x = hash_function(x)
|
98
|
+
# Store samples to binary hash table.
|
99
|
+
@n_samples.times do |m|
|
100
|
+
bin_code = bin_x[m, true]
|
101
|
+
hash_key = symbolized_hash_key(bin_code)
|
102
|
+
unless @hash_table.key?(hash_key)
|
103
|
+
@hash_codes.push(bin_code.to_a)
|
104
|
+
@hash_table[hash_key] = []
|
105
|
+
end
|
106
|
+
@hash_table[hash_key].push(m)
|
107
|
+
end
|
108
|
+
@hash_codes = Numo::Bit.cast(@hash_codes)
|
109
|
+
# Update some variables.
|
110
|
+
@n_keys = @hash_codes.shape[0]
|
111
|
+
@last_id = @n_samples
|
112
|
+
self
|
113
|
+
end
|
114
|
+
|
115
|
+
# Append new data to the search index.
|
116
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The dataset to append to search index.
|
117
|
+
# @return [Array<Integer>] The indices of appended data in search index
|
118
|
+
def append_data(x)
|
119
|
+
# Initialize some variables.
|
120
|
+
n_new_samples, = x.shape
|
121
|
+
bin_x = hash_function(x)
|
122
|
+
added_data_ids = []
|
123
|
+
# Store samples to binary hash table.
|
124
|
+
new_codes = []
|
125
|
+
n_new_samples.times do |m|
|
126
|
+
bin_code = bin_x[m, true]
|
127
|
+
hash_key = symbolized_hash_key(bin_code)
|
128
|
+
unless @hash_table.key?(hash_key)
|
129
|
+
new_codes.push(bin_code.to_a)
|
130
|
+
@hash_table[hash_key] = []
|
131
|
+
end
|
132
|
+
new_data_id = @last_id + m
|
133
|
+
@hash_table[hash_key].push(new_data_id)
|
134
|
+
added_data_ids.push(new_data_id)
|
135
|
+
end
|
136
|
+
# Update hash codes.
|
137
|
+
unless new_codes.empty?
|
138
|
+
new_codes = Numo::Bit.cast(new_codes)
|
139
|
+
@hash_codes = @hash_codes.concatenate(new_codes)
|
140
|
+
@n_keys = @hash_codes.shape[0]
|
141
|
+
end
|
142
|
+
@last_id += n_new_samples
|
143
|
+
@n_samples += n_new_samples
|
144
|
+
added_data_ids
|
145
|
+
end
|
146
|
+
|
147
|
+
# Remove data from the search index.
|
148
|
+
# The indices of removed data will never be assigned unless the search index is rebuilt.
|
149
|
+
# @param data_ids [Array<Integer>] The data indices to be removed.
|
150
|
+
# @return [Array<Integer>] The indices of removed data in search index
|
151
|
+
def remove_data(data_ids)
|
152
|
+
removed_data_ids = []
|
153
|
+
data_ids.each do |query_id|
|
154
|
+
# Remove data id from hash table.
|
155
|
+
hash_key = @hash_table.keys.select { |k| @hash_table[k].include?(query_id) }.first
|
156
|
+
next if hash_key.nil?
|
157
|
+
@hash_table[hash_key].delete(query_id)
|
158
|
+
removed_data_ids.push(query_id)
|
159
|
+
# Remove the hash key if there is no data.
|
160
|
+
next unless @hash_table[hash_key].empty?
|
161
|
+
target_id = distances_to_hash_codes(decoded_hash_key(hash_key)).index(0)
|
162
|
+
@hash_codes = @hash_codes.delete(target_id, 0)
|
163
|
+
end
|
164
|
+
@n_samples -= removed_data_ids.size
|
165
|
+
removed_data_ids
|
166
|
+
end
|
167
|
+
|
168
|
+
# Perform k-nearest neighbor search.
|
169
|
+
# @param q [Numo::DFloat] (shape: [n_queries, n_features]) The data for search queries.
|
170
|
+
# @param n_neighbors [Integer] The number of neighbors.
|
171
|
+
# @return [Array<Integer>] The data indices of search result.
|
172
|
+
def search_knn(q, n_neighbors: 10)
|
173
|
+
# Initialize some variables.
|
174
|
+
n_queries, = q.shape
|
175
|
+
candidates = Array.new(n_queries) { [] }
|
176
|
+
# Binarize queries.
|
177
|
+
bin_q = hash_function(q)
|
178
|
+
# Find k-nearest neighbors for each query.
|
179
|
+
n_queries.times do |m|
|
180
|
+
sort_with_index(distances_to_hash_codes(bin_q[m, true])).each do |_, n|
|
181
|
+
candidates[m] = candidates[m] | @hash_table[symbolized_hash_key(@hash_codes[n, true])]
|
182
|
+
break if candidates[m].size >= n_neighbors
|
183
|
+
end
|
184
|
+
candidates[m] = candidates[m].shift(n_neighbors)
|
185
|
+
end
|
186
|
+
candidates
|
187
|
+
end
|
188
|
+
|
189
|
+
# Perform hamming radius nearest neighbor search.
|
190
|
+
# @param q [Numo::DFloat] (shape: [n_queries, n_features]) The data for search queries.
|
191
|
+
# @param radius [Float] The hamming radius for search range.
|
192
|
+
# @return [Array<Integer>] The data indices of search result.
|
193
|
+
def search_radius(q, radius: 1)
|
194
|
+
# Initialize some variables.
|
195
|
+
n_queries, = q.shape
|
196
|
+
candidates = Array.new(n_queries) { [] }
|
197
|
+
# Binarize queries.
|
198
|
+
bin_q = hash_function(q)
|
199
|
+
# Find k-nearest neighbors for each query.
|
200
|
+
n_queries.times do |m|
|
201
|
+
sort_with_index(distances_to_hash_codes(bin_q[m, true])).each do |d, n|
|
202
|
+
break if d > radius
|
203
|
+
candidates[m] = candidates[m] | @hash_table[symbolized_hash_key(@hash_codes[n, true])]
|
204
|
+
end
|
205
|
+
end
|
206
|
+
candidates
|
207
|
+
end
|
208
|
+
|
209
|
+
# Dump marshal data.
|
210
|
+
# @return [Hash] The marshal data for search index.
|
211
|
+
def marshal_dump
|
212
|
+
{ code_length: @code_length,
|
213
|
+
n_samples: @n_samples,
|
214
|
+
n_features: @n_features,
|
215
|
+
n_keys: @n_keys,
|
216
|
+
last_id: @last_id,
|
217
|
+
weight_mat: @weight_mat,
|
218
|
+
bias_vec: @bias_vec,
|
219
|
+
hash_table: @hash_table,
|
220
|
+
hash_codes: @hash_codes,
|
221
|
+
random_seed: @random_seed,
|
222
|
+
rng: @rng }
|
223
|
+
end
|
224
|
+
|
225
|
+
# Load marshal data.
|
226
|
+
# @return [nil]
|
227
|
+
def marshal_load(obj)
|
228
|
+
@code_length = obj[:code_length]
|
229
|
+
@n_samples = obj[:n_samples]
|
230
|
+
@n_features = obj[:n_features]
|
231
|
+
@n_keys = obj[:n_keys]
|
232
|
+
@last_id = obj[:last_id]
|
233
|
+
@weight_mat = obj[:weight_mat]
|
234
|
+
@bias_vec = obj[:bias_vec]
|
235
|
+
@hash_table = obj[:hash_table]
|
236
|
+
@hash_codes = obj[:hash_codes]
|
237
|
+
@random_seed = obj[:random_seed]
|
238
|
+
@rng = obj[:rng]
|
239
|
+
nil
|
240
|
+
end
|
241
|
+
|
242
|
+
private
|
243
|
+
|
244
|
+
# Convert binary code to symbol as hash key.
|
245
|
+
# @param bin_code [Numo::Bit]
|
246
|
+
# @return [Symbol]
|
247
|
+
def symbolized_hash_key(bin_code)
|
248
|
+
Zlib::Deflate.deflate(bin_code.to_a.join, Zlib::BEST_SPEED).to_sym
|
249
|
+
end
|
250
|
+
|
251
|
+
# Calculate hamming distances between binary code and binary hash keys.
|
252
|
+
# @param bin_code [Numo::Bit]
|
253
|
+
# @return [Array<Float>]
|
254
|
+
def distances_to_hash_codes(bin_code)
|
255
|
+
(bin_code ^ @hash_codes).count(1).to_a
|
256
|
+
end
|
257
|
+
|
258
|
+
# Sort array elements with indices.
|
259
|
+
# @param arr [Array<Float>]
|
260
|
+
# @return [Array<Float, Integer>]
|
261
|
+
def sort_with_index(arr)
|
262
|
+
arr.map.with_index.sort_by(&:first)
|
263
|
+
end
|
264
|
+
|
265
|
+
# Convert hash key symbol to binary code.
|
266
|
+
# @param hash_key [Symbol]
|
267
|
+
# @return [Numo::Bit]
|
268
|
+
def decoded_hash_key(hash_key)
|
269
|
+
bin_code = Zlib::Inflate.inflate(hash_key.to_s).split('').map(&:to_i)
|
270
|
+
Numo::Bit[*bin_code]
|
271
|
+
end
|
272
|
+
end
|
273
|
+
end
|
data/lib/hanny/utils.rb
ADDED
@@ -0,0 +1,44 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Hanny
|
4
|
+
# This module consists of utility methods.
|
5
|
+
module Utils
|
6
|
+
class << self
|
7
|
+
# Calculate pairwise euclidean distances between x and y.
|
8
|
+
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
9
|
+
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
10
|
+
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
11
|
+
def euclidean_distance(x, y = nil)
|
12
|
+
y = x if y.nil?
|
13
|
+
x = Numo::DFloat[x] if x.shape[1].nil?
|
14
|
+
y = Numo::DFloat[y] if y.shape[1].nil?
|
15
|
+
sum_x_vec = (x**2).sum(1)
|
16
|
+
sum_y_vec = (y**2).sum(1)
|
17
|
+
dot_xy_mat = x.dot(y.transpose)
|
18
|
+
distance_matrix = dot_xy_mat * -2.0 +
|
19
|
+
sum_x_vec.tile(y.shape[0], 1).transpose +
|
20
|
+
sum_y_vec.tile(x.shape[0], 1)
|
21
|
+
Numo::NMath.sqrt(distance_matrix.abs)
|
22
|
+
end
|
23
|
+
|
24
|
+
# Generate a uniform random matrix with random number generator.
|
25
|
+
# @param shape [Array<Integer>] The size of random matrix.
|
26
|
+
# @param rng [Random] The random number generator
|
27
|
+
# @return [Numo::DFloat] The generated uniform random matrix.
|
28
|
+
def rand_uniform(shape, rng)
|
29
|
+
rnd_vals = Array.new(shape.inject(:*)) { rng.rand }
|
30
|
+
Numo::DFloat.asarray(rnd_vals).reshape(shape[0], shape[1])
|
31
|
+
end
|
32
|
+
|
33
|
+
# Generate a normal random matrix with random number generator.
|
34
|
+
# @param shape [Array<Integer>] The size of random matrix.
|
35
|
+
# @param rng [Random] The random number generator
|
36
|
+
# @return [Numo::DFloat] The generated normal random matrix.
|
37
|
+
def rand_normal(shape, rng, mu = 0.0, sigma = 1.0)
|
38
|
+
a = rand_uniform(shape, rng)
|
39
|
+
b = rand_uniform(shape, rng)
|
40
|
+
(Numo::NMath.sqrt(Numo::NMath.log(a) * -2.0) * Numo::NMath.sin(b * 2.0 * Math::PI)) * sigma + mu
|
41
|
+
end
|
42
|
+
end
|
43
|
+
end
|
44
|
+
end
|
metadata
ADDED
@@ -0,0 +1,136 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: hanny
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-05-04 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.0
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.0
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.16'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.16'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: coveralls
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0.8'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0.8'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rake
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '10.0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '10.0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: rspec
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - "~>"
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '3.0'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - "~>"
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '3.0'
|
83
|
+
description: |
|
84
|
+
Hanny is a Hash-based Approximate Nearest Neighbor (ANN) search library in Ruby.
|
85
|
+
Hash-based ANN converts vector data into binary codes and builds a hash table by using the binary codes as hash keys.
|
86
|
+
To build the hash table, Hanny uses Locality Sensitive Hashing (LSH) of approximating cosine similarity.
|
87
|
+
It is known that if the code length is sufficiently long (ex. greater than 128-bit), LSH can obtain high search performance.
|
88
|
+
In the experiment, Hanny achieved about twenty times faster search speed than the brute-force search by Euclidean distance.
|
89
|
+
email:
|
90
|
+
- yoshoku@outlook.com
|
91
|
+
executables: []
|
92
|
+
extensions: []
|
93
|
+
extra_rdoc_files: []
|
94
|
+
files:
|
95
|
+
- ".coveralls.yml"
|
96
|
+
- ".gitignore"
|
97
|
+
- ".rspec"
|
98
|
+
- ".rubocop.yml"
|
99
|
+
- ".travis.yml"
|
100
|
+
- CODE_OF_CONDUCT.md
|
101
|
+
- Gemfile
|
102
|
+
- LICENSE.txt
|
103
|
+
- README.md
|
104
|
+
- Rakefile
|
105
|
+
- bin/console
|
106
|
+
- bin/setup
|
107
|
+
- hanny.gemspec
|
108
|
+
- lib/hanny.rb
|
109
|
+
- lib/hanny/lsh_index.rb
|
110
|
+
- lib/hanny/utils.rb
|
111
|
+
- lib/hanny/version.rb
|
112
|
+
homepage: https://github.com/yoshoku/hanny
|
113
|
+
licenses:
|
114
|
+
- BSD-2-Clause
|
115
|
+
metadata: {}
|
116
|
+
post_install_message:
|
117
|
+
rdoc_options: []
|
118
|
+
require_paths:
|
119
|
+
- lib
|
120
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
121
|
+
requirements:
|
122
|
+
- - ">="
|
123
|
+
- !ruby/object:Gem::Version
|
124
|
+
version: '2.1'
|
125
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
126
|
+
requirements:
|
127
|
+
- - ">="
|
128
|
+
- !ruby/object:Gem::Version
|
129
|
+
version: '0'
|
130
|
+
requirements: []
|
131
|
+
rubyforge_project:
|
132
|
+
rubygems_version: 2.7.6
|
133
|
+
signing_key:
|
134
|
+
specification_version: 4
|
135
|
+
summary: Hanny is a Hash-based Approximate Nearest Neighbor search library in Ruby.
|
136
|
+
test_files: []
|