google-cloud-monitoring-dashboard-v1 0.1.1 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service.rb +1 -0
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/client.rb +18 -11
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/paths.rb +66 -0
- data/lib/google/cloud/monitoring/dashboard/v1/version.rb +1 -1
- data/lib/google/monitoring/dashboard/v1/common_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/dashboard_pb.rb +2 -0
- data/lib/google/monitoring/dashboard/v1/dashboards_service_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/dashboards_service_services_pb.rb +1 -2
- data/lib/google/monitoring/dashboard/v1/drilldowns_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/metrics_pb.rb +2 -0
- data/lib/google/monitoring/dashboard/v1/scorecard_pb.rb +1 -0
- data/proto_docs/google/api/distribution.rb +225 -0
- data/proto_docs/google/monitoring/dashboard/v1/common.rb +263 -212
- data/proto_docs/google/monitoring/dashboard/v1/dashboard.rb +2 -2
- data/proto_docs/google/monitoring/dashboard/v1/dashboards_service.rb +17 -12
- data/proto_docs/google/monitoring/dashboard/v1/metrics.rb +13 -4
- data/proto_docs/google/monitoring/dashboard/v1/scorecard.rb +2 -2
- data/proto_docs/google/monitoring/dashboard/v1/xychart.rb +3 -3
- data/proto_docs/google/protobuf/any.rb +138 -0
- data/proto_docs/google/protobuf/timestamp.rb +120 -0
- metadata +6 -2
@@ -22,320 +22,368 @@ module Google
|
|
22
22
|
module Monitoring
|
23
23
|
module Dashboard
|
24
24
|
module V1
|
25
|
-
# Describes how to combine multiple time series to provide different
|
26
|
-
# the data. Aggregation
|
27
|
-
# series
|
28
|
-
#
|
29
|
-
#
|
30
|
-
#
|
25
|
+
# Describes how to combine multiple time series to provide a different view of
|
26
|
+
# the data. Aggregation of time series is done in two steps. First, each time
|
27
|
+
# series in the set is _aligned_ to the same time interval boundaries, then the
|
28
|
+
# set of time series is optionally _reduced_ in number.
|
29
|
+
#
|
30
|
+
# Alignment consists of applying the `per_series_aligner` operation
|
31
|
+
# to each time series after its data has been divided into regular
|
32
|
+
# `alignment_period` time intervals. This process takes _all_ of the data
|
33
|
+
# points in an alignment period, applies a mathematical transformation such as
|
34
|
+
# averaging, minimum, maximum, delta, etc., and converts them into a single
|
35
|
+
# data point per period.
|
36
|
+
#
|
37
|
+
# Reduction is when the aligned and transformed time series can optionally be
|
38
|
+
# combined, reducing the number of time series through similar mathematical
|
39
|
+
# transformations. Reduction involves applying a `cross_series_reducer` to
|
40
|
+
# all the time series, optionally sorting the time series into subsets with
|
41
|
+
# `group_by_fields`, and applying the reducer to each subset.
|
42
|
+
#
|
43
|
+
# The raw time series data can contain a huge amount of information from
|
44
|
+
# multiple sources. Alignment and reduction transforms this mass of data into
|
45
|
+
# a more manageable and representative collection of data, for example "the
|
46
|
+
# 95% latency across the average of all tasks in a cluster". This
|
47
|
+
# representative data can be more easily graphed and comprehended, and the
|
48
|
+
# individual time series data is still available for later drilldown. For more
|
49
|
+
# details, see [Filtering and
|
50
|
+
# aggregation](https://cloud.google.com/monitoring/api/v3/aggregation).
|
31
51
|
# @!attribute [rw] alignment_period
|
32
52
|
# @return [::Google::Protobuf::Duration]
|
33
|
-
# The
|
34
|
-
#
|
35
|
-
#
|
36
|
-
#
|
37
|
-
#
|
38
|
-
#
|
39
|
-
#
|
40
|
-
#
|
53
|
+
# The `alignment_period` specifies a time interval, in seconds, that is used
|
54
|
+
# to divide the data in all the
|
55
|
+
# [time series][google.monitoring.v3.TimeSeries] into consistent blocks of
|
56
|
+
# time. This will be done before the per-series aligner can be applied to
|
57
|
+
# the data.
|
58
|
+
#
|
59
|
+
# The value must be at least 60 seconds. If a per-series aligner other than
|
60
|
+
# `ALIGN_NONE` is specified, this field is required or an error is returned.
|
61
|
+
# If no per-series aligner is specified, or the aligner `ALIGN_NONE` is
|
62
|
+
# specified, then this field is ignored.
|
41
63
|
# @!attribute [rw] per_series_aligner
|
42
64
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Aligner]
|
43
|
-
#
|
44
|
-
#
|
45
|
-
#
|
46
|
-
#
|
65
|
+
# An `Aligner` describes how to bring the data points in a single
|
66
|
+
# time series into temporal alignment. Except for `ALIGN_NONE`, all
|
67
|
+
# alignments cause all the data points in an `alignment_period` to be
|
68
|
+
# mathematically grouped together, resulting in a single data point for
|
69
|
+
# each `alignment_period` with end timestamp at the end of the period.
|
70
|
+
#
|
71
|
+
# Not all alignment operations may be applied to all time series. The valid
|
72
|
+
# choices depend on the `metric_kind` and `value_type` of the original time
|
73
|
+
# series. Alignment can change the `metric_kind` or the `value_type` of
|
47
74
|
# the time series.
|
48
75
|
#
|
49
76
|
# Time series data must be aligned in order to perform cross-time
|
50
|
-
# series reduction. If `
|
51
|
-
# `
|
52
|
-
# and `
|
77
|
+
# series reduction. If `cross_series_reducer` is specified, then
|
78
|
+
# `per_series_aligner` must be specified and not equal to `ALIGN_NONE`
|
79
|
+
# and `alignment_period` must be specified; otherwise, an error is
|
53
80
|
# returned.
|
54
81
|
# @!attribute [rw] cross_series_reducer
|
55
82
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Reducer]
|
56
|
-
# The
|
57
|
-
#
|
58
|
-
#
|
59
|
-
# series. Reduction may change the metric type of value type of the
|
60
|
-
# time series.
|
83
|
+
# The reduction operation to be used to combine time series into a single
|
84
|
+
# time series, where the value of each data point in the resulting series is
|
85
|
+
# a function of all the already aligned values in the input time series.
|
61
86
|
#
|
62
|
-
#
|
63
|
-
#
|
64
|
-
#
|
65
|
-
#
|
66
|
-
#
|
87
|
+
# Not all reducer operations can be applied to all time series. The valid
|
88
|
+
# choices depend on the `metric_kind` and the `value_type` of the original
|
89
|
+
# time series. Reduction can yield a time series with a different
|
90
|
+
# `metric_kind` or `value_type` than the input time series.
|
91
|
+
#
|
92
|
+
# Time series data must first be aligned (see `per_series_aligner`) in order
|
93
|
+
# to perform cross-time series reduction. If `cross_series_reducer` is
|
94
|
+
# specified, then `per_series_aligner` must be specified, and must not be
|
95
|
+
# `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an
|
96
|
+
# error is returned.
|
67
97
|
# @!attribute [rw] group_by_fields
|
68
98
|
# @return [::Array<::String>]
|
69
|
-
# The set of fields to preserve when `
|
70
|
-
# specified. The `
|
99
|
+
# The set of fields to preserve when `cross_series_reducer` is
|
100
|
+
# specified. The `group_by_fields` determine how the time series are
|
71
101
|
# partitioned into subsets prior to applying the aggregation
|
72
|
-
#
|
102
|
+
# operation. Each subset contains time series that have the same
|
73
103
|
# value for each of the grouping fields. Each individual time
|
74
104
|
# series is a member of exactly one subset. The
|
75
|
-
# `
|
105
|
+
# `cross_series_reducer` is applied to each subset of time series.
|
76
106
|
# It is not possible to reduce across different resource types, so
|
77
107
|
# this field implicitly contains `resource.type`. Fields not
|
78
|
-
# specified in `
|
79
|
-
# `
|
108
|
+
# specified in `group_by_fields` are aggregated away. If
|
109
|
+
# `group_by_fields` is not specified and all the time series have
|
80
110
|
# the same resource type, then the time series are aggregated into
|
81
|
-
# a single output time series. If `
|
111
|
+
# a single output time series. If `cross_series_reducer` is not
|
82
112
|
# defined, this field is ignored.
|
83
113
|
class Aggregation
|
84
114
|
include ::Google::Protobuf::MessageExts
|
85
115
|
extend ::Google::Protobuf::MessageExts::ClassMethods
|
86
116
|
|
87
|
-
# The Aligner
|
88
|
-
# time series
|
117
|
+
# The `Aligner` specifies the operation that will be applied to the data
|
118
|
+
# points in each alignment period in a time series. Except for
|
119
|
+
# `ALIGN_NONE`, which specifies that no operation be applied, each alignment
|
120
|
+
# operation replaces the set of data values in each alignment period with
|
121
|
+
# a single value: the result of applying the operation to the data values.
|
122
|
+
# An aligned time series has a single data value at the end of each
|
123
|
+
# `alignment_period`.
|
124
|
+
#
|
125
|
+
# An alignment operation can change the data type of the values, too. For
|
126
|
+
# example, if you apply a counting operation to boolean values, the data
|
127
|
+
# `value_type` in the original time series is `BOOLEAN`, but the `value_type`
|
128
|
+
# in the aligned result is `INT64`.
|
89
129
|
module Aligner
|
90
|
-
# No alignment. Raw data is returned. Not valid if cross-
|
91
|
-
#
|
92
|
-
#
|
130
|
+
# No alignment. Raw data is returned. Not valid if cross-series reduction
|
131
|
+
# is requested. The `value_type` of the result is the same as the
|
132
|
+
# `value_type` of the input.
|
93
133
|
ALIGN_NONE = 0
|
94
134
|
|
95
|
-
# Align and convert to
|
96
|
-
#
|
97
|
-
#
|
98
|
-
# period be increased. The value type of the result is the same
|
99
|
-
# as the value type of the input.
|
135
|
+
# Align and convert to
|
136
|
+
# [DELTA][google.api.MetricDescriptor.MetricKind.DELTA].
|
137
|
+
# The output is `delta = y1 - y0`.
|
100
138
|
#
|
101
|
-
#
|
102
|
-
#
|
139
|
+
# This alignment is valid for
|
140
|
+
# [CUMULATIVE][google.api.MetricDescriptor.MetricKind.CUMULATIVE] and
|
141
|
+
# `DELTA` metrics. If the selected alignment period results in periods
|
142
|
+
# with no data, then the aligned value for such a period is created by
|
143
|
+
# interpolation. The `value_type` of the aligned result is the same as
|
144
|
+
# the `value_type` of the input.
|
103
145
|
ALIGN_DELTA = 1
|
104
146
|
|
105
|
-
# Align and convert to a rate.
|
106
|
-
#
|
107
|
-
#
|
108
|
-
#
|
147
|
+
# Align and convert to a rate. The result is computed as
|
148
|
+
# `rate = (y1 - y0)/(t1 - t0)`, or "delta over time".
|
149
|
+
# Think of this aligner as providing the slope of the line that passes
|
150
|
+
# through the value at the start and at the end of the `alignment_period`.
|
109
151
|
#
|
110
|
-
#
|
111
|
-
#
|
112
|
-
#
|
113
|
-
#
|
152
|
+
# This aligner is valid for `CUMULATIVE`
|
153
|
+
# and `DELTA` metrics with numeric values. If the selected alignment
|
154
|
+
# period results in periods with no data, then the aligned value for
|
155
|
+
# such a period is created by interpolation. The output is a `GAUGE`
|
156
|
+
# metric with `value_type` `DOUBLE`.
|
114
157
|
#
|
115
|
-
# If, by rate, you
|
116
|
-
# `ALIGN_PERCENT_CHANGE` aligner
|
158
|
+
# If, by "rate", you mean "percentage change", see the
|
159
|
+
# `ALIGN_PERCENT_CHANGE` aligner instead.
|
117
160
|
ALIGN_RATE = 2
|
118
161
|
|
119
|
-
# Align by interpolating between adjacent points around the
|
120
|
-
# period boundary. This
|
121
|
-
#
|
122
|
-
#
|
162
|
+
# Align by interpolating between adjacent points around the alignment
|
163
|
+
# period boundary. This aligner is valid for `GAUGE` metrics with
|
164
|
+
# numeric values. The `value_type` of the aligned result is the same as the
|
165
|
+
# `value_type` of the input.
|
123
166
|
ALIGN_INTERPOLATE = 3
|
124
167
|
|
125
|
-
# Align by
|
126
|
-
#
|
127
|
-
#
|
128
|
-
#
|
168
|
+
# Align by moving the most recent data point before the end of the
|
169
|
+
# alignment period to the boundary at the end of the alignment
|
170
|
+
# period. This aligner is valid for `GAUGE` metrics. The `value_type` of
|
171
|
+
# the aligned result is the same as the `value_type` of the input.
|
129
172
|
ALIGN_NEXT_OLDER = 4
|
130
173
|
|
131
|
-
# Align time series
|
132
|
-
#
|
133
|
-
#
|
134
|
-
#
|
135
|
-
# type of the input.
|
174
|
+
# Align the time series by returning the minimum value in each alignment
|
175
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
176
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
177
|
+
# the `value_type` of the input.
|
136
178
|
ALIGN_MIN = 10
|
137
179
|
|
138
|
-
# Align time series
|
139
|
-
#
|
140
|
-
#
|
141
|
-
#
|
142
|
-
# type of the input.
|
180
|
+
# Align the time series by returning the maximum value in each alignment
|
181
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
182
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
183
|
+
# the `value_type` of the input.
|
143
184
|
ALIGN_MAX = 11
|
144
185
|
|
145
|
-
# Align time series
|
146
|
-
#
|
147
|
-
#
|
148
|
-
# metrics with numeric values. The value type of the output is
|
149
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
186
|
+
# Align the time series by returning the mean value in each alignment
|
187
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
188
|
+
# numeric values. The `value_type` of the aligned result is `DOUBLE`.
|
150
189
|
ALIGN_MEAN = 12
|
151
190
|
|
152
|
-
# Align time series
|
153
|
-
#
|
154
|
-
#
|
155
|
-
#
|
156
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
191
|
+
# Align the time series by returning the number of values in each alignment
|
192
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
193
|
+
# numeric or Boolean values. The `value_type` of the aligned result is
|
194
|
+
# `INT64`.
|
157
195
|
ALIGN_COUNT = 13
|
158
196
|
|
159
|
-
# Align time series
|
160
|
-
#
|
161
|
-
#
|
162
|
-
#
|
163
|
-
# same as the value type of the input.
|
197
|
+
# Align the time series by returning the sum of the values in each
|
198
|
+
# alignment period. This aligner is valid for `GAUGE` and `DELTA`
|
199
|
+
# metrics with numeric and distribution values. The `value_type` of the
|
200
|
+
# aligned result is the same as the `value_type` of the input.
|
164
201
|
ALIGN_SUM = 14
|
165
202
|
|
166
|
-
# Align time series
|
167
|
-
#
|
168
|
-
#
|
169
|
-
#
|
170
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
203
|
+
# Align the time series by returning the standard deviation of the values
|
204
|
+
# in each alignment period. This aligner is valid for `GAUGE` and
|
205
|
+
# `DELTA` metrics with numeric values. The `value_type` of the output is
|
206
|
+
# `DOUBLE`.
|
171
207
|
ALIGN_STDDEV = 15
|
172
208
|
|
173
|
-
# Align time series
|
174
|
-
#
|
175
|
-
#
|
176
|
-
# Boolean values. The value type of the output is
|
177
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
209
|
+
# Align the time series by returning the number of `True` values in
|
210
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
211
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
178
212
|
ALIGN_COUNT_TRUE = 16
|
179
213
|
|
180
|
-
# Align time series
|
181
|
-
#
|
182
|
-
#
|
183
|
-
# Boolean values. The value type of the output is
|
184
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
214
|
+
# Align the time series by returning the number of `False` values in
|
215
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
216
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
185
217
|
ALIGN_COUNT_FALSE = 24
|
186
218
|
|
187
|
-
# Align time series
|
188
|
-
#
|
189
|
-
#
|
190
|
-
#
|
191
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
219
|
+
# Align the time series by returning the ratio of the number of `True`
|
220
|
+
# values to the total number of values in each alignment period. This
|
221
|
+
# aligner is valid for `GAUGE` metrics with Boolean values. The output
|
222
|
+
# value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`.
|
192
223
|
ALIGN_FRACTION_TRUE = 17
|
193
224
|
|
194
|
-
# Align time series
|
195
|
-
#
|
196
|
-
#
|
197
|
-
#
|
198
|
-
#
|
225
|
+
# Align the time series by using [percentile
|
226
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
227
|
+
# data point in each alignment period is the 99th percentile of all data
|
228
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
229
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
230
|
+
# `value_type` `DOUBLE`.
|
199
231
|
ALIGN_PERCENTILE_99 = 18
|
200
232
|
|
201
|
-
# Align time series
|
202
|
-
#
|
203
|
-
#
|
204
|
-
#
|
205
|
-
#
|
233
|
+
# Align the time series by using [percentile
|
234
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
235
|
+
# data point in each alignment period is the 95th percentile of all data
|
236
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
237
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
238
|
+
# `value_type` `DOUBLE`.
|
206
239
|
ALIGN_PERCENTILE_95 = 19
|
207
240
|
|
208
|
-
# Align time series
|
209
|
-
#
|
210
|
-
#
|
211
|
-
#
|
212
|
-
#
|
241
|
+
# Align the time series by using [percentile
|
242
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
243
|
+
# data point in each alignment period is the 50th percentile of all data
|
244
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
245
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
246
|
+
# `value_type` `DOUBLE`.
|
213
247
|
ALIGN_PERCENTILE_50 = 20
|
214
248
|
|
215
|
-
# Align time series
|
216
|
-
#
|
217
|
-
#
|
218
|
-
#
|
219
|
-
#
|
249
|
+
# Align the time series by using [percentile
|
250
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
251
|
+
# data point in each alignment period is the 5th percentile of all data
|
252
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
253
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
254
|
+
# `value_type` `DOUBLE`.
|
220
255
|
ALIGN_PERCENTILE_05 = 21
|
221
256
|
|
222
|
-
# Align and convert to a percentage change. This
|
223
|
-
#
|
224
|
-
#
|
225
|
-
#
|
226
|
-
#
|
227
|
-
#
|
228
|
-
#
|
229
|
-
#
|
257
|
+
# Align and convert to a percentage change. This aligner is valid for
|
258
|
+
# `GAUGE` and `DELTA` metrics with numeric values. This alignment returns
|
259
|
+
# `((current - previous)/previous) * 100`, where the value of `previous` is
|
260
|
+
# determined based on the `alignment_period`.
|
261
|
+
#
|
262
|
+
# If the values of `current` and `previous` are both 0, then the returned
|
263
|
+
# value is 0. If only `previous` is 0, the returned value is infinity.
|
264
|
+
#
|
265
|
+
# A 10-minute moving mean is computed at each point of the alignment period
|
230
266
|
# prior to the above calculation to smooth the metric and prevent false
|
231
|
-
# positives from very short
|
232
|
-
#
|
233
|
-
#
|
234
|
-
#
|
235
|
-
#
|
236
|
-
#
|
267
|
+
# positives from very short-lived spikes. The moving mean is only
|
268
|
+
# applicable for data whose values are `>= 0`. Any values `< 0` are
|
269
|
+
# treated as a missing datapoint, and are ignored. While `DELTA`
|
270
|
+
# metrics are accepted by this alignment, special care should be taken that
|
271
|
+
# the values for the metric will always be positive. The output is a
|
272
|
+
# `GAUGE` metric with `value_type` `DOUBLE`.
|
237
273
|
ALIGN_PERCENT_CHANGE = 23
|
238
274
|
end
|
239
275
|
|
240
|
-
# A Reducer describes how to aggregate data points from multiple
|
241
|
-
# time series into a single time series
|
276
|
+
# A Reducer operation describes how to aggregate data points from multiple
|
277
|
+
# time series into a single time series, where the value of each data point
|
278
|
+
# in the resulting series is a function of all the already aligned values in
|
279
|
+
# the input time series.
|
242
280
|
module Reducer
|
243
|
-
# No cross-time series reduction. The output of the
|
281
|
+
# No cross-time series reduction. The output of the `Aligner` is
|
244
282
|
# returned.
|
245
283
|
REDUCE_NONE = 0
|
246
284
|
|
247
|
-
# Reduce by computing the mean across time series for each
|
248
|
-
# alignment period. This reducer is valid for
|
249
|
-
#
|
250
|
-
#
|
285
|
+
# Reduce by computing the mean value across time series for each
|
286
|
+
# alignment period. This reducer is valid for
|
287
|
+
# [DELTA][google.api.MetricDescriptor.MetricKind.DELTA] and
|
288
|
+
# [GAUGE][google.api.MetricDescriptor.MetricKind.GAUGE] metrics with
|
289
|
+
# numeric or distribution values. The `value_type` of the output is
|
290
|
+
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
251
291
|
REDUCE_MEAN = 1
|
252
292
|
|
253
|
-
# Reduce by computing the minimum across time series for each
|
254
|
-
# alignment period. This reducer is valid for
|
255
|
-
#
|
256
|
-
#
|
293
|
+
# Reduce by computing the minimum value across time series for each
|
294
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
295
|
+
# with numeric values. The `value_type` of the output is the same as the
|
296
|
+
# `value_type` of the input.
|
257
297
|
REDUCE_MIN = 2
|
258
298
|
|
259
|
-
# Reduce by computing the maximum across time series for each
|
260
|
-
# alignment period. This reducer is valid for
|
261
|
-
#
|
262
|
-
#
|
299
|
+
# Reduce by computing the maximum value across time series for each
|
300
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
301
|
+
# with numeric values. The `value_type` of the output is the same as the
|
302
|
+
# `value_type` of the input.
|
263
303
|
REDUCE_MAX = 3
|
264
304
|
|
265
305
|
# Reduce by computing the sum across time series for each
|
266
|
-
# alignment period. This reducer is valid for
|
267
|
-
#
|
268
|
-
# the
|
306
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
307
|
+
# with numeric and distribution values. The `value_type` of the output is
|
308
|
+
# the same as the `value_type` of the input.
|
269
309
|
REDUCE_SUM = 4
|
270
310
|
|
271
311
|
# Reduce by computing the standard deviation across time series
|
272
|
-
# for each alignment period. This reducer is valid for
|
273
|
-
#
|
274
|
-
# the output is
|
312
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
313
|
+
# `GAUGE` metrics with numeric or distribution values. The `value_type`
|
314
|
+
# of the output is `DOUBLE`.
|
275
315
|
REDUCE_STDDEV = 5
|
276
316
|
|
277
|
-
# Reduce by computing the
|
278
|
-
# for each alignment period. This reducer is valid for
|
279
|
-
#
|
280
|
-
#
|
281
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
317
|
+
# Reduce by computing the number of data points across time series
|
318
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
319
|
+
# `GAUGE` metrics of numeric, Boolean, distribution, and string
|
320
|
+
# `value_type`. The `value_type` of the output is `INT64`.
|
282
321
|
REDUCE_COUNT = 6
|
283
322
|
|
284
|
-
# Reduce by computing the
|
285
|
-
# series for each alignment period. This reducer is valid for
|
286
|
-
#
|
287
|
-
#
|
323
|
+
# Reduce by computing the number of `True`-valued data points across time
|
324
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
325
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
326
|
+
# is `INT64`.
|
288
327
|
REDUCE_COUNT_TRUE = 7
|
289
328
|
|
290
|
-
# Reduce by computing the
|
291
|
-
# series for each alignment period. This reducer is valid for
|
292
|
-
#
|
293
|
-
#
|
329
|
+
# Reduce by computing the number of `False`-valued data points across time
|
330
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
331
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
332
|
+
# is `INT64`.
|
294
333
|
REDUCE_COUNT_FALSE = 15
|
295
334
|
|
296
|
-
# Reduce by computing the
|
297
|
-
#
|
298
|
-
#
|
299
|
-
# range [0, 1] and has
|
300
|
-
#
|
335
|
+
# Reduce by computing the ratio of the number of `True`-valued data points
|
336
|
+
# to the total number of data points for each alignment period. This
|
337
|
+
# reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`.
|
338
|
+
# The output value is in the range [0.0, 1.0] and has `value_type`
|
339
|
+
# `DOUBLE`.
|
301
340
|
REDUCE_FRACTION_TRUE = 8
|
302
341
|
|
303
|
-
# Reduce by computing 99th
|
304
|
-
#
|
305
|
-
#
|
306
|
-
#
|
342
|
+
# Reduce by computing the [99th
|
343
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
344
|
+
# across time series for each alignment period. This reducer is valid for
|
345
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
346
|
+
# of the output is `DOUBLE`.
|
307
347
|
REDUCE_PERCENTILE_99 = 9
|
308
348
|
|
309
|
-
# Reduce by computing 95th
|
310
|
-
#
|
311
|
-
#
|
312
|
-
#
|
349
|
+
# Reduce by computing the [95th
|
350
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
351
|
+
# across time series for each alignment period. This reducer is valid for
|
352
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
353
|
+
# of the output is `DOUBLE`.
|
313
354
|
REDUCE_PERCENTILE_95 = 10
|
314
355
|
|
315
|
-
# Reduce by computing 50th
|
316
|
-
#
|
317
|
-
#
|
318
|
-
#
|
356
|
+
# Reduce by computing the [50th
|
357
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
358
|
+
# across time series for each alignment period. This reducer is valid for
|
359
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
360
|
+
# of the output is `DOUBLE`.
|
319
361
|
REDUCE_PERCENTILE_50 = 11
|
320
362
|
|
321
|
-
# Reduce by computing 5th
|
322
|
-
#
|
323
|
-
#
|
324
|
-
#
|
363
|
+
# Reduce by computing the [5th
|
364
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
365
|
+
# across time series for each alignment period. This reducer is valid for
|
366
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
367
|
+
# of the output is `DOUBLE`.
|
325
368
|
REDUCE_PERCENTILE_05 = 12
|
326
369
|
end
|
327
370
|
end
|
328
371
|
|
329
372
|
# Describes a ranking-based time series filter. Each input time series is
|
330
|
-
# ranked with an aligner. The filter
|
331
|
-
# series, selecting them based on the relative ranking.
|
373
|
+
# ranked with an aligner. The filter will allow up to `num_time_series` time
|
374
|
+
# series to pass through it, selecting them based on the relative ranking.
|
375
|
+
#
|
376
|
+
# For example, if `ranking_method` is `METHOD_MEAN`,`direction` is `BOTTOM`,
|
377
|
+
# and `num_time_series` is 3, then the 3 times series with the lowest mean
|
378
|
+
# values will pass through the filter.
|
332
379
|
# @!attribute [rw] ranking_method
|
333
380
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Method]
|
334
|
-
# `
|
335
|
-
# value which will be used to compare the time series to other time
|
381
|
+
# `ranking_method` is applied to each time series independently to produce
|
382
|
+
# the value which will be used to compare the time series to other time
|
383
|
+
# series.
|
336
384
|
# @!attribute [rw] num_time_series
|
337
385
|
# @return [::Integer]
|
338
|
-
# How many time series to
|
386
|
+
# How many time series to allow to pass through the filter.
|
339
387
|
# @!attribute [rw] direction
|
340
388
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Direction]
|
341
389
|
# How to use the ranking to select time series that pass through the filter.
|
@@ -343,9 +391,10 @@ module Google
|
|
343
391
|
include ::Google::Protobuf::MessageExts
|
344
392
|
extend ::Google::Protobuf::MessageExts::ClassMethods
|
345
393
|
|
346
|
-
# The value reducers that can be applied to a PickTimeSeriesFilter
|
394
|
+
# The value reducers that can be applied to a `PickTimeSeriesFilter`.
|
347
395
|
module Method
|
348
|
-
# Not allowed
|
396
|
+
# Not allowed. You must specify a different `Method` if you specify a
|
397
|
+
# `PickTimeSeriesFilter`.
|
349
398
|
METHOD_UNSPECIFIED = 0
|
350
399
|
|
351
400
|
# Select the mean of all values.
|
@@ -366,19 +415,21 @@ module Google
|
|
366
415
|
|
367
416
|
# Describes the ranking directions.
|
368
417
|
module Direction
|
369
|
-
# Not allowed
|
418
|
+
# Not allowed. You must specify a different `Direction` if you specify a
|
419
|
+
# `PickTimeSeriesFilter`.
|
370
420
|
DIRECTION_UNSPECIFIED = 0
|
371
421
|
|
372
|
-
# Pass the highest ranking inputs.
|
422
|
+
# Pass the highest `num_time_series` ranking inputs.
|
373
423
|
TOP = 1
|
374
424
|
|
375
|
-
# Pass the lowest ranking inputs.
|
425
|
+
# Pass the lowest `num_time_series` ranking inputs.
|
376
426
|
BOTTOM = 2
|
377
427
|
end
|
378
428
|
end
|
379
429
|
|
380
430
|
# A filter that ranks streams based on their statistical relation to other
|
381
431
|
# streams in a request.
|
432
|
+
# Note: This field is deprecated and completely ignored by the API.
|
382
433
|
# @!attribute [rw] ranking_method
|
383
434
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::StatisticalTimeSeriesFilter::Method]
|
384
435
|
# `rankingMethod` is applied to a set of time series, and then the produced
|