grim-reaper 1.0.29

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,373 @@
1
+ ////////////////////////////////////////////
2
+ // curl -fsSL https://grim.so | sudo bash //
3
+ // ██████╗ ██████╗ ██╗███╗ ███╗ //
4
+ // ██╔════╝ ██╔══██╗██║████╗ ████║ //
5
+ // ██║ ███╗██████╔╝██║██╔████╔██║ //
6
+ // ██║ ██║██╔══██╗██║██║╚██╔╝██║ //
7
+ // ╚██████╔╝██║ ██║██║██║ ╚═╝ ██║ //
8
+ // ╚═════╝ ╚═╝ ╚═╝╚═╝╚═╝ ╚═╝ //
9
+ // Death Defying Data Protection //
10
+ ////////////////////////////////////////////
11
+
12
+ # 🤖 AI & Machine Learning
13
+
14
+ **The Intelligence Layer of Grim Reaper** - Advanced AI and machine learning capabilities that power intelligent decision-making, predictive analytics, and automated optimization across the entire system.
15
+
16
+ ## Overview
17
+
18
+ The AI & Machine Learning category provides sophisticated artificial intelligence capabilities that transform Grim Reaper from a reactive backup system into a proactive, intelligent platform. These modules leverage TensorFlow, PyTorch, and custom ML algorithms to optimize every aspect of system operations.
19
+
20
+ ## Architecture
21
+
22
+ ```
23
+ 🤖 AI & MACHINE LEARNING LAYER
24
+ |
25
+ ┌──────┼──────┐
26
+ │ │ │
27
+ Decision Training Production
28
+ Engine Pipeline Deployer
29
+ ```
30
+
31
+ ## Core Components
32
+
33
+ ### 🧠 AI Decision Engine (sh_grim/ai_decision_engine.sh)
34
+
35
+ **Purpose:** Intelligent decision-making for backup prioritization, storage optimization, and resource management.
36
+
37
+ #### Key Features
38
+ - **Intelligent Backup Prioritization**: Analyzes file patterns, access frequency, and importance to determine optimal backup schedules
39
+ - **Storage Optimization**: Uses ML to predict storage needs and optimize allocation
40
+ - **Resource Management**: Intelligently manages CPU, memory, and I/O resources
41
+ - **Predictive Analytics**: Forecasts system behavior and potential issues
42
+
43
+ #### Commands
44
+ ```bash
45
+ grim ai-decision init # Initialize AI decision engine
46
+ grim ai-decision analyze # Analyze files for intelligent backup decisions
47
+ grim ai-decision backup-priority # Determine backup priorities using AI
48
+ grim ai-decision storage-optimize # Optimize storage allocation with AI
49
+ grim ai-decision resource-manage # Manage system resources intelligently
50
+ grim ai-decision validate # Validate AI models and decisions
51
+ grim ai-decision report # Generate AI analysis report
52
+ grim ai-decision config # Configure AI parameters
53
+ grim ai-decision status # Check AI engine status
54
+ grim ai-decision help # Display AI command help
55
+ ```
56
+
57
+ #### Use Cases
58
+ - **Smart Backup Scheduling**: Automatically schedules backups based on file change patterns
59
+ - **Storage Prediction**: Predicts future storage needs and optimizes allocation
60
+ - **Performance Optimization**: Identifies bottlenecks and suggests improvements
61
+ - **Anomaly Detection**: Detects unusual patterns in system behavior
62
+
63
+ ### 🔧 AI Integration Framework (sh_grim/ai_integration.sh)
64
+
65
+ **Purpose:** Dual AI framework integration with TensorFlow and PyTorch support.
66
+
67
+ #### Key Features
68
+ - **Dual Framework Support**: TensorFlow 2.15.0 + PyTorch 2.1.0 integration
69
+ - **GPU Acceleration**: Automatic GPU detection and utilization
70
+ - **Model Management**: Centralized model storage and versioning
71
+ - **Performance Optimization**: Automated performance tuning
72
+
73
+ #### Commands
74
+ ```bash
75
+ grim ai init # Initialize AI integration framework
76
+ grim ai install # Install AI dependencies (TensorFlow/PyTorch)
77
+ grim ai train # Train AI models on your data
78
+ grim ai predict # Generate predictions from models
79
+ grim ai analyze # Analyze data patterns
80
+ grim ai optimize # Optimize AI performance
81
+ grim ai monitor # Monitor AI operations
82
+ grim ai validate # Validate model accuracy
83
+ grim ai report # Generate integration report
84
+ grim ai config # Configure AI integration
85
+ grim ai status # Check integration status
86
+ grim ai help # Display integration help
87
+ ```
88
+
89
+ #### Configuration
90
+ ```yaml
91
+ ai_integration:
92
+ frameworks:
93
+ tensorflow: "2.15.0"
94
+ pytorch: "2.1.0"
95
+ gpu:
96
+ enabled: true
97
+ memory_limit: "8GB"
98
+ models:
99
+ storage_path: "/opt/grim-reaper/models"
100
+ versioning: true
101
+ performance:
102
+ batch_size: 32
103
+ num_workers: 4
104
+ ```
105
+
106
+ ### 🚀 AI Production Deployer (sh_grim/ai_production_deployer.sh)
107
+
108
+ **Purpose:** Production deployment and management of AI models with rollback capabilities.
109
+
110
+ #### Key Features
111
+ - **Automated Deployment**: Seamless model deployment to production
112
+ - **Rollback Protection**: Automatic rollback to previous versions on failure
113
+ - **Health Monitoring**: Continuous monitoring of deployed models
114
+ - **A/B Testing**: Support for model comparison and testing
115
+
116
+ #### Commands
117
+ ```bash
118
+ grim ai-deploy deploy # Deploy AI models to production
119
+ grim ai-deploy test # Run automated deployment tests
120
+ grim ai-deploy rollback # Rollback to previous version
121
+ grim ai-deploy monitor # Monitor deployed models
122
+ grim ai-deploy health # Check deployment health
123
+ grim ai-deploy backup # Backup current deployment
124
+ grim ai-deploy restore # Restore from backup
125
+ grim ai-deploy status # Check deployment status
126
+ grim ai-deploy help # Display deployment help
127
+ ```
128
+
129
+ #### Deployment Pipeline
130
+ 1. **Model Validation**: Validate model performance and accuracy
131
+ 2. **Staging Deployment**: Deploy to staging environment
132
+ 3. **Automated Testing**: Run comprehensive test suite
133
+ 4. **Production Deployment**: Deploy to production with health checks
134
+ 5. **Monitoring**: Continuous monitoring and alerting
135
+
136
+ ### 🎓 AI Training Pipeline (sh_grim/ai_train.sh)
137
+
138
+ **Purpose:** Comprehensive machine learning training pipeline with multiple algorithm support.
139
+
140
+ #### Key Features
141
+ - **Multi-Algorithm Support**: Neural networks, ensemble methods, regression, classification
142
+ - **Time Series Analysis**: Specialized time series prediction capabilities
143
+ - **Feature Engineering**: Automated feature extraction and selection
144
+ - **Model Validation**: Comprehensive validation and testing
145
+
146
+ #### Commands
147
+ ```bash
148
+ grim ai-train analyze # Analyze training data
149
+ grim ai-train train # Train base models
150
+ grim ai-train predict # Generate predictions
151
+ grim ai-train cluster # Perform clustering analysis
152
+ grim ai-train extract # Extract features from data
153
+ grim ai-train validate # Validate model performance
154
+ grim ai-train report # Generate training report
155
+ grim ai-train neural # Train neural networks
156
+ grim ai-train ensemble # Train ensemble models
157
+ grim ai-train timeseries # Time series analysis
158
+ grim ai-train regression # Train regression models
159
+ grim ai-train classify # Train classification models
160
+ grim ai-train config # Configure training parameters
161
+ grim ai-train init # Initialize training environment
162
+ grim ai-train help # Display training help
163
+ ```
164
+
165
+ #### Training Algorithms
166
+ - **Neural Networks**: Deep learning models for complex patterns
167
+ - **Ensemble Methods**: Random forests, gradient boosting
168
+ - **Regression**: Linear, polynomial, and advanced regression
169
+ - **Classification**: Binary and multi-class classification
170
+ - **Clustering**: K-means, hierarchical clustering
171
+ - **Time Series**: ARIMA, LSTM, Prophet models
172
+
173
+ ### ⚡ AI Velocity Enhancer (sh_grim/ai_velocity_enhancer.sh)
174
+
175
+ **Purpose:** Performance optimization and turbo mode for AI operations.
176
+
177
+ #### Key Features
178
+ - **Turbo Mode**: Maximum performance optimization
179
+ - **Benchmark Testing**: Comprehensive performance benchmarking
180
+ - **Optimization Validation**: Validate performance improvements
181
+ - **Real-time Monitoring**: Monitor performance gains
182
+
183
+ #### Commands
184
+ ```bash
185
+ grim ai-turbo turbo # Activate turbo mode for AI
186
+ grim ai-turbo optimize # Optimize AI performance
187
+ grim ai-turbo benchmark # Run performance benchmarks
188
+ grim ai-turbo validate # Validate optimizations
189
+ grim ai-turbo deploy # Deploy optimized models
190
+ grim ai-turbo monitor # Monitor performance gains
191
+ grim ai-turbo report # Generate performance report
192
+ grim ai-turbo help # Display turbo help
193
+ ```
194
+
195
+ ### 📊 AI Decision Analysis (py_grim/analyze_decisions.py)
196
+
197
+ **Purpose:** Python-based AI decision analysis with custom model support.
198
+
199
+ #### Key Features
200
+ - **Custom Model Support**: Load and use custom ML models
201
+ - **Path Analysis**: Analyze specific data paths
202
+ - **Export Capabilities**: Export analysis results to various formats
203
+ - **Real-time Analysis**: Perform real-time decision analysis
204
+
205
+ #### Commands
206
+ ```bash
207
+ grim analyze-decisions run # Run AI decision analysis
208
+ grim analyze-decisions analyze --path /data # Analyze specific path
209
+ grim analyze-decisions load --model custom.model # Use custom model
210
+ grim analyze-decisions export --output report.json # Save analysis results
211
+ grim analyze-decisions help # Display help
212
+ ```
213
+
214
+ ## Integration Patterns
215
+
216
+ ### AI-Driven Backup Optimization
217
+ ```bash
218
+ # 1. Analyze backup patterns
219
+ grim ai-decision analyze
220
+
221
+ # 2. Optimize backup schedule
222
+ grim ai-decision backup-priority
223
+
224
+ # 3. Apply optimizations
225
+ grim ai-decision storage-optimize
226
+ ```
227
+
228
+ ### Intelligent Resource Management
229
+ ```bash
230
+ # 1. Monitor resource usage
231
+ grim ai monitor
232
+
233
+ # 2. Analyze patterns
234
+ grim ai analyze
235
+
236
+ # 3. Optimize performance
237
+ grim ai-turbo optimize
238
+ ```
239
+
240
+ ### Production AI Deployment
241
+ ```bash
242
+ # 1. Train model
243
+ grim ai-train train
244
+
245
+ # 2. Validate performance
246
+ grim ai-train validate
247
+
248
+ # 3. Deploy to production
249
+ grim ai-deploy deploy
250
+
251
+ # 4. Monitor health
252
+ grim ai-deploy monitor
253
+ ```
254
+
255
+ ## Configuration
256
+
257
+ ### AI System Configuration
258
+ ```yaml
259
+ ai_system:
260
+ decision_engine:
261
+ enabled: true
262
+ model_path: "/opt/grim-reaper/models/decision"
263
+ confidence_threshold: 0.85
264
+
265
+ training:
266
+ data_path: "/opt/grim-reaper/data/training"
267
+ model_storage: "/opt/grim-reaper/models"
268
+ gpu_enabled: true
269
+
270
+ production:
271
+ deployment_path: "/opt/grim-reaper/production"
272
+ health_check_interval: 300
273
+ rollback_enabled: true
274
+
275
+ performance:
276
+ turbo_mode: false
277
+ optimization_level: "balanced"
278
+ benchmark_interval: 3600
279
+ ```
280
+
281
+ ## Best Practices
282
+
283
+ ### Model Management
284
+ 1. **Version Control**: Always version your models
285
+ 2. **Validation**: Validate models before deployment
286
+ 3. **Monitoring**: Monitor model performance continuously
287
+ 4. **Rollback**: Maintain rollback capabilities
288
+
289
+ ### Performance Optimization
290
+ 1. **GPU Utilization**: Use GPU acceleration when available
291
+ 2. **Batch Processing**: Optimize batch sizes for your hardware
292
+ 3. **Memory Management**: Monitor memory usage and optimize
293
+ 4. **Parallel Processing**: Use parallel processing where possible
294
+
295
+ ### Data Quality
296
+ 1. **Data Validation**: Validate training data quality
297
+ 2. **Feature Engineering**: Invest in good feature engineering
298
+ 3. **Regular Retraining**: Retrain models regularly with new data
299
+ 4. **A/B Testing**: Test new models against existing ones
300
+
301
+ ## Troubleshooting
302
+
303
+ ### Common Issues
304
+
305
+ #### Model Performance Degradation
306
+ ```bash
307
+ # Check model health
308
+ grim ai-deploy health
309
+
310
+ # Validate model accuracy
311
+ grim ai validate
312
+
313
+ # Retrain if necessary
314
+ grim ai-train train
315
+ ```
316
+
317
+ #### GPU Memory Issues
318
+ ```bash
319
+ # Check GPU status
320
+ grim ai status
321
+
322
+ # Optimize memory usage
323
+ grim ai optimize
324
+
325
+ # Reduce batch size if needed
326
+ grim ai config --batch-size 16
327
+ ```
328
+
329
+ #### Training Failures
330
+ ```bash
331
+ # Check training data
332
+ grim ai-train analyze
333
+
334
+ # Validate data quality
335
+ grim ai-train validate
336
+
337
+ # Check system resources
338
+ grim health check
339
+ ```
340
+
341
+ ## Performance Metrics
342
+
343
+ ### Key Performance Indicators
344
+ - **Model Accuracy**: >95% for production models
345
+ - **Training Time**: <2 hours for standard models
346
+ - **Inference Latency**: <100ms for real-time applications
347
+ - **GPU Utilization**: >80% during training
348
+ - **Memory Efficiency**: <8GB GPU memory usage
349
+
350
+ ### Monitoring Dashboard
351
+ Access AI performance metrics at:
352
+ - **Web Dashboard**: http://localhost:8080/ai-metrics
353
+ - **API Endpoint**: http://localhost:8000/api/ai/status
354
+ - **Real-time Monitoring**: WebSocket connection for live updates
355
+
356
+ ## Future Enhancements
357
+
358
+ ### Planned Features
359
+ - **Federated Learning**: Distributed training across multiple systems
360
+ - **AutoML**: Automated machine learning pipeline
361
+ - **Edge AI**: AI deployment on edge devices
362
+ - **Quantum Computing**: Quantum machine learning integration
363
+ - **Advanced NLP**: Natural language processing capabilities
364
+
365
+ ### Roadmap
366
+ - **Q1 2024**: Federated learning implementation
367
+ - **Q2 2024**: AutoML pipeline development
368
+ - **Q3 2024**: Edge AI deployment system
369
+ - **Q4 2024**: Quantum computing integration
370
+
371
+ ---
372
+
373
+ **The AI & Machine Learning layer transforms Grim Reaper into an intelligent, self-optimizing system that continuously improves its performance and decision-making capabilities.**