gratr19 0.4.4
Sign up to get free protection for your applications and to get access to all the features.
- data/README +335 -0
- data/examples/graph_self.rb +54 -0
- data/examples/module_graph.jpg +0 -0
- data/examples/module_graph.rb +12 -0
- data/examples/self_graph.jpg +0 -0
- data/examples/visualize.jpg +0 -0
- data/examples/visualize.rb +8 -0
- data/install.rb +49 -0
- data/lib/gratr.rb +42 -0
- data/lib/gratr/adjacency_graph.rb +230 -0
- data/lib/gratr/base.rb +34 -0
- data/lib/gratr/biconnected.rb +116 -0
- data/lib/gratr/chinese_postman.rb +123 -0
- data/lib/gratr/common.rb +74 -0
- data/lib/gratr/comparability.rb +92 -0
- data/lib/gratr/digraph.rb +115 -0
- data/lib/gratr/digraph_distance.rb +185 -0
- data/lib/gratr/dot.rb +90 -0
- data/lib/gratr/edge.rb +145 -0
- data/lib/gratr/graph.rb +314 -0
- data/lib/gratr/graph_api.rb +82 -0
- data/lib/gratr/import.rb +44 -0
- data/lib/gratr/labels.rb +103 -0
- data/lib/gratr/maximum_flow.rb +107 -0
- data/lib/gratr/rdot.rb +332 -0
- data/lib/gratr/search.rb +422 -0
- data/lib/gratr/strong_components.rb +127 -0
- data/lib/gratr/undirected_graph.rb +153 -0
- data/lib/gratr/version.rb +6 -0
- data/lib/priority-queue/benchmark/dijkstra.rb +171 -0
- data/lib/priority-queue/compare_comments.rb +49 -0
- data/lib/priority-queue/ext/priority_queue/CPriorityQueue/extconf.rb +2 -0
- data/lib/priority-queue/lib/priority_queue.rb +14 -0
- data/lib/priority-queue/lib/priority_queue/c_priority_queue.rb +1 -0
- data/lib/priority-queue/lib/priority_queue/poor_priority_queue.rb +46 -0
- data/lib/priority-queue/lib/priority_queue/ruby_priority_queue.rb +525 -0
- data/lib/priority-queue/setup.rb +1551 -0
- data/lib/priority-queue/test/priority_queue_test.rb +371 -0
- data/tests/TestBiconnected.rb +53 -0
- data/tests/TestChinesePostman.rb +53 -0
- data/tests/TestComplement.rb +54 -0
- data/tests/TestDigraph.rb +333 -0
- data/tests/TestDigraphDistance.rb +138 -0
- data/tests/TestDot.rb +75 -0
- data/tests/TestEdge.rb +171 -0
- data/tests/TestInspection.rb +57 -0
- data/tests/TestMultiEdge.rb +57 -0
- data/tests/TestNeighborhood.rb +64 -0
- data/tests/TestProperties.rb +160 -0
- data/tests/TestSearch.rb +277 -0
- data/tests/TestStrongComponents.rb +85 -0
- data/tests/TestTriagulated.rb +137 -0
- data/tests/TestUndirectedGraph.rb +219 -0
- metadata +152 -0
data/lib/gratr/search.rb
ADDED
@@ -0,0 +1,422 @@
|
|
1
|
+
#--
|
2
|
+
# Copyright (c) 2006 Shawn Patrick Garbett
|
3
|
+
# Copyright (c) 2002,2004,2005 by Horst Duchene
|
4
|
+
#
|
5
|
+
# Redistribution and use in source and binary forms, with or without modification,
|
6
|
+
# are permitted provided that the following conditions are met:
|
7
|
+
#
|
8
|
+
# * Redistributions of source code must retain the above copyright notice(s),
|
9
|
+
# this list of conditions and the following disclaimer.
|
10
|
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
# this list of conditions and the following disclaimer in the documentation
|
12
|
+
# and/or other materials provided with the distribution.
|
13
|
+
# * Neither the name of the Shawn Garbett nor the names of its contributors
|
14
|
+
# may be used to endorse or promote products derived from this software
|
15
|
+
# without specific prior written permission.
|
16
|
+
#
|
17
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
18
|
+
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
19
|
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
20
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
21
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
22
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
23
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
24
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
25
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27
|
+
#++
|
28
|
+
|
29
|
+
module GRATR
|
30
|
+
module Graph
|
31
|
+
module Search
|
32
|
+
|
33
|
+
# Options are mostly callbacks passed in as a hash.
|
34
|
+
# The following are valid, anything else is ignored
|
35
|
+
# :enter_vertex => Proc Called upon entry of a vertex
|
36
|
+
# :exit_vertex => Proc Called upon exit of a vertex
|
37
|
+
# :root_vertex => Proc Called when a vertex the a root of a tree
|
38
|
+
# :start_vertex => Proc Called for the first vertex of the search
|
39
|
+
# :examine_edge => Proc Called when an edge is examined
|
40
|
+
# :tree_edge => Proc Called when the edge is a member of the tree
|
41
|
+
# :back_edge => Proc Called when the edge is a back edge
|
42
|
+
# :forward_edge => Proc Called when the edge is a forward edge
|
43
|
+
# :adjacent => Proc that given a vertex returns adjacent nodes, defaults to adjacent call of graph useful for changing the definition of adjacent in some algorithms
|
44
|
+
#
|
45
|
+
# :start => Vertex Specifies the vertex to start search from
|
46
|
+
#
|
47
|
+
# If a &block is specified it defaults to :enter_vertex
|
48
|
+
#
|
49
|
+
# Returns the list of vertexes as reached by enter_vertex
|
50
|
+
# This allows for calls like, g.bfs.each {|v| ...}
|
51
|
+
#
|
52
|
+
# Can also be called like bfs_examine_edge {|e| ... } or
|
53
|
+
# dfs_back_edge {|e| ... } for any of the callbacks
|
54
|
+
#
|
55
|
+
# A full example usage is as follows:
|
56
|
+
#
|
57
|
+
# ev = Proc.new {|x| puts "Enter Vertex #{x}"}
|
58
|
+
# xv = Proc.new {|x| puts "Exit Vertex #{x}"}
|
59
|
+
# sv = Proc.new {|x| puts "Start Vertex #{x}"}
|
60
|
+
# ee = Proc.new {|x| puts "Examine Arc #{x}"}
|
61
|
+
# te = Proc.new {|x| puts "Tree Arc #{x}"}
|
62
|
+
# be = Proc.new {|x| puts "Back Arc #{x}"}
|
63
|
+
# fe = Proc.new {|x| puts "Forward Arc #{x}"}
|
64
|
+
# Digraph[1,2,2,3,3,4].dfs({
|
65
|
+
# :enter_vertex => ev,
|
66
|
+
# :exit_vertex => xv,
|
67
|
+
# :start_vertex => sv,
|
68
|
+
# :examine_edge => ee,
|
69
|
+
# :tree_edge => te,
|
70
|
+
# :back_edge => be,
|
71
|
+
# :forward_edge => fe })
|
72
|
+
#
|
73
|
+
# Which outputs:
|
74
|
+
#
|
75
|
+
# Start Vertex 1
|
76
|
+
# Enter Vertex 1
|
77
|
+
# Examine Arc (1=2)
|
78
|
+
# Tree Arc (1=2)
|
79
|
+
# Enter Vertex 2
|
80
|
+
# Examine Arc (2=3)
|
81
|
+
# Tree Arc (2=3)
|
82
|
+
# Enter Vertex 3
|
83
|
+
# Examine Arc (3=4)
|
84
|
+
# Tree Arc (3=4)
|
85
|
+
# Enter Vertex 4
|
86
|
+
# Examine Arc (1=4)
|
87
|
+
# Back Arc (1=4)
|
88
|
+
# Exit Vertex 4
|
89
|
+
# Exit Vertex 3
|
90
|
+
# Exit Vertex 2
|
91
|
+
# Exit Vertex 1
|
92
|
+
def bfs(options={}, &block) gratr_search_helper(:shift, options, &block); end
|
93
|
+
|
94
|
+
# See options for bfs method
|
95
|
+
def dfs(options={}, &block) gratr_search_helper(:pop, options, &block); end
|
96
|
+
|
97
|
+
# Routine to compute a spanning forest for the given search method
|
98
|
+
# Returns two values, first is a hash of predecessors and second an array of root nodes
|
99
|
+
def spanning_forest(start, routine)
|
100
|
+
predecessor = {}
|
101
|
+
roots = []
|
102
|
+
te = Proc.new {|e| predecessor[e.target] = e.source}
|
103
|
+
rv = Proc.new {|v| roots << v}
|
104
|
+
send routine, :start => start, :tree_edge => te, :root_vertex => rv
|
105
|
+
[predecessor, roots]
|
106
|
+
end
|
107
|
+
|
108
|
+
# Return the dfs spanning forest for the given start node, see spanning_forest
|
109
|
+
def dfs_spanning_forest(start) spanning_forest(start, :dfs); end
|
110
|
+
|
111
|
+
# Return the bfs spanning forest for the given start node, see spanning_forest
|
112
|
+
def bfs_spanning_forest(start) spanning_forest(start, :bfs); end
|
113
|
+
|
114
|
+
# Returns a hash of predecessors in a tree rooted at the start node. If this is a connected graph
|
115
|
+
# then it will be a spanning tree and contain all vertices. An easier way to tell if it's a spanning tree is to
|
116
|
+
# use a spanning_forest call and check if there is a single root node.
|
117
|
+
def tree_from_vertex(start, routine)
|
118
|
+
predecessor={}
|
119
|
+
correct_tree = false
|
120
|
+
te = Proc.new {|e| predecessor[e.target] = e.source if correct_tree}
|
121
|
+
rv = Proc.new {|v| correct_tree = (v == start)}
|
122
|
+
send routine, :start => start, :tree_edge => te, :root_vertex => rv
|
123
|
+
predecessor
|
124
|
+
end
|
125
|
+
|
126
|
+
# Returns a hash of predecessors for the depth first search tree rooted at the given node
|
127
|
+
def dfs_tree_from_vertex(start) tree_from_vertex(start, :dfs); end
|
128
|
+
|
129
|
+
# Returns a hash of predecessors for the depth first search tree rooted at the given node
|
130
|
+
def bfs_tree_from_vertex(start) tree_from_vertex(start, :bfs); end
|
131
|
+
|
132
|
+
# An inner class used for greater efficiency in lexicograph_bfs
|
133
|
+
#
|
134
|
+
# Original desgn taken from Golumbic's, "Algorithmic Graph Theory and
|
135
|
+
# Perfect Graphs" pg, 87-89
|
136
|
+
class LexicographicQueue
|
137
|
+
|
138
|
+
# Called with the initial values (array)
|
139
|
+
def initialize(values)
|
140
|
+
@node = Struct.new(:back, :forward, :data)
|
141
|
+
@node.class_eval { def hash() @hash; end; @@cnt=0 }
|
142
|
+
@set = {}
|
143
|
+
@tail = @node.new(nil, nil, Array.new(values))
|
144
|
+
@tail.instance_eval { @hash = (@@cnt+=1) }
|
145
|
+
values.each {|a| @set[a] = @tail}
|
146
|
+
end
|
147
|
+
|
148
|
+
# Pop an entry with maximum lexical value from queue
|
149
|
+
def pop()
|
150
|
+
return nil unless @tail
|
151
|
+
value = @tail[:data].pop
|
152
|
+
@tail = @tail[:forward] while @tail and @tail[:data].size == 0
|
153
|
+
@set.delete(value); value
|
154
|
+
end
|
155
|
+
|
156
|
+
# Increase lexical value of given values (array)
|
157
|
+
def add_lexeme(values)
|
158
|
+
fix = {}
|
159
|
+
values.select {|v| @set[v]}.each do |w|
|
160
|
+
sw = @set[w]
|
161
|
+
if fix[sw]
|
162
|
+
s_prime = sw[:back]
|
163
|
+
else
|
164
|
+
s_prime = @node.new(sw[:back], sw, [])
|
165
|
+
s_prime.instance_eval { @hash = (@@cnt+=1) }
|
166
|
+
@tail = s_prime if @tail == sw
|
167
|
+
sw[:back][:forward] = s_prime if sw[:back]
|
168
|
+
sw[:back] = s_prime
|
169
|
+
fix[sw] = true
|
170
|
+
end
|
171
|
+
s_prime[:data] << w
|
172
|
+
sw[:data].delete(w)
|
173
|
+
@set[w] = s_prime
|
174
|
+
end
|
175
|
+
fix.keys.select {|n| n[:data].size == 0}.each do |e|
|
176
|
+
e[:forward][:back] = e[:back] if e[:forward]
|
177
|
+
e[:back][:forward] = e[:forward] if e[:back]
|
178
|
+
end
|
179
|
+
end
|
180
|
+
|
181
|
+
end
|
182
|
+
|
183
|
+
# Lexicographic breadth-first search, the usual queue of vertices
|
184
|
+
# is replaced by a queue of unordered subsets of the vertices,
|
185
|
+
# which is sometimes refined but never reordered.
|
186
|
+
#
|
187
|
+
# Originally developed by Rose, Tarjan, and Leuker, "Algorithmic
|
188
|
+
# aspects of vertex elimination on graphs", SIAM J. Comput. 5, 266-283
|
189
|
+
# MR53 #12077
|
190
|
+
#
|
191
|
+
# Implementation taken from Golumbic's, "Algorithmic Graph Theory and
|
192
|
+
# Perfect Graphs" pg, 84-90
|
193
|
+
def lexicograph_bfs(&block)
|
194
|
+
lex_q = GRATR::Graph::Search::LexicographicQueue.new(vertices)
|
195
|
+
result = []
|
196
|
+
num_vertices.times do
|
197
|
+
v = lex_q.pop
|
198
|
+
result.unshift(v)
|
199
|
+
lex_q.add_lexeme(adjacent(v))
|
200
|
+
end
|
201
|
+
result.each {|r| block.call(r)} if block
|
202
|
+
result
|
203
|
+
end
|
204
|
+
|
205
|
+
|
206
|
+
# A* Heuristic best first search
|
207
|
+
#
|
208
|
+
# start is the starting vertex for the search
|
209
|
+
#
|
210
|
+
# func is a Proc that when passed a vertex returns the heuristic
|
211
|
+
# weight of sending the path through that node. It must always
|
212
|
+
# be equal to or less than the true cost
|
213
|
+
#
|
214
|
+
# options are mostly callbacks passed in as a hash, the default block is
|
215
|
+
# :discover_vertex and weight is assumed to be the label for the Arc.
|
216
|
+
# The following options are valid, anything else is ignored.
|
217
|
+
#
|
218
|
+
# * :weight => can be a Proc, or anything else is accessed using the [] for the
|
219
|
+
# the label or it defaults to using
|
220
|
+
# the value stored in the label for the Arc. If it is a Proc it will
|
221
|
+
# pass the edge to the proc and use the resulting value.
|
222
|
+
# * :discover_vertex => Proc invoked when a vertex is first discovered
|
223
|
+
# and is added to the open list.
|
224
|
+
# * :examine_vertex => Proc invoked when a vertex is popped from the
|
225
|
+
# queue (i.e., it has the lowest cost on the open list).
|
226
|
+
# * :examine_edge => Proc invoked on each out-edge of a vertex
|
227
|
+
# immediately after it is examined.
|
228
|
+
# * :edge_relaxed => Proc invoked on edge (u,v) if d[u] + w(u,v) < d[v].
|
229
|
+
# * :edge_not_relaxed=> Proc invoked if the edge is not relaxed (see above).
|
230
|
+
# * :black_target => Proc invoked when a vertex that is on the closed
|
231
|
+
# list is "rediscovered" via a more efficient path, and is re-added
|
232
|
+
# to the OPEN list.
|
233
|
+
# * :finish_vertex => Proc invoked on a vertex when it is added to the
|
234
|
+
# closed list, which happens after all of its out edges have been
|
235
|
+
# examined.
|
236
|
+
#
|
237
|
+
# Returns array of nodes in path, or calls block on all nodes,
|
238
|
+
# upon failure returns nil
|
239
|
+
#
|
240
|
+
# Can also be called like astar_examine_edge {|e| ... } or
|
241
|
+
# astar_edge_relaxed {|e| ... } for any of the callbacks
|
242
|
+
#
|
243
|
+
# The criteria for expanding a vertex on the open list is that it has the
|
244
|
+
# lowest f(v) = g(v) + h(v) value of all vertices on open.
|
245
|
+
#
|
246
|
+
# The time complexity of A* depends on the heuristic. It is exponential
|
247
|
+
# in the worst case, but is polynomial when the heuristic function h
|
248
|
+
# meets the following condition: |h(x) - h*(x)| < O(log h*(x)) where h*
|
249
|
+
# is the optimal heuristic, i.e. the exact cost to get from x to the goal.
|
250
|
+
#
|
251
|
+
# Also see: http://en.wikipedia.org/wiki/A-star_search_algorithm
|
252
|
+
#
|
253
|
+
def astar(start, goal, func, options, &block)
|
254
|
+
options.instance_eval "def handle_callback(sym,u) self[sym].call(u) if self[sym]; end"
|
255
|
+
|
256
|
+
# Initialize
|
257
|
+
d = { start => 0 }
|
258
|
+
|
259
|
+
color = {start => :gray} # Open is :gray, Closed is :black
|
260
|
+
parent = Hash.new {|k| parent[k] = k}
|
261
|
+
f = {start => func.call(start)}
|
262
|
+
queue = PriorityQueue.new.push(start,f[start])
|
263
|
+
block.call(start) if block
|
264
|
+
|
265
|
+
# Process queue
|
266
|
+
until queue.empty?
|
267
|
+
u,dummy = queue.delete_min
|
268
|
+
options.handle_callback(:examine_vertex, u)
|
269
|
+
|
270
|
+
# Unravel solution if goal is reached.
|
271
|
+
if u == goal
|
272
|
+
solution = [goal]
|
273
|
+
while u != start
|
274
|
+
solution << parent[u]; u = parent[u]
|
275
|
+
end
|
276
|
+
return solution.reverse
|
277
|
+
end
|
278
|
+
|
279
|
+
adjacent(u, :type => :edges).each do |e|
|
280
|
+
v = e.source == u ? e.target : e.source
|
281
|
+
options.handle_callback(:examine_edge, e)
|
282
|
+
w = cost(e, options[:weight])
|
283
|
+
raise ArgumentError unless w
|
284
|
+
if d[v].nil? or (w + d[u]) < d[v]
|
285
|
+
options.handle_callback(:edge_relaxed, e)
|
286
|
+
d[v] = w + d[u]
|
287
|
+
f[v] = d[v] + func.call(v)
|
288
|
+
parent[v] = u
|
289
|
+
unless color[v] == :gray
|
290
|
+
options.handle_callback(:black_target, v) if color[v] == :black
|
291
|
+
color[v] = :gray
|
292
|
+
options.handle_callback(:discover_vertex, v)
|
293
|
+
queue.push v, f[v]
|
294
|
+
block.call(v) if block
|
295
|
+
end
|
296
|
+
else
|
297
|
+
options.handle_callback(:edge_not_relaxed, e)
|
298
|
+
end
|
299
|
+
end # adjacent(u)
|
300
|
+
color[u] = :black
|
301
|
+
options.handle_callback(:finish_vertex,u)
|
302
|
+
end # queue.empty?
|
303
|
+
|
304
|
+
nil # failure, on fall through
|
305
|
+
|
306
|
+
end # astar
|
307
|
+
|
308
|
+
# Best first has all the same options as astar with func set to h(v) = 0.
|
309
|
+
# There is an additional option zero which should be defined to zero
|
310
|
+
# for the operation '+' on the objects used in the computation of cost.
|
311
|
+
# The parameter zero defaults to 0.
|
312
|
+
def best_first(start, goal, options, zero=0, &block)
|
313
|
+
func = Proc.new {|v| zero}
|
314
|
+
astar(start, goal, func, options, &block)
|
315
|
+
end
|
316
|
+
|
317
|
+
alias_method :pre_search_method_missing, :method_missing # :nodoc:
|
318
|
+
def method_missing(sym,*args, &block) # :nodoc:
|
319
|
+
m1=/^dfs_(\w+)$/.match(sym.to_s)
|
320
|
+
dfs((args[0] || {}).merge({m1.captures[0].to_sym => block})) if m1
|
321
|
+
m2=/^bfs_(\w+)$/.match(sym.to_s)
|
322
|
+
bfs((args[0] || {}).merge({m2.captures[0].to_sym => block})) if m2
|
323
|
+
pre_search_method_missing(sym, *args, &block) unless m1 or m2
|
324
|
+
end
|
325
|
+
|
326
|
+
private
|
327
|
+
|
328
|
+
def gratr_search_helper(op, options={}, &block) # :nodoc:
|
329
|
+
return nil if size == 0
|
330
|
+
result = []
|
331
|
+
# Create options hash that handles callbacks
|
332
|
+
options = {:enter_vertex => block, :start => to_a[0]}.merge(options)
|
333
|
+
options.instance_eval "def handle_vertex(sym,u) self[sym].call(u) if self[sym]; end"
|
334
|
+
options.instance_eval "def handle_edge(sym,e) self[sym].call(e) if self[sym]; end"
|
335
|
+
# Create waiting list that is a queue or stack depending on op specified.
|
336
|
+
# First entry is the start vertex.
|
337
|
+
waiting = [options[:start]]
|
338
|
+
waiting.instance_eval "def next() #{op.to_s}; end"
|
339
|
+
# Create color map with all set to unvisited except for start vertex
|
340
|
+
# will be set to waiting
|
341
|
+
color_map = vertices.inject({}) {|a,v| a[v] = :unvisited; a}
|
342
|
+
color_map.merge!(waiting[0] => :waiting)
|
343
|
+
options.handle_vertex(:start_vertex, waiting[0])
|
344
|
+
options.handle_vertex(:root_vertex, waiting[0])
|
345
|
+
# Perform the actual search until nothing is waiting
|
346
|
+
until waiting.empty?
|
347
|
+
# Loop till the search iterator exhausts the waiting list
|
348
|
+
visited_edges={} # This prevents retraversing edges in undirected graphs
|
349
|
+
until waiting.empty?
|
350
|
+
gratr_search_iteration(options, waiting, color_map, visited_edges, result, op == :pop)
|
351
|
+
end
|
352
|
+
# Waiting list is exhausted, see if a new root vertex is available
|
353
|
+
u=color_map.detect {|key,value| value == :unvisited}
|
354
|
+
waiting.push(u[0]) if u
|
355
|
+
options.handle_vertex(:root_vertex, u[0]) if u
|
356
|
+
end; result
|
357
|
+
end
|
358
|
+
|
359
|
+
def gratr_search_iteration(options, waiting, color_map, visited_edges, result, recursive=false) # :nodoc:
|
360
|
+
# Get the next waiting vertex in the list
|
361
|
+
u = waiting.next
|
362
|
+
options.handle_vertex(:enter_vertex,u)
|
363
|
+
result << u
|
364
|
+
# Examine all adjacent outgoing edges, not previously traversed
|
365
|
+
adj_proc = options[:adjacent] || self.method(:adjacent).to_proc
|
366
|
+
adj_proc.call(u,:type => :edges, :direction => :out).reject {|w| visited_edges[w]}.each do |e|
|
367
|
+
e = e.reverse unless directed? or e.source == u # Preserves directionality where required
|
368
|
+
v = e.target
|
369
|
+
options.handle_edge(:examine_edge, e)
|
370
|
+
visited_edges[e]=true
|
371
|
+
case color_map[v]
|
372
|
+
# If it's unvisited it goes into the waiting list
|
373
|
+
when :unvisited
|
374
|
+
options.handle_edge(:tree_edge, e)
|
375
|
+
color_map[v] = :waiting
|
376
|
+
waiting.push(v)
|
377
|
+
# If it's recursive (i.e. dfs) then call self
|
378
|
+
gratr_search_iteration(options, waiting, color_map, visited_edges, result, true) if recursive
|
379
|
+
when :waiting
|
380
|
+
options.handle_edge(:back_edge, e)
|
381
|
+
else
|
382
|
+
options.handle_edge(:forward_edge, e)
|
383
|
+
end
|
384
|
+
end
|
385
|
+
# Finished with this vertex
|
386
|
+
options.handle_vertex(:exit_vertex, u)
|
387
|
+
color_map[u] = :visited
|
388
|
+
end
|
389
|
+
|
390
|
+
public
|
391
|
+
# Topological Sort Iterator
|
392
|
+
#
|
393
|
+
# The topological sort algorithm creates a linear ordering of the vertices
|
394
|
+
# such that if edge (u,v) appears in the graph, then u comes before v in
|
395
|
+
# the ordering. The graph must be a directed acyclic graph (DAG).
|
396
|
+
#
|
397
|
+
# The iterator can also be applied to undirected graph or to a DG graph
|
398
|
+
# which contains a cycle. In this case, the Iterator does not reach all
|
399
|
+
# vertices. The implementation of acyclic? and cyclic? uses this fact.
|
400
|
+
#
|
401
|
+
# Can be called with a block as a standard Ruby iterator, or it can
|
402
|
+
# be used directly as it will return the result as an Array
|
403
|
+
def topsort(start = nil, &block)
|
404
|
+
result = []
|
405
|
+
go = true
|
406
|
+
back = Proc.new {|e| go = false }
|
407
|
+
push = Proc.new {|v| result.unshift(v) if go}
|
408
|
+
start ||= vertices[0]
|
409
|
+
dfs({:exit_vertex => push, :back_edge => back, :start => start})
|
410
|
+
result.each {|v| block.call(v)} if block; result
|
411
|
+
end
|
412
|
+
|
413
|
+
# Returns true if a graph contains no cycles, false otherwise
|
414
|
+
def acyclic?() topsort.size == size; end
|
415
|
+
|
416
|
+
# Returns false if a graph contains no cycles, true otherwise
|
417
|
+
def cyclic?() not acyclic?; end
|
418
|
+
|
419
|
+
|
420
|
+
end # Search
|
421
|
+
end # Graph
|
422
|
+
end # GRATR
|
@@ -0,0 +1,127 @@
|
|
1
|
+
#--
|
2
|
+
# Copyright (c) 2006 Shawn Patrick Garbett
|
3
|
+
#
|
4
|
+
# Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
# are permitted provided that the following conditions are met:
|
6
|
+
#
|
7
|
+
# * Redistributions of source code must retain the above copyright notice(s),
|
8
|
+
# this list of conditions and the following disclaimer.
|
9
|
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
# this list of conditions and the following disclaimer in the documentation
|
11
|
+
# and/or other materials provided with the distribution.
|
12
|
+
# * Neither the name of the Shawn Garbett nor the names of its contributors
|
13
|
+
# may be used to endorse or promote products derived from this software
|
14
|
+
# without specific prior written permission.
|
15
|
+
#
|
16
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
20
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
21
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
22
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
23
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
24
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
25
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
#++
|
27
|
+
|
28
|
+
|
29
|
+
require 'set'
|
30
|
+
|
31
|
+
module GRATR
|
32
|
+
module Graph
|
33
|
+
module StrongComponents
|
34
|
+
# strong_components computes the strongly connected components
|
35
|
+
# of a graph using Tarjan's algorithm based on DFS. See: Robert E. Tarjan
|
36
|
+
# _Depth_First_Search_and_Linear_Graph_Algorithms_. SIAM Journal on
|
37
|
+
# Computing, 1(2):146-160, 1972
|
38
|
+
#
|
39
|
+
# The output of the algorithm is an array of components where is
|
40
|
+
# component is an array of vertices
|
41
|
+
#
|
42
|
+
# A strongly connected component of a directed graph G=(V,E) is a maximal
|
43
|
+
# set of vertices U which is in V such that for every pair of
|
44
|
+
# vertices u and v in U, we have both a path from u to v
|
45
|
+
# and path from v to u. That is to say that u and v are reachable
|
46
|
+
# from each other.
|
47
|
+
#
|
48
|
+
def strong_components
|
49
|
+
|
50
|
+
dfs_num = 0
|
51
|
+
stack = []; result = []; root = {}; comp = {}; number = {}
|
52
|
+
|
53
|
+
# Enter vertex callback
|
54
|
+
enter = Proc.new do |v|
|
55
|
+
root[v] = v
|
56
|
+
comp[v] = :new
|
57
|
+
number[v] = (dfs_num += 1)
|
58
|
+
stack.push(v)
|
59
|
+
end
|
60
|
+
|
61
|
+
# Exit vertex callback
|
62
|
+
exit = Proc.new do |v|
|
63
|
+
adjacent(v).each do |w|
|
64
|
+
if comp[w] == :new
|
65
|
+
root[v] = (number[root[v]] < number[root[w]] ? root[v] : root[w])
|
66
|
+
end
|
67
|
+
end
|
68
|
+
if root[v] == v
|
69
|
+
component = []
|
70
|
+
begin
|
71
|
+
w = stack.pop
|
72
|
+
comp[w] = :assigned
|
73
|
+
component << w
|
74
|
+
end until w == v
|
75
|
+
result << component
|
76
|
+
end
|
77
|
+
end
|
78
|
+
|
79
|
+
# Execute depth first search
|
80
|
+
dfs({:enter_vertex => enter, :exit_vertex => exit}); result
|
81
|
+
|
82
|
+
end # strong_components
|
83
|
+
|
84
|
+
# Returns a condensation graph of the strongly connected components
|
85
|
+
# Each node is an array of nodes from the original graph
|
86
|
+
def condensation
|
87
|
+
sc = strong_components
|
88
|
+
cg = self.class.new
|
89
|
+
map = sc.inject({}) do |a,c|
|
90
|
+
c.each {|v| a[v] = c }; a
|
91
|
+
end
|
92
|
+
sc.each do |c|
|
93
|
+
c.each do |v|
|
94
|
+
adjacent(v).each {|v| cg.add_edge!(c, map[v]) unless c == map[v]}
|
95
|
+
end
|
96
|
+
end; cg
|
97
|
+
end
|
98
|
+
|
99
|
+
# Compute transitive closure of a graph. That is any node that is reachable
|
100
|
+
# along a path is added as a directed edge.
|
101
|
+
def transitive_closure!
|
102
|
+
cgtc = condensation.gratr_inner_transitive_closure!
|
103
|
+
cgtc.each do |cgv|
|
104
|
+
cgtc.adjacent(cgv).each do |adj|
|
105
|
+
cgv.each do |u|
|
106
|
+
adj.each {|v| add_edge!(u,v)}
|
107
|
+
end
|
108
|
+
end
|
109
|
+
end; self
|
110
|
+
end
|
111
|
+
|
112
|
+
# This returns the transitive closure of a graph. The original graph
|
113
|
+
# is not changed.
|
114
|
+
def transitive_closure() self.class.new(self).transitive_closure!; end
|
115
|
+
|
116
|
+
private
|
117
|
+
def gratr_inner_transitive_closure! # :nodoc:
|
118
|
+
topsort.reverse.each do |u|
|
119
|
+
adjacent(u).each do |v|
|
120
|
+
adjacent(v).each {|w| add_edge!(u,w) unless edge?(u,w)}
|
121
|
+
end
|
122
|
+
end; self
|
123
|
+
end
|
124
|
+
end # StrongComponens
|
125
|
+
|
126
|
+
end # Graph
|
127
|
+
end # GRATR
|