gsl4r 0.0.1 → 0.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: gsl4r
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Colby Gutierrez-Kraybill
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2010-02-24 00:00:00 -08:00
12
+ date: 2010-03-01 00:00:00 -08:00
13
13
  default_executable:
14
14
  dependencies: []
15
15
 
@@ -23,6 +23,7 @@ extra_rdoc_files:
23
23
  - README
24
24
  - LICENSE
25
25
  - TODO
26
+ - changelog
26
27
  files:
27
28
  - LICENSE
28
29
  - LICENSE.LGPLv3
@@ -30,17 +31,25 @@ files:
30
31
  - INSTALL
31
32
  - Rakefile
32
33
  - TODO
34
+ - changelog
35
+ - lib/gsl4r/block.rb
33
36
  - lib/gsl4r/complex.rb
34
- - lib/gsl4r/f
37
+ - lib/gsl4r/const.rb
38
+ - lib/gsl4r/const_cgs.rb
39
+ - lib/gsl4r/const_cgsm.rb
40
+ - lib/gsl4r/const_mks.rb
41
+ - lib/gsl4r/const_mksa.rb
42
+ - lib/gsl4r/const_num.rb
35
43
  - lib/gsl4r/harness.rb
36
44
  - lib/gsl4r/platform.rb
37
45
  - lib/gsl4r/util.rb
38
46
  - lib/gsl4r/vector.rb
39
47
  - lib/gsl4r.rb
48
+ - lib/t.rb
40
49
  - test/complex_test.rb
41
- - test/complex_tests.rb
42
50
  - test/gsl_complex_tests_gen
43
51
  - test/gsl_complex_tests_gen.c
52
+ - test/README
44
53
  has_rdoc: true
45
54
  homepage: http://gsl4r.rubyforge.org
46
55
  licenses: []
data/lib/gsl4r/f DELETED
@@ -1,174 +0,0 @@
1
- [Function]
2
- [Function]
3
- gsl_complex gsl_complex_pow (gsl complex z, gsl complex a )
4
- The function returns the complex number z raised to the complex power a, za . This
5
- is computed as exp(log(z)
6
- ∗ a) using complex logarithms and complex exponentials.
7
- [Function]
8
- gsl_complex gsl_complex_pow_real (gsl complex z, double x )
9
- This function returns the complex number z raised to the real power x, zx .
10
- [Function]
11
- gsl_complex gsl_complex_exp (gsl complex z )
12
- This function returns the complex exponential of the complex number z, exp(z).
13
- Chapter 5: Complex Numbers 24
14
- [Function]
15
- gsl_complex gsl_complex_log (gsl complex z )
16
- This function returns the complex natural logarithm (base e) of the complex number
17
- z, log(z). The branch cut is the negative real axis.
18
- [Function]
19
- gsl_complex gsl_complex_log10 (gsl complex z )
20
- This function returns the complex base-10 logarithm of the complex number z,
21
- log10 (z).
22
- [Function]
23
- gsl_complex gsl_complex_log_b (gsl complex z, gsl complex b )
24
- This function returns the complex base-b logarithm of the complex number z, logb (z).
25
- This quantity is computed as the ratio log(z)/ log(b).
26
- 5.5 Complex Trigonometric Functions
27
- [Function]
28
- gsl_complex gsl_complex_sin (gsl complex z )
29
- This function returns the complex sine of the complex number z, sin(z) = (exp(iz)
30
-
31
- exp(
32
- −iz))/(2i).
33
- [Function]
34
- gsl_complex gsl_complex_cos (gsl complex z )
35
- This function returns the complex cosine of the complex number z, cos(z) = (exp(iz)+
36
- exp(
37
- −iz))/2.
38
- [Function]
39
- gsl_complex gsl_complex_tan (gsl complex z )
40
- This function returns the complex tangent of the complex number z,
41
- tan(z) = sin(z)/ cos(z).
42
- [Function]
43
- gsl_complex gsl_complex_sec (gsl complex z )
44
- This function returns the complex secant of the complex number z, sec(z) = 1/ cos(z).
45
- [Function]
46
- gsl_complex gsl_complex_csc (gsl complex z )
47
- This function returns the complex cosecant of the complex number z, csc(z) =
48
- 1/ sin(z).
49
- [Function]
50
- gsl_complex gsl_complex_cot (gsl complex z )
51
- This function returns the complex cotangent of the complex number z, cot(z) =
52
- 1/ tan(z).
53
- 5.6 Inverse Complex Trigonometric Functions
54
- [Function]
55
- gsl_complex gsl_complex_arcsin (gsl complex z )
56
- This function returns the complex arcsine of the complex number z, arcsin(z). The
57
- branch cuts are on the real axis, less than
58
- −1 and greater than 1.
59
- [Function]
60
- gsl_complex gsl_complex_arcsin_real (double z )
61
- This function returns the complex arcsine of the real number z, arcsin(z). For z
62
- between
63
- −1 and 1, the function returns a real value in the range [−π/2, π/2]. For z
64
- less than
65
- −1 the result has a real part of −π/2 and a positive imaginary part. For z
66
- greater than 1 the result has a real part of π/2 and a negative imaginary part.
67
- Chapter 5: Complex Numbers 25
68
- [Function]
69
- gsl_complex gsl_complex_arccos (gsl complex z )
70
- This function returns the complex arccosine of the complex number z, arccos(z). The
71
- branch cuts are on the real axis, less than
72
- −1 and greater than 1.
73
- [Function]
74
- gsl_complex gsl_complex_arccos_real (double z )
75
- This function returns the complex arccosine of the real number z, arccos(z). For z
76
- between
77
- −1 and 1, the function returns a real value in the range [0, π]. For z less
78
- than
79
- −1 the result has a real part of π and a negative imaginary part. For z greater
80
- than 1 the result is purely imaginary and positive.
81
- [Function]
82
- gsl_complex gsl_complex_arctan (gsl complex z )
83
- This function returns the complex arctangent of the complex number z, arctan(z).
84
- The branch cuts are on the imaginary axis, below
85
- −i and above i.
86
- [Function]
87
- gsl_complex gsl_complex_arcsec (gsl complex z )
88
- This function returns the complex arcsecant of the complex number z, arcsec(z) =
89
- arccos(1/z).
90
- [Function]
91
- gsl_complex gsl_complex_arcsec_real (double z )
92
- This function returns the complex arcsecant of the real number z,
93
- arcsec(z) = arccos(1/z).
94
- [Function]
95
- gsl_complex gsl_complex_arccsc (gsl complex z )
96
- This function returns the complex arccosecant of the complex number z, arccsc(z) =
97
- arcsin(1/z).
98
- [Function]
99
- gsl_complex gsl_complex_arccsc_real (double z )
100
- This function returns the complex arccosecant of the real number z, arccsc(z) =
101
- arcsin(1/z).
102
- [Function]
103
- gsl_complex gsl_complex_arccot (gsl complex z )
104
- This function returns the complex arccotangent of the complex number z, arccot(z) =
105
- arctan(1/z).
106
- 5.7 Complex Hyperbolic Functions
107
- [Function]
108
- gsl_complex gsl_complex_sinh (gsl complex z )
109
- This function returns the complex hyperbolic sine of the complex number z, sinh(z) =
110
- (exp(z)
111
- − exp(−z))/2.
112
- [Function]
113
- gsl_complex gsl_complex_cosh (gsl complex z )
114
- This function returns the complex hyperbolic cosine of the complex number z,
115
- cosh(z) = (exp(z) + exp(
116
- −z))/2.
117
- [Function]
118
- gsl_complex gsl_complex_tanh (gsl complex z )
119
- This function returns the complex hyperbolic tangent of the complex number z,
120
- tanh(z) = sinh(z)/ cosh(z).
121
- [Function]
122
- gsl_complex gsl_complex_sech (gsl complex z )
123
- This function returns the complex hyperbolic secant of the complex number z,
124
- sech(z) = 1/ cosh(z).
125
- Chapter 5: Complex Numbers 26
126
- [Function]
127
- gsl_complex gsl_complex_csch (gsl complex z )
128
- This function returns the complex hyperbolic cosecant of the complex number z,
129
- csch(z) = 1/ sinh(z).
130
- [Function]
131
- gsl_complex gsl_complex_coth (gsl complex z )
132
- This function returns the complex hyperbolic cotangent of the complex number z,
133
- coth(z) = 1/ tanh(z).
134
- 5.8 Inverse Complex Hyperbolic Functions
135
- [Function]
136
- gsl_complex gsl_complex_arcsinh (gsl complex z )
137
- This function returns the complex hyperbolic arcsine of the complex number z,
138
- arcsinh(z). The branch cuts are on the imaginary axis, below
139
- −i and above i.
140
- [Function]
141
- gsl_complex gsl_complex_arccosh (gsl complex z )
142
- This function returns the complex hyperbolic arccosine of the complex number z,
143
- arccosh(z). The branch cut is on the real axis, less than 1. Note that in this case
144
- we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving
145
- arccosh(z) = log(z
146
- − √z
147
- 2
148
- − 1).
149
- [Function]
150
- gsl_complex gsl_complex_arccosh_real (double z )
151
- This function returns the complex hyperbolic arccosine of the real number z,
152
- arccosh(z).
153
- [Function]
154
- gsl_complex gsl_complex_arctanh (gsl complex z )
155
- This function returns the complex hyperbolic arctangent of the complex number z,
156
- arctanh(z). The branch cuts are on the real axis, less than
157
- −1 and greater than 1.
158
- [Function]
159
- gsl_complex gsl_complex_arctanh_real (double z )
160
- This function returns the complex hyperbolic arctangent of the real number z,
161
- arctanh(z).
162
- [Function]
163
- gsl_complex gsl_complex_arcsech (gsl complex z )
164
- This function returns the complex hyperbolic arcsecant of the complex number z,
165
- arcsech(z) = arccosh(1/z).
166
- [Function]
167
- gsl_complex gsl_complex_arccsch (gsl complex z )
168
- This function returns the complex hyperbolic arccosecant of the complex number z,
169
- arccsch(z) = arcsin(1/z).
170
- [Function]
171
- gsl_complex gsl_complex_arccoth (gsl complex z )
172
- This function returns the complex hyperbolic arccotangent of the complex number z,
173
- arccoth(z) = arctanh(1/z).
174
-
@@ -1,28 +0,0 @@
1
- $: << File.join('..','lib')
2
-
3
- require 'test/unit'
4
- require 'test/unit/autorunner'
5
-
6
- require 'gsl4r/complex'
7
-
8
- include GSL4r::Complex
9
-
10
- # note, these tests are here to figure out if
11
- # the binding between the wrapper calls and the
12
- # answers back from GSL look correct. They are
13
- # not to test the correctness of the GSL library
14
- # itself.
15
- class ComplexTests < Test::Unit::TestCase
16
-
17
- # For the purposes of these tests, epsilon is
18
- # set to a much better precision that the existing
19
- # answer derived from
20
- EPSILON = 5.0e-15
21
-
22
- def test_gsl_complex_abs()
23
- a = GSL_Complex.create(1,1).abs
24
- assert_in_delta a, 1.4142135623731, EPSILON
25
- end
26
- end
27
-
28
-