grnexus 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/LICENSE +96 -0
- data/README.md +1105 -0
- data/exports/Linux/libgrnexus.so +0 -0
- data/exports/Mac/activations.dylib +0 -0
- data/exports/Mac/grnexus_core.dylib +0 -0
- data/exports/Mac/machine_learning.dylib +0 -0
- data/exports/Mac/normalization.dylib +0 -0
- data/exports/Mac/numeric_proccessing.dylib +0 -0
- data/exports/Mac/text_processing.dylib +0 -0
- data/exports/Windows/activations.dll +0 -0
- data/exports/Windows/grnexus_core.dll +0 -0
- data/exports/Windows/machine_learning.dll +0 -0
- data/exports/Windows/normalization.dll +0 -0
- data/exports/Windows/numeric_proccessing.dll +0 -0
- data/exports/Windows/text_processing.dll +0 -0
- data/lib/grnexus.rb +743 -0
- data/lib/grnexus_activations.rb +462 -0
- data/lib/grnexus_callbacks.rb +249 -0
- data/lib/grnexus_core.rb +130 -0
- data/lib/grnexus_layers.rb +1103 -0
- data/lib/grnexus_machine_learning.rb +591 -0
- data/lib/grnexus_normalization.rb +319 -0
- data/lib/grnexus_numeric_proccessing.rb +722 -0
- data/lib/grnexus_text_proccessing.rb +295 -0
- metadata +149 -0
|
@@ -0,0 +1,591 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require 'ffi'
|
|
4
|
+
require 'rbconfig'
|
|
5
|
+
|
|
6
|
+
module GRNEXUSMachineLearning
|
|
7
|
+
extend FFI::Library
|
|
8
|
+
|
|
9
|
+
# Detect and load appropriate library
|
|
10
|
+
def self.detect_library
|
|
11
|
+
script_dir = File.dirname(File.expand_path(__FILE__))
|
|
12
|
+
case RbConfig::CONFIG['host_os']
|
|
13
|
+
when /mswin|mingw|cygwin/
|
|
14
|
+
File.join(script_dir, '..', 'exports', 'Windows', 'machine_learning.dll')
|
|
15
|
+
when /darwin/
|
|
16
|
+
File.join(script_dir, '..', 'exports', 'Mac', 'machine_learning.dylib')
|
|
17
|
+
when /linux/
|
|
18
|
+
File.join(script_dir, '..', 'exports', 'Linux', 'machine_learning.so')
|
|
19
|
+
else
|
|
20
|
+
raise "Sistema operativo no soportado: #{RbConfig::CONFIG['host_os']}"
|
|
21
|
+
end
|
|
22
|
+
end
|
|
23
|
+
|
|
24
|
+
ffi_lib detect_library
|
|
25
|
+
|
|
26
|
+
# Define GRNexusData structure
|
|
27
|
+
class GRNexusData < FFI::Struct
|
|
28
|
+
layout :data, :pointer,
|
|
29
|
+
:type, :int,
|
|
30
|
+
:size, :size_t,
|
|
31
|
+
:stride, :size_t,
|
|
32
|
+
:dims, [:size_t, 3]
|
|
33
|
+
end
|
|
34
|
+
|
|
35
|
+
# Attach C functions
|
|
36
|
+
attach_function :knn_predict, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr, :int, GRNexusData.ptr], :int
|
|
37
|
+
attach_function :kmeans_fit, [GRNexusData.ptr, :int, :int, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
38
|
+
attach_function :kmeans_predict, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
39
|
+
attach_function :linear_regression_fit, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
40
|
+
attach_function :linear_regression_predict, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
41
|
+
attach_function :logistic_regression_fit, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr, :double, :int], :int
|
|
42
|
+
attach_function :logistic_regression_predict, [GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
43
|
+
attach_function :naive_bayes_fit, [GRNexusData.ptr, GRNexusData.ptr, :int, GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
44
|
+
attach_function :naive_bayes_predict, [GRNexusData.ptr, :int, GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr, GRNexusData.ptr], :int
|
|
45
|
+
|
|
46
|
+
# Helper method to create GRNexusData from Ruby array
|
|
47
|
+
def self.create_data(array, dims)
|
|
48
|
+
data = GRNexusData.new
|
|
49
|
+
flat_array = array.flatten
|
|
50
|
+
buffer = FFI::MemoryPointer.new(:double, flat_array.size)
|
|
51
|
+
buffer.write_array_of_double(flat_array)
|
|
52
|
+
|
|
53
|
+
data[:data] = buffer
|
|
54
|
+
data[:type] = 3 # GRNEXUS_MATRIX
|
|
55
|
+
data[:size] = flat_array.size
|
|
56
|
+
data[:stride] = 1
|
|
57
|
+
data[:dims][0] = dims[0]
|
|
58
|
+
data[:dims][1] = dims[1] || 0
|
|
59
|
+
data[:dims][2] = dims[2] || 0
|
|
60
|
+
|
|
61
|
+
data
|
|
62
|
+
end
|
|
63
|
+
|
|
64
|
+
# K-Nearest Neighbors
|
|
65
|
+
class KNeighborsClassifier
|
|
66
|
+
attr_reader :n_neighbors
|
|
67
|
+
|
|
68
|
+
def initialize(n_neighbors: 5)
|
|
69
|
+
@n_neighbors = n_neighbors
|
|
70
|
+
@x_train = nil
|
|
71
|
+
@y_train = nil
|
|
72
|
+
end
|
|
73
|
+
|
|
74
|
+
def fit(x, y)
|
|
75
|
+
@x_train = x
|
|
76
|
+
@y_train = y
|
|
77
|
+
self
|
|
78
|
+
end
|
|
79
|
+
|
|
80
|
+
def save(filepath)
|
|
81
|
+
require 'json'
|
|
82
|
+
require 'zlib'
|
|
83
|
+
|
|
84
|
+
# Ensure .lnexus extension
|
|
85
|
+
filepath = filepath.sub(/\.nexus$/, '.lnexus') unless filepath.end_with?('.lnexus')
|
|
86
|
+
|
|
87
|
+
model_data = {
|
|
88
|
+
model_type: 'KNeighborsClassifier',
|
|
89
|
+
framework: 'GRNexus',
|
|
90
|
+
language: 'Ruby',
|
|
91
|
+
version: '1.0',
|
|
92
|
+
n_neighbors: @n_neighbors,
|
|
93
|
+
x_train: @x_train,
|
|
94
|
+
y_train: @y_train
|
|
95
|
+
}
|
|
96
|
+
|
|
97
|
+
json_data = JSON.generate(model_data)
|
|
98
|
+
compressed_data = Zlib::Deflate.deflate(json_data)
|
|
99
|
+
File.write(filepath, compressed_data, mode: 'wb')
|
|
100
|
+
puts "Model saved to #{filepath}"
|
|
101
|
+
end
|
|
102
|
+
|
|
103
|
+
def self.load(filepath)
|
|
104
|
+
require 'json'
|
|
105
|
+
require 'zlib'
|
|
106
|
+
|
|
107
|
+
raise "File not found: #{filepath}" unless File.exist?(filepath)
|
|
108
|
+
raise "Invalid file format. Expected .lnexus for ML models, got .nexus (Neural Network format)" if filepath.end_with?('.nexus')
|
|
109
|
+
|
|
110
|
+
compressed_data = File.read(filepath, mode: 'rb')
|
|
111
|
+
json_data = Zlib::Inflate.inflate(compressed_data)
|
|
112
|
+
model_data = JSON.parse(json_data)
|
|
113
|
+
|
|
114
|
+
raise "Invalid model type. Expected KNeighborsClassifier" unless model_data['model_type'] == 'KNeighborsClassifier'
|
|
115
|
+
|
|
116
|
+
model = new(n_neighbors: model_data['n_neighbors'])
|
|
117
|
+
model.instance_variable_set(:@x_train, model_data['x_train'])
|
|
118
|
+
model.instance_variable_set(:@y_train, model_data['y_train'])
|
|
119
|
+
model
|
|
120
|
+
end
|
|
121
|
+
|
|
122
|
+
def inspect
|
|
123
|
+
trained = @x_train ? 'trained' : 'not trained'
|
|
124
|
+
n_samples = @x_train ? @x_train.length : 0
|
|
125
|
+
n_features = @x_train && @x_train.length > 0 ? @x_train[0].length : 0
|
|
126
|
+
|
|
127
|
+
"#<KNeighborsClassifier n_neighbors=#{@n_neighbors}, status=#{trained}, samples=#{n_samples}, features=#{n_features}>"
|
|
128
|
+
end
|
|
129
|
+
|
|
130
|
+
def predict(x)
|
|
131
|
+
raise "Model not trained" unless @x_train && @y_train
|
|
132
|
+
|
|
133
|
+
n_samples = x.length
|
|
134
|
+
n_features = x[0].length
|
|
135
|
+
n_train = @x_train.length
|
|
136
|
+
|
|
137
|
+
x_train_data = GRNEXUSMachineLearning.create_data(@x_train, [n_train, n_features])
|
|
138
|
+
y_train_data = GRNEXUSMachineLearning.create_data(@y_train.map { |v| [v] }, [n_train, 1])
|
|
139
|
+
x_test_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
140
|
+
|
|
141
|
+
output_buffer = FFI::MemoryPointer.new(:double, n_samples)
|
|
142
|
+
output_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
143
|
+
output_data[:data] = output_buffer
|
|
144
|
+
output_data[:size] = n_samples
|
|
145
|
+
output_data[:dims][0] = n_samples
|
|
146
|
+
output_data[:dims][1] = 1
|
|
147
|
+
|
|
148
|
+
result = GRNEXUSMachineLearning.knn_predict(x_train_data, y_train_data, x_test_data, @n_neighbors, output_data)
|
|
149
|
+
raise "KNN prediction failed" if result != 0
|
|
150
|
+
|
|
151
|
+
output_buffer.read_array_of_double(n_samples)
|
|
152
|
+
end
|
|
153
|
+
end
|
|
154
|
+
|
|
155
|
+
# K-Means Clustering
|
|
156
|
+
class KMeans
|
|
157
|
+
attr_reader :centroids, :labels, :n_clusters
|
|
158
|
+
|
|
159
|
+
def initialize(n_clusters: 3, max_iter: 300)
|
|
160
|
+
@n_clusters = n_clusters
|
|
161
|
+
@max_iter = max_iter
|
|
162
|
+
@centroids = nil
|
|
163
|
+
@labels = nil
|
|
164
|
+
end
|
|
165
|
+
|
|
166
|
+
def save(filepath)
|
|
167
|
+
require 'json'
|
|
168
|
+
require 'zlib'
|
|
169
|
+
|
|
170
|
+
filepath = filepath.sub(/\.nexus$/, '.lnexus') unless filepath.end_with?('.lnexus')
|
|
171
|
+
|
|
172
|
+
model_data = {
|
|
173
|
+
model_type: 'KMeans',
|
|
174
|
+
framework: 'GRNexus',
|
|
175
|
+
language: 'Ruby',
|
|
176
|
+
version: '1.0',
|
|
177
|
+
n_clusters: @n_clusters,
|
|
178
|
+
centroids: @centroids,
|
|
179
|
+
labels: @labels
|
|
180
|
+
}
|
|
181
|
+
|
|
182
|
+
json_data = JSON.generate(model_data)
|
|
183
|
+
compressed_data = Zlib::Deflate.deflate(json_data)
|
|
184
|
+
File.write(filepath, compressed_data, mode: 'wb')
|
|
185
|
+
puts "Model saved to #{filepath}"
|
|
186
|
+
end
|
|
187
|
+
|
|
188
|
+
def self.load(filepath)
|
|
189
|
+
require 'json'
|
|
190
|
+
require 'zlib'
|
|
191
|
+
|
|
192
|
+
raise "File not found: #{filepath}" unless File.exist?(filepath)
|
|
193
|
+
raise "Invalid file format. Expected .lnexus for ML models, got .nexus (Neural Network format)" if filepath.end_with?('.nexus')
|
|
194
|
+
|
|
195
|
+
compressed_data = File.read(filepath, mode: 'rb')
|
|
196
|
+
json_data = Zlib::Inflate.inflate(compressed_data)
|
|
197
|
+
model_data = JSON.parse(json_data)
|
|
198
|
+
|
|
199
|
+
raise "Invalid model type. Expected KMeans" unless model_data['model_type'] == 'KMeans'
|
|
200
|
+
|
|
201
|
+
model = new(n_clusters: model_data['n_clusters'])
|
|
202
|
+
model.instance_variable_set(:@centroids, model_data['centroids'])
|
|
203
|
+
model.instance_variable_set(:@labels, model_data['labels'])
|
|
204
|
+
model
|
|
205
|
+
end
|
|
206
|
+
|
|
207
|
+
def inspect
|
|
208
|
+
trained = @centroids ? 'trained' : 'not trained'
|
|
209
|
+
n_features = @centroids && @centroids.length > 0 ? @centroids[0].length : 0
|
|
210
|
+
|
|
211
|
+
"#<KMeans n_clusters=#{@n_clusters}, status=#{trained}, features=#{n_features}>"
|
|
212
|
+
end
|
|
213
|
+
|
|
214
|
+
def fit(x)
|
|
215
|
+
n_samples = x.length
|
|
216
|
+
n_features = x[0].length
|
|
217
|
+
|
|
218
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
219
|
+
|
|
220
|
+
centroids_buffer = FFI::MemoryPointer.new(:double, @n_clusters * n_features)
|
|
221
|
+
centroids_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
222
|
+
centroids_data[:data] = centroids_buffer
|
|
223
|
+
centroids_data[:size] = @n_clusters * n_features
|
|
224
|
+
centroids_data[:dims][0] = @n_clusters
|
|
225
|
+
centroids_data[:dims][1] = n_features
|
|
226
|
+
|
|
227
|
+
labels_buffer = FFI::MemoryPointer.new(:int, n_samples)
|
|
228
|
+
labels_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
229
|
+
labels_data[:data] = labels_buffer
|
|
230
|
+
labels_data[:size] = n_samples
|
|
231
|
+
labels_data[:dims][0] = n_samples
|
|
232
|
+
|
|
233
|
+
result = GRNEXUSMachineLearning.kmeans_fit(x_data, @n_clusters, @max_iter, centroids_data, labels_data)
|
|
234
|
+
raise "KMeans fit failed" if result != 0
|
|
235
|
+
|
|
236
|
+
@centroids = centroids_buffer.read_array_of_double(@n_clusters * n_features).each_slice(n_features).to_a
|
|
237
|
+
@labels = labels_buffer.read_array_of_int(n_samples)
|
|
238
|
+
|
|
239
|
+
self
|
|
240
|
+
end
|
|
241
|
+
|
|
242
|
+
def predict(x)
|
|
243
|
+
raise "Model not trained" unless @centroids
|
|
244
|
+
|
|
245
|
+
n_samples = x.length
|
|
246
|
+
n_features = x[0].length
|
|
247
|
+
|
|
248
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
249
|
+
centroids_data = GRNEXUSMachineLearning.create_data(@centroids, [@n_clusters, n_features])
|
|
250
|
+
|
|
251
|
+
labels_buffer = FFI::MemoryPointer.new(:int, n_samples)
|
|
252
|
+
labels_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
253
|
+
labels_data[:data] = labels_buffer
|
|
254
|
+
labels_data[:size] = n_samples
|
|
255
|
+
labels_data[:dims][0] = n_samples
|
|
256
|
+
|
|
257
|
+
result = GRNEXUSMachineLearning.kmeans_predict(x_data, centroids_data, labels_data)
|
|
258
|
+
raise "KMeans prediction failed" if result != 0
|
|
259
|
+
|
|
260
|
+
labels_buffer.read_array_of_int(n_samples)
|
|
261
|
+
end
|
|
262
|
+
end
|
|
263
|
+
|
|
264
|
+
# Linear Regression
|
|
265
|
+
class LinearRegression
|
|
266
|
+
attr_reader :weights
|
|
267
|
+
|
|
268
|
+
def initialize
|
|
269
|
+
@weights = nil
|
|
270
|
+
end
|
|
271
|
+
|
|
272
|
+
def save(filepath)
|
|
273
|
+
require 'json'
|
|
274
|
+
require 'zlib'
|
|
275
|
+
|
|
276
|
+
filepath = filepath.sub(/\.nexus$/, '.lnexus') unless filepath.end_with?('.lnexus')
|
|
277
|
+
|
|
278
|
+
model_data = {
|
|
279
|
+
model_type: 'LinearRegression',
|
|
280
|
+
framework: 'GRNexus',
|
|
281
|
+
language: 'Ruby',
|
|
282
|
+
version: '1.0',
|
|
283
|
+
weights: @weights
|
|
284
|
+
}
|
|
285
|
+
|
|
286
|
+
json_data = JSON.generate(model_data)
|
|
287
|
+
compressed_data = Zlib::Deflate.deflate(json_data)
|
|
288
|
+
File.write(filepath, compressed_data, mode: 'wb')
|
|
289
|
+
puts "Model saved to #{filepath}"
|
|
290
|
+
end
|
|
291
|
+
|
|
292
|
+
def self.load(filepath)
|
|
293
|
+
require 'json'
|
|
294
|
+
require 'zlib'
|
|
295
|
+
|
|
296
|
+
raise "File not found: #{filepath}" unless File.exist?(filepath)
|
|
297
|
+
raise "Invalid file format. Expected .lnexus for ML models, got .nexus (Neural Network format)" if filepath.end_with?('.nexus')
|
|
298
|
+
|
|
299
|
+
compressed_data = File.read(filepath, mode: 'rb')
|
|
300
|
+
json_data = Zlib::Inflate.inflate(compressed_data)
|
|
301
|
+
model_data = JSON.parse(json_data)
|
|
302
|
+
|
|
303
|
+
raise "Invalid model type. Expected LinearRegression" unless model_data['model_type'] == 'LinearRegression'
|
|
304
|
+
|
|
305
|
+
model = new
|
|
306
|
+
model.instance_variable_set(:@weights, model_data['weights'])
|
|
307
|
+
model
|
|
308
|
+
end
|
|
309
|
+
|
|
310
|
+
def inspect
|
|
311
|
+
trained = @weights ? 'trained' : 'not trained'
|
|
312
|
+
n_features = @weights ? @weights.length - 1 : 0
|
|
313
|
+
|
|
314
|
+
"#<LinearRegression status=#{trained}, features=#{n_features}, weights=#{@weights ? @weights.length : 0}>"
|
|
315
|
+
end
|
|
316
|
+
|
|
317
|
+
def fit(x, y)
|
|
318
|
+
n_samples = x.length
|
|
319
|
+
n_features = x[0].length
|
|
320
|
+
|
|
321
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
322
|
+
y_data = GRNEXUSMachineLearning.create_data(y.map { |v| [v] }, [n_samples, 1])
|
|
323
|
+
|
|
324
|
+
weights_buffer = FFI::MemoryPointer.new(:double, n_features + 1)
|
|
325
|
+
weights_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
326
|
+
weights_data[:data] = weights_buffer
|
|
327
|
+
weights_data[:size] = n_features + 1
|
|
328
|
+
weights_data[:dims][0] = n_features + 1
|
|
329
|
+
|
|
330
|
+
result = GRNEXUSMachineLearning.linear_regression_fit(x_data, y_data, weights_data)
|
|
331
|
+
raise "Linear regression fit failed" if result != 0
|
|
332
|
+
|
|
333
|
+
@weights = weights_buffer.read_array_of_double(n_features + 1)
|
|
334
|
+
|
|
335
|
+
self
|
|
336
|
+
end
|
|
337
|
+
|
|
338
|
+
def predict(x)
|
|
339
|
+
raise "Model not trained" unless @weights
|
|
340
|
+
|
|
341
|
+
n_samples = x.length
|
|
342
|
+
n_features = x[0].length
|
|
343
|
+
|
|
344
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
345
|
+
weights_data = GRNEXUSMachineLearning.create_data([@weights], [n_features + 1, 1])
|
|
346
|
+
|
|
347
|
+
output_buffer = FFI::MemoryPointer.new(:double, n_samples)
|
|
348
|
+
output_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
349
|
+
output_data[:data] = output_buffer
|
|
350
|
+
output_data[:size] = n_samples
|
|
351
|
+
output_data[:dims][0] = n_samples
|
|
352
|
+
|
|
353
|
+
result = GRNEXUSMachineLearning.linear_regression_predict(x_data, weights_data, output_data)
|
|
354
|
+
raise "Linear regression prediction failed" if result != 0
|
|
355
|
+
|
|
356
|
+
output_buffer.read_array_of_double(n_samples)
|
|
357
|
+
end
|
|
358
|
+
end
|
|
359
|
+
|
|
360
|
+
# Logistic Regression
|
|
361
|
+
class LogisticRegression
|
|
362
|
+
attr_reader :weights, :learning_rate, :max_iter
|
|
363
|
+
|
|
364
|
+
def initialize(learning_rate: 0.01, max_iter: 1000)
|
|
365
|
+
@learning_rate = learning_rate
|
|
366
|
+
@max_iter = max_iter
|
|
367
|
+
@weights = nil
|
|
368
|
+
end
|
|
369
|
+
|
|
370
|
+
def save(filepath)
|
|
371
|
+
require 'json'
|
|
372
|
+
require 'zlib'
|
|
373
|
+
|
|
374
|
+
filepath = filepath.sub(/\.nexus$/, '.lnexus') unless filepath.end_with?('.lnexus')
|
|
375
|
+
|
|
376
|
+
model_data = {
|
|
377
|
+
model_type: 'LogisticRegression',
|
|
378
|
+
framework: 'GRNexus',
|
|
379
|
+
language: 'Ruby',
|
|
380
|
+
version: '1.0',
|
|
381
|
+
learning_rate: @learning_rate,
|
|
382
|
+
max_iter: @max_iter,
|
|
383
|
+
weights: @weights
|
|
384
|
+
}
|
|
385
|
+
|
|
386
|
+
json_data = JSON.generate(model_data)
|
|
387
|
+
compressed_data = Zlib::Deflate.deflate(json_data)
|
|
388
|
+
File.write(filepath, compressed_data, mode: 'wb')
|
|
389
|
+
puts "Model saved to #{filepath}"
|
|
390
|
+
end
|
|
391
|
+
|
|
392
|
+
def self.load(filepath)
|
|
393
|
+
require 'json'
|
|
394
|
+
require 'zlib'
|
|
395
|
+
|
|
396
|
+
raise "File not found: #{filepath}" unless File.exist?(filepath)
|
|
397
|
+
raise "Invalid file format. Expected .lnexus for ML models, got .nexus (Neural Network format)" if filepath.end_with?('.nexus')
|
|
398
|
+
|
|
399
|
+
compressed_data = File.read(filepath, mode: 'rb')
|
|
400
|
+
json_data = Zlib::Inflate.inflate(compressed_data)
|
|
401
|
+
model_data = JSON.parse(json_data)
|
|
402
|
+
|
|
403
|
+
raise "Invalid model type. Expected LogisticRegression" unless model_data['model_type'] == 'LogisticRegression'
|
|
404
|
+
|
|
405
|
+
model = new(learning_rate: model_data['learning_rate'], max_iter: model_data['max_iter'])
|
|
406
|
+
model.instance_variable_set(:@weights, model_data['weights'])
|
|
407
|
+
model
|
|
408
|
+
end
|
|
409
|
+
|
|
410
|
+
def inspect
|
|
411
|
+
trained = @weights ? 'trained' : 'not trained'
|
|
412
|
+
n_features = @weights ? @weights.length - 1 : 0
|
|
413
|
+
|
|
414
|
+
"#<LogisticRegression lr=#{@learning_rate}, max_iter=#{@max_iter}, status=#{trained}, features=#{n_features}>"
|
|
415
|
+
end
|
|
416
|
+
|
|
417
|
+
def fit(x, y)
|
|
418
|
+
n_samples = x.length
|
|
419
|
+
n_features = x[0].length
|
|
420
|
+
|
|
421
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
422
|
+
y_data = GRNEXUSMachineLearning.create_data(y.map { |v| [v] }, [n_samples, 1])
|
|
423
|
+
|
|
424
|
+
weights_buffer = FFI::MemoryPointer.new(:double, n_features + 1)
|
|
425
|
+
weights_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
426
|
+
weights_data[:data] = weights_buffer
|
|
427
|
+
weights_data[:size] = n_features + 1
|
|
428
|
+
weights_data[:dims][0] = n_features + 1
|
|
429
|
+
|
|
430
|
+
result = GRNEXUSMachineLearning.logistic_regression_fit(x_data, y_data, weights_data, @learning_rate, @max_iter)
|
|
431
|
+
raise "Logistic regression fit failed" if result != 0
|
|
432
|
+
|
|
433
|
+
@weights = weights_buffer.read_array_of_double(n_features + 1)
|
|
434
|
+
|
|
435
|
+
self
|
|
436
|
+
end
|
|
437
|
+
|
|
438
|
+
def predict(x)
|
|
439
|
+
raise "Model not trained" unless @weights
|
|
440
|
+
|
|
441
|
+
n_samples = x.length
|
|
442
|
+
n_features = x[0].length
|
|
443
|
+
|
|
444
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
445
|
+
weights_data = GRNEXUSMachineLearning.create_data([@weights], [n_features + 1, 1])
|
|
446
|
+
|
|
447
|
+
output_buffer = FFI::MemoryPointer.new(:double, n_samples)
|
|
448
|
+
output_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
449
|
+
output_data[:data] = output_buffer
|
|
450
|
+
output_data[:size] = n_samples
|
|
451
|
+
output_data[:dims][0] = n_samples
|
|
452
|
+
|
|
453
|
+
result = GRNEXUSMachineLearning.logistic_regression_predict(x_data, weights_data, output_data)
|
|
454
|
+
raise "Logistic regression prediction failed" if result != 0
|
|
455
|
+
|
|
456
|
+
output_buffer.read_array_of_double(n_samples)
|
|
457
|
+
end
|
|
458
|
+
|
|
459
|
+
def predict_proba(x)
|
|
460
|
+
predict(x)
|
|
461
|
+
end
|
|
462
|
+
|
|
463
|
+
def predict_class(x)
|
|
464
|
+
predict(x).map { |prob| prob >= 0.5 ? 1 : 0 }
|
|
465
|
+
end
|
|
466
|
+
end
|
|
467
|
+
|
|
468
|
+
# Naive Bayes
|
|
469
|
+
class GaussianNB
|
|
470
|
+
attr_reader :means, :variances, :priors, :n_classes
|
|
471
|
+
|
|
472
|
+
def initialize
|
|
473
|
+
@means = nil
|
|
474
|
+
@variances = nil
|
|
475
|
+
@priors = nil
|
|
476
|
+
@n_classes = nil
|
|
477
|
+
end
|
|
478
|
+
|
|
479
|
+
def save(filepath)
|
|
480
|
+
require 'json'
|
|
481
|
+
require 'zlib'
|
|
482
|
+
|
|
483
|
+
filepath = filepath.sub(/\.nexus$/, '.lnexus') unless filepath.end_with?('.lnexus')
|
|
484
|
+
|
|
485
|
+
model_data = {
|
|
486
|
+
model_type: 'GaussianNB',
|
|
487
|
+
framework: 'GRNexus',
|
|
488
|
+
language: 'Ruby',
|
|
489
|
+
version: '1.0',
|
|
490
|
+
n_classes: @n_classes,
|
|
491
|
+
means: @means,
|
|
492
|
+
variances: @variances,
|
|
493
|
+
priors: @priors
|
|
494
|
+
}
|
|
495
|
+
|
|
496
|
+
json_data = JSON.generate(model_data)
|
|
497
|
+
compressed_data = Zlib::Deflate.deflate(json_data)
|
|
498
|
+
File.write(filepath, compressed_data, mode: 'wb')
|
|
499
|
+
puts "Model saved to #{filepath}"
|
|
500
|
+
end
|
|
501
|
+
|
|
502
|
+
def self.load(filepath)
|
|
503
|
+
require 'json'
|
|
504
|
+
require 'zlib'
|
|
505
|
+
|
|
506
|
+
raise "File not found: #{filepath}" unless File.exist?(filepath)
|
|
507
|
+
raise "Invalid file format. Expected .lnexus for ML models, got .nexus (Neural Network format)" if filepath.end_with?('.nexus')
|
|
508
|
+
|
|
509
|
+
compressed_data = File.read(filepath, mode: 'rb')
|
|
510
|
+
json_data = Zlib::Inflate.inflate(compressed_data)
|
|
511
|
+
model_data = JSON.parse(json_data)
|
|
512
|
+
|
|
513
|
+
raise "Invalid model type. Expected GaussianNB" unless model_data['model_type'] == 'GaussianNB'
|
|
514
|
+
|
|
515
|
+
model = new
|
|
516
|
+
model.instance_variable_set(:@n_classes, model_data['n_classes'])
|
|
517
|
+
model.instance_variable_set(:@means, model_data['means'])
|
|
518
|
+
model.instance_variable_set(:@variances, model_data['variances'])
|
|
519
|
+
model.instance_variable_set(:@priors, model_data['priors'])
|
|
520
|
+
model
|
|
521
|
+
end
|
|
522
|
+
|
|
523
|
+
def inspect
|
|
524
|
+
trained = @means ? 'trained' : 'not trained'
|
|
525
|
+
n_features = @means && @means.length > 0 ? @means[0].length : 0
|
|
526
|
+
|
|
527
|
+
"#<GaussianNB n_classes=#{@n_classes || 0}, status=#{trained}, features=#{n_features}>"
|
|
528
|
+
end
|
|
529
|
+
|
|
530
|
+
def fit(x, y)
|
|
531
|
+
n_samples = x.length
|
|
532
|
+
n_features = x[0].length
|
|
533
|
+
@n_classes = y.max.to_i + 1
|
|
534
|
+
|
|
535
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
536
|
+
y_data = GRNEXUSMachineLearning.create_data(y.map { |v| [v] }, [n_samples, 1])
|
|
537
|
+
|
|
538
|
+
means_buffer = FFI::MemoryPointer.new(:double, @n_classes * n_features)
|
|
539
|
+
means_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
540
|
+
means_data[:data] = means_buffer
|
|
541
|
+
means_data[:size] = @n_classes * n_features
|
|
542
|
+
means_data[:dims][0] = @n_classes
|
|
543
|
+
means_data[:dims][1] = n_features
|
|
544
|
+
|
|
545
|
+
vars_buffer = FFI::MemoryPointer.new(:double, @n_classes * n_features)
|
|
546
|
+
vars_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
547
|
+
vars_data[:data] = vars_buffer
|
|
548
|
+
vars_data[:size] = @n_classes * n_features
|
|
549
|
+
vars_data[:dims][0] = @n_classes
|
|
550
|
+
vars_data[:dims][1] = n_features
|
|
551
|
+
|
|
552
|
+
priors_buffer = FFI::MemoryPointer.new(:double, @n_classes)
|
|
553
|
+
priors_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
554
|
+
priors_data[:data] = priors_buffer
|
|
555
|
+
priors_data[:size] = @n_classes
|
|
556
|
+
priors_data[:dims][0] = @n_classes
|
|
557
|
+
|
|
558
|
+
result = GRNEXUSMachineLearning.naive_bayes_fit(x_data, y_data, @n_classes, means_data, vars_data, priors_data)
|
|
559
|
+
raise "Naive Bayes fit failed" if result != 0
|
|
560
|
+
|
|
561
|
+
@means = means_buffer.read_array_of_double(@n_classes * n_features).each_slice(n_features).to_a
|
|
562
|
+
@variances = vars_buffer.read_array_of_double(@n_classes * n_features).each_slice(n_features).to_a
|
|
563
|
+
@priors = priors_buffer.read_array_of_double(@n_classes)
|
|
564
|
+
|
|
565
|
+
self
|
|
566
|
+
end
|
|
567
|
+
|
|
568
|
+
def predict(x)
|
|
569
|
+
raise "Model not trained" unless @means && @variances && @priors
|
|
570
|
+
|
|
571
|
+
n_samples = x.length
|
|
572
|
+
n_features = x[0].length
|
|
573
|
+
|
|
574
|
+
x_data = GRNEXUSMachineLearning.create_data(x, [n_samples, n_features])
|
|
575
|
+
means_data = GRNEXUSMachineLearning.create_data(@means, [@n_classes, n_features])
|
|
576
|
+
vars_data = GRNEXUSMachineLearning.create_data(@variances, [@n_classes, n_features])
|
|
577
|
+
priors_data = GRNEXUSMachineLearning.create_data([@priors], [@n_classes, 1])
|
|
578
|
+
|
|
579
|
+
output_buffer = FFI::MemoryPointer.new(:double, n_samples)
|
|
580
|
+
output_data = GRNEXUSMachineLearning::GRNexusData.new
|
|
581
|
+
output_data[:data] = output_buffer
|
|
582
|
+
output_data[:size] = n_samples
|
|
583
|
+
output_data[:dims][0] = n_samples
|
|
584
|
+
|
|
585
|
+
result = GRNEXUSMachineLearning.naive_bayes_predict(x_data, @n_classes, means_data, vars_data, priors_data, output_data)
|
|
586
|
+
raise "Naive Bayes prediction failed" if result != 0
|
|
587
|
+
|
|
588
|
+
output_buffer.read_array_of_double(n_samples).map(&:to_i)
|
|
589
|
+
end
|
|
590
|
+
end
|
|
591
|
+
end
|