grim-reaper 1.0.29
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/README.md +511 -0
- data/bin/grim +397 -0
- data/docs/AI_MACHINE_LEARNING.md +373 -0
- data/docs/BACKUP_RECOVERY.md +477 -0
- data/docs/CLOUD_DISTRIBUTED_SYSTEMS.md +502 -0
- data/docs/DEVELOPMENT_TOOLS_INFRASTRUCTURE.md +547 -0
- data/docs/PERFORMANCE_OPTIMIZATION.md +515 -0
- data/docs/SECURITY_COMPLIANCE.md +535 -0
- data/docs/SYSTEM_MAINTENANCE_OPERATIONS.md +520 -0
- data/docs/SYSTEM_MONITORING_HEALTH.md +502 -0
- data/docs/TESTING_QUALITY_ASSURANCE.md +526 -0
- data/docs/WEB_SERVICES_APIS.md +573 -0
- data/lib/grim_reaper/core.rb +130 -0
- data/lib/grim_reaper/go_module.rb +151 -0
- data/lib/grim_reaper/installer.rb +485 -0
- data/lib/grim_reaper/python_module.rb +172 -0
- data/lib/grim_reaper/security_module.rb +180 -0
- data/lib/grim_reaper/shell_module.rb +156 -0
- data/lib/grim_reaper/version.rb +5 -0
- data/lib/grim_reaper.rb +41 -0
- metadata +247 -0
@@ -0,0 +1,373 @@
|
|
1
|
+
////////////////////////////////////////////
|
2
|
+
// curl -fsSL https://grim.so | sudo bash //
|
3
|
+
// ██████╗ ██████╗ ██╗███╗ ███╗ //
|
4
|
+
// ██╔════╝ ██╔══██╗██║████╗ ████║ //
|
5
|
+
// ██║ ███╗██████╔╝██║██╔████╔██║ //
|
6
|
+
// ██║ ██║██╔══██╗██║██║╚██╔╝██║ //
|
7
|
+
// ╚██████╔╝██║ ██║██║██║ ╚═╝ ██║ //
|
8
|
+
// ╚═════╝ ╚═╝ ╚═╝╚═╝╚═╝ ╚═╝ //
|
9
|
+
// Death Defying Data Protection //
|
10
|
+
////////////////////////////////////////////
|
11
|
+
|
12
|
+
# 🤖 AI & Machine Learning
|
13
|
+
|
14
|
+
**The Intelligence Layer of Grim Reaper** - Advanced AI and machine learning capabilities that power intelligent decision-making, predictive analytics, and automated optimization across the entire system.
|
15
|
+
|
16
|
+
## Overview
|
17
|
+
|
18
|
+
The AI & Machine Learning category provides sophisticated artificial intelligence capabilities that transform Grim Reaper from a reactive backup system into a proactive, intelligent platform. These modules leverage TensorFlow, PyTorch, and custom ML algorithms to optimize every aspect of system operations.
|
19
|
+
|
20
|
+
## Architecture
|
21
|
+
|
22
|
+
```
|
23
|
+
🤖 AI & MACHINE LEARNING LAYER
|
24
|
+
|
|
25
|
+
┌──────┼──────┐
|
26
|
+
│ │ │
|
27
|
+
Decision Training Production
|
28
|
+
Engine Pipeline Deployer
|
29
|
+
```
|
30
|
+
|
31
|
+
## Core Components
|
32
|
+
|
33
|
+
### 🧠 AI Decision Engine (sh_grim/ai_decision_engine.sh)
|
34
|
+
|
35
|
+
**Purpose:** Intelligent decision-making for backup prioritization, storage optimization, and resource management.
|
36
|
+
|
37
|
+
#### Key Features
|
38
|
+
- **Intelligent Backup Prioritization**: Analyzes file patterns, access frequency, and importance to determine optimal backup schedules
|
39
|
+
- **Storage Optimization**: Uses ML to predict storage needs and optimize allocation
|
40
|
+
- **Resource Management**: Intelligently manages CPU, memory, and I/O resources
|
41
|
+
- **Predictive Analytics**: Forecasts system behavior and potential issues
|
42
|
+
|
43
|
+
#### Commands
|
44
|
+
```bash
|
45
|
+
grim ai-decision init # Initialize AI decision engine
|
46
|
+
grim ai-decision analyze # Analyze files for intelligent backup decisions
|
47
|
+
grim ai-decision backup-priority # Determine backup priorities using AI
|
48
|
+
grim ai-decision storage-optimize # Optimize storage allocation with AI
|
49
|
+
grim ai-decision resource-manage # Manage system resources intelligently
|
50
|
+
grim ai-decision validate # Validate AI models and decisions
|
51
|
+
grim ai-decision report # Generate AI analysis report
|
52
|
+
grim ai-decision config # Configure AI parameters
|
53
|
+
grim ai-decision status # Check AI engine status
|
54
|
+
grim ai-decision help # Display AI command help
|
55
|
+
```
|
56
|
+
|
57
|
+
#### Use Cases
|
58
|
+
- **Smart Backup Scheduling**: Automatically schedules backups based on file change patterns
|
59
|
+
- **Storage Prediction**: Predicts future storage needs and optimizes allocation
|
60
|
+
- **Performance Optimization**: Identifies bottlenecks and suggests improvements
|
61
|
+
- **Anomaly Detection**: Detects unusual patterns in system behavior
|
62
|
+
|
63
|
+
### 🔧 AI Integration Framework (sh_grim/ai_integration.sh)
|
64
|
+
|
65
|
+
**Purpose:** Dual AI framework integration with TensorFlow and PyTorch support.
|
66
|
+
|
67
|
+
#### Key Features
|
68
|
+
- **Dual Framework Support**: TensorFlow 2.15.0 + PyTorch 2.1.0 integration
|
69
|
+
- **GPU Acceleration**: Automatic GPU detection and utilization
|
70
|
+
- **Model Management**: Centralized model storage and versioning
|
71
|
+
- **Performance Optimization**: Automated performance tuning
|
72
|
+
|
73
|
+
#### Commands
|
74
|
+
```bash
|
75
|
+
grim ai init # Initialize AI integration framework
|
76
|
+
grim ai install # Install AI dependencies (TensorFlow/PyTorch)
|
77
|
+
grim ai train # Train AI models on your data
|
78
|
+
grim ai predict # Generate predictions from models
|
79
|
+
grim ai analyze # Analyze data patterns
|
80
|
+
grim ai optimize # Optimize AI performance
|
81
|
+
grim ai monitor # Monitor AI operations
|
82
|
+
grim ai validate # Validate model accuracy
|
83
|
+
grim ai report # Generate integration report
|
84
|
+
grim ai config # Configure AI integration
|
85
|
+
grim ai status # Check integration status
|
86
|
+
grim ai help # Display integration help
|
87
|
+
```
|
88
|
+
|
89
|
+
#### Configuration
|
90
|
+
```yaml
|
91
|
+
ai_integration:
|
92
|
+
frameworks:
|
93
|
+
tensorflow: "2.15.0"
|
94
|
+
pytorch: "2.1.0"
|
95
|
+
gpu:
|
96
|
+
enabled: true
|
97
|
+
memory_limit: "8GB"
|
98
|
+
models:
|
99
|
+
storage_path: "/opt/grim-reaper/models"
|
100
|
+
versioning: true
|
101
|
+
performance:
|
102
|
+
batch_size: 32
|
103
|
+
num_workers: 4
|
104
|
+
```
|
105
|
+
|
106
|
+
### 🚀 AI Production Deployer (sh_grim/ai_production_deployer.sh)
|
107
|
+
|
108
|
+
**Purpose:** Production deployment and management of AI models with rollback capabilities.
|
109
|
+
|
110
|
+
#### Key Features
|
111
|
+
- **Automated Deployment**: Seamless model deployment to production
|
112
|
+
- **Rollback Protection**: Automatic rollback to previous versions on failure
|
113
|
+
- **Health Monitoring**: Continuous monitoring of deployed models
|
114
|
+
- **A/B Testing**: Support for model comparison and testing
|
115
|
+
|
116
|
+
#### Commands
|
117
|
+
```bash
|
118
|
+
grim ai-deploy deploy # Deploy AI models to production
|
119
|
+
grim ai-deploy test # Run automated deployment tests
|
120
|
+
grim ai-deploy rollback # Rollback to previous version
|
121
|
+
grim ai-deploy monitor # Monitor deployed models
|
122
|
+
grim ai-deploy health # Check deployment health
|
123
|
+
grim ai-deploy backup # Backup current deployment
|
124
|
+
grim ai-deploy restore # Restore from backup
|
125
|
+
grim ai-deploy status # Check deployment status
|
126
|
+
grim ai-deploy help # Display deployment help
|
127
|
+
```
|
128
|
+
|
129
|
+
#### Deployment Pipeline
|
130
|
+
1. **Model Validation**: Validate model performance and accuracy
|
131
|
+
2. **Staging Deployment**: Deploy to staging environment
|
132
|
+
3. **Automated Testing**: Run comprehensive test suite
|
133
|
+
4. **Production Deployment**: Deploy to production with health checks
|
134
|
+
5. **Monitoring**: Continuous monitoring and alerting
|
135
|
+
|
136
|
+
### 🎓 AI Training Pipeline (sh_grim/ai_train.sh)
|
137
|
+
|
138
|
+
**Purpose:** Comprehensive machine learning training pipeline with multiple algorithm support.
|
139
|
+
|
140
|
+
#### Key Features
|
141
|
+
- **Multi-Algorithm Support**: Neural networks, ensemble methods, regression, classification
|
142
|
+
- **Time Series Analysis**: Specialized time series prediction capabilities
|
143
|
+
- **Feature Engineering**: Automated feature extraction and selection
|
144
|
+
- **Model Validation**: Comprehensive validation and testing
|
145
|
+
|
146
|
+
#### Commands
|
147
|
+
```bash
|
148
|
+
grim ai-train analyze # Analyze training data
|
149
|
+
grim ai-train train # Train base models
|
150
|
+
grim ai-train predict # Generate predictions
|
151
|
+
grim ai-train cluster # Perform clustering analysis
|
152
|
+
grim ai-train extract # Extract features from data
|
153
|
+
grim ai-train validate # Validate model performance
|
154
|
+
grim ai-train report # Generate training report
|
155
|
+
grim ai-train neural # Train neural networks
|
156
|
+
grim ai-train ensemble # Train ensemble models
|
157
|
+
grim ai-train timeseries # Time series analysis
|
158
|
+
grim ai-train regression # Train regression models
|
159
|
+
grim ai-train classify # Train classification models
|
160
|
+
grim ai-train config # Configure training parameters
|
161
|
+
grim ai-train init # Initialize training environment
|
162
|
+
grim ai-train help # Display training help
|
163
|
+
```
|
164
|
+
|
165
|
+
#### Training Algorithms
|
166
|
+
- **Neural Networks**: Deep learning models for complex patterns
|
167
|
+
- **Ensemble Methods**: Random forests, gradient boosting
|
168
|
+
- **Regression**: Linear, polynomial, and advanced regression
|
169
|
+
- **Classification**: Binary and multi-class classification
|
170
|
+
- **Clustering**: K-means, hierarchical clustering
|
171
|
+
- **Time Series**: ARIMA, LSTM, Prophet models
|
172
|
+
|
173
|
+
### ⚡ AI Velocity Enhancer (sh_grim/ai_velocity_enhancer.sh)
|
174
|
+
|
175
|
+
**Purpose:** Performance optimization and turbo mode for AI operations.
|
176
|
+
|
177
|
+
#### Key Features
|
178
|
+
- **Turbo Mode**: Maximum performance optimization
|
179
|
+
- **Benchmark Testing**: Comprehensive performance benchmarking
|
180
|
+
- **Optimization Validation**: Validate performance improvements
|
181
|
+
- **Real-time Monitoring**: Monitor performance gains
|
182
|
+
|
183
|
+
#### Commands
|
184
|
+
```bash
|
185
|
+
grim ai-turbo turbo # Activate turbo mode for AI
|
186
|
+
grim ai-turbo optimize # Optimize AI performance
|
187
|
+
grim ai-turbo benchmark # Run performance benchmarks
|
188
|
+
grim ai-turbo validate # Validate optimizations
|
189
|
+
grim ai-turbo deploy # Deploy optimized models
|
190
|
+
grim ai-turbo monitor # Monitor performance gains
|
191
|
+
grim ai-turbo report # Generate performance report
|
192
|
+
grim ai-turbo help # Display turbo help
|
193
|
+
```
|
194
|
+
|
195
|
+
### 📊 AI Decision Analysis (py_grim/analyze_decisions.py)
|
196
|
+
|
197
|
+
**Purpose:** Python-based AI decision analysis with custom model support.
|
198
|
+
|
199
|
+
#### Key Features
|
200
|
+
- **Custom Model Support**: Load and use custom ML models
|
201
|
+
- **Path Analysis**: Analyze specific data paths
|
202
|
+
- **Export Capabilities**: Export analysis results to various formats
|
203
|
+
- **Real-time Analysis**: Perform real-time decision analysis
|
204
|
+
|
205
|
+
#### Commands
|
206
|
+
```bash
|
207
|
+
grim analyze-decisions run # Run AI decision analysis
|
208
|
+
grim analyze-decisions analyze --path /data # Analyze specific path
|
209
|
+
grim analyze-decisions load --model custom.model # Use custom model
|
210
|
+
grim analyze-decisions export --output report.json # Save analysis results
|
211
|
+
grim analyze-decisions help # Display help
|
212
|
+
```
|
213
|
+
|
214
|
+
## Integration Patterns
|
215
|
+
|
216
|
+
### AI-Driven Backup Optimization
|
217
|
+
```bash
|
218
|
+
# 1. Analyze backup patterns
|
219
|
+
grim ai-decision analyze
|
220
|
+
|
221
|
+
# 2. Optimize backup schedule
|
222
|
+
grim ai-decision backup-priority
|
223
|
+
|
224
|
+
# 3. Apply optimizations
|
225
|
+
grim ai-decision storage-optimize
|
226
|
+
```
|
227
|
+
|
228
|
+
### Intelligent Resource Management
|
229
|
+
```bash
|
230
|
+
# 1. Monitor resource usage
|
231
|
+
grim ai monitor
|
232
|
+
|
233
|
+
# 2. Analyze patterns
|
234
|
+
grim ai analyze
|
235
|
+
|
236
|
+
# 3. Optimize performance
|
237
|
+
grim ai-turbo optimize
|
238
|
+
```
|
239
|
+
|
240
|
+
### Production AI Deployment
|
241
|
+
```bash
|
242
|
+
# 1. Train model
|
243
|
+
grim ai-train train
|
244
|
+
|
245
|
+
# 2. Validate performance
|
246
|
+
grim ai-train validate
|
247
|
+
|
248
|
+
# 3. Deploy to production
|
249
|
+
grim ai-deploy deploy
|
250
|
+
|
251
|
+
# 4. Monitor health
|
252
|
+
grim ai-deploy monitor
|
253
|
+
```
|
254
|
+
|
255
|
+
## Configuration
|
256
|
+
|
257
|
+
### AI System Configuration
|
258
|
+
```yaml
|
259
|
+
ai_system:
|
260
|
+
decision_engine:
|
261
|
+
enabled: true
|
262
|
+
model_path: "/opt/grim-reaper/models/decision"
|
263
|
+
confidence_threshold: 0.85
|
264
|
+
|
265
|
+
training:
|
266
|
+
data_path: "/opt/grim-reaper/data/training"
|
267
|
+
model_storage: "/opt/grim-reaper/models"
|
268
|
+
gpu_enabled: true
|
269
|
+
|
270
|
+
production:
|
271
|
+
deployment_path: "/opt/grim-reaper/production"
|
272
|
+
health_check_interval: 300
|
273
|
+
rollback_enabled: true
|
274
|
+
|
275
|
+
performance:
|
276
|
+
turbo_mode: false
|
277
|
+
optimization_level: "balanced"
|
278
|
+
benchmark_interval: 3600
|
279
|
+
```
|
280
|
+
|
281
|
+
## Best Practices
|
282
|
+
|
283
|
+
### Model Management
|
284
|
+
1. **Version Control**: Always version your models
|
285
|
+
2. **Validation**: Validate models before deployment
|
286
|
+
3. **Monitoring**: Monitor model performance continuously
|
287
|
+
4. **Rollback**: Maintain rollback capabilities
|
288
|
+
|
289
|
+
### Performance Optimization
|
290
|
+
1. **GPU Utilization**: Use GPU acceleration when available
|
291
|
+
2. **Batch Processing**: Optimize batch sizes for your hardware
|
292
|
+
3. **Memory Management**: Monitor memory usage and optimize
|
293
|
+
4. **Parallel Processing**: Use parallel processing where possible
|
294
|
+
|
295
|
+
### Data Quality
|
296
|
+
1. **Data Validation**: Validate training data quality
|
297
|
+
2. **Feature Engineering**: Invest in good feature engineering
|
298
|
+
3. **Regular Retraining**: Retrain models regularly with new data
|
299
|
+
4. **A/B Testing**: Test new models against existing ones
|
300
|
+
|
301
|
+
## Troubleshooting
|
302
|
+
|
303
|
+
### Common Issues
|
304
|
+
|
305
|
+
#### Model Performance Degradation
|
306
|
+
```bash
|
307
|
+
# Check model health
|
308
|
+
grim ai-deploy health
|
309
|
+
|
310
|
+
# Validate model accuracy
|
311
|
+
grim ai validate
|
312
|
+
|
313
|
+
# Retrain if necessary
|
314
|
+
grim ai-train train
|
315
|
+
```
|
316
|
+
|
317
|
+
#### GPU Memory Issues
|
318
|
+
```bash
|
319
|
+
# Check GPU status
|
320
|
+
grim ai status
|
321
|
+
|
322
|
+
# Optimize memory usage
|
323
|
+
grim ai optimize
|
324
|
+
|
325
|
+
# Reduce batch size if needed
|
326
|
+
grim ai config --batch-size 16
|
327
|
+
```
|
328
|
+
|
329
|
+
#### Training Failures
|
330
|
+
```bash
|
331
|
+
# Check training data
|
332
|
+
grim ai-train analyze
|
333
|
+
|
334
|
+
# Validate data quality
|
335
|
+
grim ai-train validate
|
336
|
+
|
337
|
+
# Check system resources
|
338
|
+
grim health check
|
339
|
+
```
|
340
|
+
|
341
|
+
## Performance Metrics
|
342
|
+
|
343
|
+
### Key Performance Indicators
|
344
|
+
- **Model Accuracy**: >95% for production models
|
345
|
+
- **Training Time**: <2 hours for standard models
|
346
|
+
- **Inference Latency**: <100ms for real-time applications
|
347
|
+
- **GPU Utilization**: >80% during training
|
348
|
+
- **Memory Efficiency**: <8GB GPU memory usage
|
349
|
+
|
350
|
+
### Monitoring Dashboard
|
351
|
+
Access AI performance metrics at:
|
352
|
+
- **Web Dashboard**: http://localhost:8080/ai-metrics
|
353
|
+
- **API Endpoint**: http://localhost:8000/api/ai/status
|
354
|
+
- **Real-time Monitoring**: WebSocket connection for live updates
|
355
|
+
|
356
|
+
## Future Enhancements
|
357
|
+
|
358
|
+
### Planned Features
|
359
|
+
- **Federated Learning**: Distributed training across multiple systems
|
360
|
+
- **AutoML**: Automated machine learning pipeline
|
361
|
+
- **Edge AI**: AI deployment on edge devices
|
362
|
+
- **Quantum Computing**: Quantum machine learning integration
|
363
|
+
- **Advanced NLP**: Natural language processing capabilities
|
364
|
+
|
365
|
+
### Roadmap
|
366
|
+
- **Q1 2024**: Federated learning implementation
|
367
|
+
- **Q2 2024**: AutoML pipeline development
|
368
|
+
- **Q3 2024**: Edge AI deployment system
|
369
|
+
- **Q4 2024**: Quantum computing integration
|
370
|
+
|
371
|
+
---
|
372
|
+
|
373
|
+
**The AI & Machine Learning layer transforms Grim Reaper into an intelligent, self-optimizing system that continuously improves its performance and decision-making capabilities.**
|