google-cloud-monitoring-dashboard-v1 0.1.1 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service.rb +1 -0
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/client.rb +18 -11
- data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/paths.rb +66 -0
- data/lib/google/cloud/monitoring/dashboard/v1/version.rb +1 -1
- data/lib/google/monitoring/dashboard/v1/common_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/dashboard_pb.rb +2 -0
- data/lib/google/monitoring/dashboard/v1/dashboards_service_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/dashboards_service_services_pb.rb +1 -2
- data/lib/google/monitoring/dashboard/v1/drilldowns_pb.rb +1 -0
- data/lib/google/monitoring/dashboard/v1/metrics_pb.rb +2 -0
- data/lib/google/monitoring/dashboard/v1/scorecard_pb.rb +1 -0
- data/proto_docs/google/api/distribution.rb +225 -0
- data/proto_docs/google/monitoring/dashboard/v1/common.rb +263 -212
- data/proto_docs/google/monitoring/dashboard/v1/dashboard.rb +2 -2
- data/proto_docs/google/monitoring/dashboard/v1/dashboards_service.rb +17 -12
- data/proto_docs/google/monitoring/dashboard/v1/metrics.rb +13 -4
- data/proto_docs/google/monitoring/dashboard/v1/scorecard.rb +2 -2
- data/proto_docs/google/monitoring/dashboard/v1/xychart.rb +3 -3
- data/proto_docs/google/protobuf/any.rb +138 -0
- data/proto_docs/google/protobuf/timestamp.rb +120 -0
- metadata +6 -2
@@ -22,320 +22,368 @@ module Google
|
|
22
22
|
module Monitoring
|
23
23
|
module Dashboard
|
24
24
|
module V1
|
25
|
-
# Describes how to combine multiple time series to provide different
|
26
|
-
# the data. Aggregation
|
27
|
-
# series
|
28
|
-
#
|
29
|
-
#
|
30
|
-
#
|
25
|
+
# Describes how to combine multiple time series to provide a different view of
|
26
|
+
# the data. Aggregation of time series is done in two steps. First, each time
|
27
|
+
# series in the set is _aligned_ to the same time interval boundaries, then the
|
28
|
+
# set of time series is optionally _reduced_ in number.
|
29
|
+
#
|
30
|
+
# Alignment consists of applying the `per_series_aligner` operation
|
31
|
+
# to each time series after its data has been divided into regular
|
32
|
+
# `alignment_period` time intervals. This process takes _all_ of the data
|
33
|
+
# points in an alignment period, applies a mathematical transformation such as
|
34
|
+
# averaging, minimum, maximum, delta, etc., and converts them into a single
|
35
|
+
# data point per period.
|
36
|
+
#
|
37
|
+
# Reduction is when the aligned and transformed time series can optionally be
|
38
|
+
# combined, reducing the number of time series through similar mathematical
|
39
|
+
# transformations. Reduction involves applying a `cross_series_reducer` to
|
40
|
+
# all the time series, optionally sorting the time series into subsets with
|
41
|
+
# `group_by_fields`, and applying the reducer to each subset.
|
42
|
+
#
|
43
|
+
# The raw time series data can contain a huge amount of information from
|
44
|
+
# multiple sources. Alignment and reduction transforms this mass of data into
|
45
|
+
# a more manageable and representative collection of data, for example "the
|
46
|
+
# 95% latency across the average of all tasks in a cluster". This
|
47
|
+
# representative data can be more easily graphed and comprehended, and the
|
48
|
+
# individual time series data is still available for later drilldown. For more
|
49
|
+
# details, see [Filtering and
|
50
|
+
# aggregation](https://cloud.google.com/monitoring/api/v3/aggregation).
|
31
51
|
# @!attribute [rw] alignment_period
|
32
52
|
# @return [::Google::Protobuf::Duration]
|
33
|
-
# The
|
34
|
-
#
|
35
|
-
#
|
36
|
-
#
|
37
|
-
#
|
38
|
-
#
|
39
|
-
#
|
40
|
-
#
|
53
|
+
# The `alignment_period` specifies a time interval, in seconds, that is used
|
54
|
+
# to divide the data in all the
|
55
|
+
# [time series][google.monitoring.v3.TimeSeries] into consistent blocks of
|
56
|
+
# time. This will be done before the per-series aligner can be applied to
|
57
|
+
# the data.
|
58
|
+
#
|
59
|
+
# The value must be at least 60 seconds. If a per-series aligner other than
|
60
|
+
# `ALIGN_NONE` is specified, this field is required or an error is returned.
|
61
|
+
# If no per-series aligner is specified, or the aligner `ALIGN_NONE` is
|
62
|
+
# specified, then this field is ignored.
|
41
63
|
# @!attribute [rw] per_series_aligner
|
42
64
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Aligner]
|
43
|
-
#
|
44
|
-
#
|
45
|
-
#
|
46
|
-
#
|
65
|
+
# An `Aligner` describes how to bring the data points in a single
|
66
|
+
# time series into temporal alignment. Except for `ALIGN_NONE`, all
|
67
|
+
# alignments cause all the data points in an `alignment_period` to be
|
68
|
+
# mathematically grouped together, resulting in a single data point for
|
69
|
+
# each `alignment_period` with end timestamp at the end of the period.
|
70
|
+
#
|
71
|
+
# Not all alignment operations may be applied to all time series. The valid
|
72
|
+
# choices depend on the `metric_kind` and `value_type` of the original time
|
73
|
+
# series. Alignment can change the `metric_kind` or the `value_type` of
|
47
74
|
# the time series.
|
48
75
|
#
|
49
76
|
# Time series data must be aligned in order to perform cross-time
|
50
|
-
# series reduction. If `
|
51
|
-
# `
|
52
|
-
# and `
|
77
|
+
# series reduction. If `cross_series_reducer` is specified, then
|
78
|
+
# `per_series_aligner` must be specified and not equal to `ALIGN_NONE`
|
79
|
+
# and `alignment_period` must be specified; otherwise, an error is
|
53
80
|
# returned.
|
54
81
|
# @!attribute [rw] cross_series_reducer
|
55
82
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Reducer]
|
56
|
-
# The
|
57
|
-
#
|
58
|
-
#
|
59
|
-
# series. Reduction may change the metric type of value type of the
|
60
|
-
# time series.
|
83
|
+
# The reduction operation to be used to combine time series into a single
|
84
|
+
# time series, where the value of each data point in the resulting series is
|
85
|
+
# a function of all the already aligned values in the input time series.
|
61
86
|
#
|
62
|
-
#
|
63
|
-
#
|
64
|
-
#
|
65
|
-
#
|
66
|
-
#
|
87
|
+
# Not all reducer operations can be applied to all time series. The valid
|
88
|
+
# choices depend on the `metric_kind` and the `value_type` of the original
|
89
|
+
# time series. Reduction can yield a time series with a different
|
90
|
+
# `metric_kind` or `value_type` than the input time series.
|
91
|
+
#
|
92
|
+
# Time series data must first be aligned (see `per_series_aligner`) in order
|
93
|
+
# to perform cross-time series reduction. If `cross_series_reducer` is
|
94
|
+
# specified, then `per_series_aligner` must be specified, and must not be
|
95
|
+
# `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an
|
96
|
+
# error is returned.
|
67
97
|
# @!attribute [rw] group_by_fields
|
68
98
|
# @return [::Array<::String>]
|
69
|
-
# The set of fields to preserve when `
|
70
|
-
# specified. The `
|
99
|
+
# The set of fields to preserve when `cross_series_reducer` is
|
100
|
+
# specified. The `group_by_fields` determine how the time series are
|
71
101
|
# partitioned into subsets prior to applying the aggregation
|
72
|
-
#
|
102
|
+
# operation. Each subset contains time series that have the same
|
73
103
|
# value for each of the grouping fields. Each individual time
|
74
104
|
# series is a member of exactly one subset. The
|
75
|
-
# `
|
105
|
+
# `cross_series_reducer` is applied to each subset of time series.
|
76
106
|
# It is not possible to reduce across different resource types, so
|
77
107
|
# this field implicitly contains `resource.type`. Fields not
|
78
|
-
# specified in `
|
79
|
-
# `
|
108
|
+
# specified in `group_by_fields` are aggregated away. If
|
109
|
+
# `group_by_fields` is not specified and all the time series have
|
80
110
|
# the same resource type, then the time series are aggregated into
|
81
|
-
# a single output time series. If `
|
111
|
+
# a single output time series. If `cross_series_reducer` is not
|
82
112
|
# defined, this field is ignored.
|
83
113
|
class Aggregation
|
84
114
|
include ::Google::Protobuf::MessageExts
|
85
115
|
extend ::Google::Protobuf::MessageExts::ClassMethods
|
86
116
|
|
87
|
-
# The Aligner
|
88
|
-
# time series
|
117
|
+
# The `Aligner` specifies the operation that will be applied to the data
|
118
|
+
# points in each alignment period in a time series. Except for
|
119
|
+
# `ALIGN_NONE`, which specifies that no operation be applied, each alignment
|
120
|
+
# operation replaces the set of data values in each alignment period with
|
121
|
+
# a single value: the result of applying the operation to the data values.
|
122
|
+
# An aligned time series has a single data value at the end of each
|
123
|
+
# `alignment_period`.
|
124
|
+
#
|
125
|
+
# An alignment operation can change the data type of the values, too. For
|
126
|
+
# example, if you apply a counting operation to boolean values, the data
|
127
|
+
# `value_type` in the original time series is `BOOLEAN`, but the `value_type`
|
128
|
+
# in the aligned result is `INT64`.
|
89
129
|
module Aligner
|
90
|
-
# No alignment. Raw data is returned. Not valid if cross-
|
91
|
-
#
|
92
|
-
#
|
130
|
+
# No alignment. Raw data is returned. Not valid if cross-series reduction
|
131
|
+
# is requested. The `value_type` of the result is the same as the
|
132
|
+
# `value_type` of the input.
|
93
133
|
ALIGN_NONE = 0
|
94
134
|
|
95
|
-
# Align and convert to
|
96
|
-
#
|
97
|
-
#
|
98
|
-
# period be increased. The value type of the result is the same
|
99
|
-
# as the value type of the input.
|
135
|
+
# Align and convert to
|
136
|
+
# [DELTA][google.api.MetricDescriptor.MetricKind.DELTA].
|
137
|
+
# The output is `delta = y1 - y0`.
|
100
138
|
#
|
101
|
-
#
|
102
|
-
#
|
139
|
+
# This alignment is valid for
|
140
|
+
# [CUMULATIVE][google.api.MetricDescriptor.MetricKind.CUMULATIVE] and
|
141
|
+
# `DELTA` metrics. If the selected alignment period results in periods
|
142
|
+
# with no data, then the aligned value for such a period is created by
|
143
|
+
# interpolation. The `value_type` of the aligned result is the same as
|
144
|
+
# the `value_type` of the input.
|
103
145
|
ALIGN_DELTA = 1
|
104
146
|
|
105
|
-
# Align and convert to a rate.
|
106
|
-
#
|
107
|
-
#
|
108
|
-
#
|
147
|
+
# Align and convert to a rate. The result is computed as
|
148
|
+
# `rate = (y1 - y0)/(t1 - t0)`, or "delta over time".
|
149
|
+
# Think of this aligner as providing the slope of the line that passes
|
150
|
+
# through the value at the start and at the end of the `alignment_period`.
|
109
151
|
#
|
110
|
-
#
|
111
|
-
#
|
112
|
-
#
|
113
|
-
#
|
152
|
+
# This aligner is valid for `CUMULATIVE`
|
153
|
+
# and `DELTA` metrics with numeric values. If the selected alignment
|
154
|
+
# period results in periods with no data, then the aligned value for
|
155
|
+
# such a period is created by interpolation. The output is a `GAUGE`
|
156
|
+
# metric with `value_type` `DOUBLE`.
|
114
157
|
#
|
115
|
-
# If, by rate, you
|
116
|
-
# `ALIGN_PERCENT_CHANGE` aligner
|
158
|
+
# If, by "rate", you mean "percentage change", see the
|
159
|
+
# `ALIGN_PERCENT_CHANGE` aligner instead.
|
117
160
|
ALIGN_RATE = 2
|
118
161
|
|
119
|
-
# Align by interpolating between adjacent points around the
|
120
|
-
# period boundary. This
|
121
|
-
#
|
122
|
-
#
|
162
|
+
# Align by interpolating between adjacent points around the alignment
|
163
|
+
# period boundary. This aligner is valid for `GAUGE` metrics with
|
164
|
+
# numeric values. The `value_type` of the aligned result is the same as the
|
165
|
+
# `value_type` of the input.
|
123
166
|
ALIGN_INTERPOLATE = 3
|
124
167
|
|
125
|
-
# Align by
|
126
|
-
#
|
127
|
-
#
|
128
|
-
#
|
168
|
+
# Align by moving the most recent data point before the end of the
|
169
|
+
# alignment period to the boundary at the end of the alignment
|
170
|
+
# period. This aligner is valid for `GAUGE` metrics. The `value_type` of
|
171
|
+
# the aligned result is the same as the `value_type` of the input.
|
129
172
|
ALIGN_NEXT_OLDER = 4
|
130
173
|
|
131
|
-
# Align time series
|
132
|
-
#
|
133
|
-
#
|
134
|
-
#
|
135
|
-
# type of the input.
|
174
|
+
# Align the time series by returning the minimum value in each alignment
|
175
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
176
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
177
|
+
# the `value_type` of the input.
|
136
178
|
ALIGN_MIN = 10
|
137
179
|
|
138
|
-
# Align time series
|
139
|
-
#
|
140
|
-
#
|
141
|
-
#
|
142
|
-
# type of the input.
|
180
|
+
# Align the time series by returning the maximum value in each alignment
|
181
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
182
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
183
|
+
# the `value_type` of the input.
|
143
184
|
ALIGN_MAX = 11
|
144
185
|
|
145
|
-
# Align time series
|
146
|
-
#
|
147
|
-
#
|
148
|
-
# metrics with numeric values. The value type of the output is
|
149
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
186
|
+
# Align the time series by returning the mean value in each alignment
|
187
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
188
|
+
# numeric values. The `value_type` of the aligned result is `DOUBLE`.
|
150
189
|
ALIGN_MEAN = 12
|
151
190
|
|
152
|
-
# Align time series
|
153
|
-
#
|
154
|
-
#
|
155
|
-
#
|
156
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
191
|
+
# Align the time series by returning the number of values in each alignment
|
192
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
193
|
+
# numeric or Boolean values. The `value_type` of the aligned result is
|
194
|
+
# `INT64`.
|
157
195
|
ALIGN_COUNT = 13
|
158
196
|
|
159
|
-
# Align time series
|
160
|
-
#
|
161
|
-
#
|
162
|
-
#
|
163
|
-
# same as the value type of the input.
|
197
|
+
# Align the time series by returning the sum of the values in each
|
198
|
+
# alignment period. This aligner is valid for `GAUGE` and `DELTA`
|
199
|
+
# metrics with numeric and distribution values. The `value_type` of the
|
200
|
+
# aligned result is the same as the `value_type` of the input.
|
164
201
|
ALIGN_SUM = 14
|
165
202
|
|
166
|
-
# Align time series
|
167
|
-
#
|
168
|
-
#
|
169
|
-
#
|
170
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
203
|
+
# Align the time series by returning the standard deviation of the values
|
204
|
+
# in each alignment period. This aligner is valid for `GAUGE` and
|
205
|
+
# `DELTA` metrics with numeric values. The `value_type` of the output is
|
206
|
+
# `DOUBLE`.
|
171
207
|
ALIGN_STDDEV = 15
|
172
208
|
|
173
|
-
# Align time series
|
174
|
-
#
|
175
|
-
#
|
176
|
-
# Boolean values. The value type of the output is
|
177
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
209
|
+
# Align the time series by returning the number of `True` values in
|
210
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
211
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
178
212
|
ALIGN_COUNT_TRUE = 16
|
179
213
|
|
180
|
-
# Align time series
|
181
|
-
#
|
182
|
-
#
|
183
|
-
# Boolean values. The value type of the output is
|
184
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
214
|
+
# Align the time series by returning the number of `False` values in
|
215
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
216
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
185
217
|
ALIGN_COUNT_FALSE = 24
|
186
218
|
|
187
|
-
# Align time series
|
188
|
-
#
|
189
|
-
#
|
190
|
-
#
|
191
|
-
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
219
|
+
# Align the time series by returning the ratio of the number of `True`
|
220
|
+
# values to the total number of values in each alignment period. This
|
221
|
+
# aligner is valid for `GAUGE` metrics with Boolean values. The output
|
222
|
+
# value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`.
|
192
223
|
ALIGN_FRACTION_TRUE = 17
|
193
224
|
|
194
|
-
# Align time series
|
195
|
-
#
|
196
|
-
#
|
197
|
-
#
|
198
|
-
#
|
225
|
+
# Align the time series by using [percentile
|
226
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
227
|
+
# data point in each alignment period is the 99th percentile of all data
|
228
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
229
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
230
|
+
# `value_type` `DOUBLE`.
|
199
231
|
ALIGN_PERCENTILE_99 = 18
|
200
232
|
|
201
|
-
# Align time series
|
202
|
-
#
|
203
|
-
#
|
204
|
-
#
|
205
|
-
#
|
233
|
+
# Align the time series by using [percentile
|
234
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
235
|
+
# data point in each alignment period is the 95th percentile of all data
|
236
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
237
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
238
|
+
# `value_type` `DOUBLE`.
|
206
239
|
ALIGN_PERCENTILE_95 = 19
|
207
240
|
|
208
|
-
# Align time series
|
209
|
-
#
|
210
|
-
#
|
211
|
-
#
|
212
|
-
#
|
241
|
+
# Align the time series by using [percentile
|
242
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
243
|
+
# data point in each alignment period is the 50th percentile of all data
|
244
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
245
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
246
|
+
# `value_type` `DOUBLE`.
|
213
247
|
ALIGN_PERCENTILE_50 = 20
|
214
248
|
|
215
|
-
# Align time series
|
216
|
-
#
|
217
|
-
#
|
218
|
-
#
|
219
|
-
#
|
249
|
+
# Align the time series by using [percentile
|
250
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
251
|
+
# data point in each alignment period is the 5th percentile of all data
|
252
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
253
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
254
|
+
# `value_type` `DOUBLE`.
|
220
255
|
ALIGN_PERCENTILE_05 = 21
|
221
256
|
|
222
|
-
# Align and convert to a percentage change. This
|
223
|
-
#
|
224
|
-
#
|
225
|
-
#
|
226
|
-
#
|
227
|
-
#
|
228
|
-
#
|
229
|
-
#
|
257
|
+
# Align and convert to a percentage change. This aligner is valid for
|
258
|
+
# `GAUGE` and `DELTA` metrics with numeric values. This alignment returns
|
259
|
+
# `((current - previous)/previous) * 100`, where the value of `previous` is
|
260
|
+
# determined based on the `alignment_period`.
|
261
|
+
#
|
262
|
+
# If the values of `current` and `previous` are both 0, then the returned
|
263
|
+
# value is 0. If only `previous` is 0, the returned value is infinity.
|
264
|
+
#
|
265
|
+
# A 10-minute moving mean is computed at each point of the alignment period
|
230
266
|
# prior to the above calculation to smooth the metric and prevent false
|
231
|
-
# positives from very short
|
232
|
-
#
|
233
|
-
#
|
234
|
-
#
|
235
|
-
#
|
236
|
-
#
|
267
|
+
# positives from very short-lived spikes. The moving mean is only
|
268
|
+
# applicable for data whose values are `>= 0`. Any values `< 0` are
|
269
|
+
# treated as a missing datapoint, and are ignored. While `DELTA`
|
270
|
+
# metrics are accepted by this alignment, special care should be taken that
|
271
|
+
# the values for the metric will always be positive. The output is a
|
272
|
+
# `GAUGE` metric with `value_type` `DOUBLE`.
|
237
273
|
ALIGN_PERCENT_CHANGE = 23
|
238
274
|
end
|
239
275
|
|
240
|
-
# A Reducer describes how to aggregate data points from multiple
|
241
|
-
# time series into a single time series
|
276
|
+
# A Reducer operation describes how to aggregate data points from multiple
|
277
|
+
# time series into a single time series, where the value of each data point
|
278
|
+
# in the resulting series is a function of all the already aligned values in
|
279
|
+
# the input time series.
|
242
280
|
module Reducer
|
243
|
-
# No cross-time series reduction. The output of the
|
281
|
+
# No cross-time series reduction. The output of the `Aligner` is
|
244
282
|
# returned.
|
245
283
|
REDUCE_NONE = 0
|
246
284
|
|
247
|
-
# Reduce by computing the mean across time series for each
|
248
|
-
# alignment period. This reducer is valid for
|
249
|
-
#
|
250
|
-
#
|
285
|
+
# Reduce by computing the mean value across time series for each
|
286
|
+
# alignment period. This reducer is valid for
|
287
|
+
# [DELTA][google.api.MetricDescriptor.MetricKind.DELTA] and
|
288
|
+
# [GAUGE][google.api.MetricDescriptor.MetricKind.GAUGE] metrics with
|
289
|
+
# numeric or distribution values. The `value_type` of the output is
|
290
|
+
# [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
|
251
291
|
REDUCE_MEAN = 1
|
252
292
|
|
253
|
-
# Reduce by computing the minimum across time series for each
|
254
|
-
# alignment period. This reducer is valid for
|
255
|
-
#
|
256
|
-
#
|
293
|
+
# Reduce by computing the minimum value across time series for each
|
294
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
295
|
+
# with numeric values. The `value_type` of the output is the same as the
|
296
|
+
# `value_type` of the input.
|
257
297
|
REDUCE_MIN = 2
|
258
298
|
|
259
|
-
# Reduce by computing the maximum across time series for each
|
260
|
-
# alignment period. This reducer is valid for
|
261
|
-
#
|
262
|
-
#
|
299
|
+
# Reduce by computing the maximum value across time series for each
|
300
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
301
|
+
# with numeric values. The `value_type` of the output is the same as the
|
302
|
+
# `value_type` of the input.
|
263
303
|
REDUCE_MAX = 3
|
264
304
|
|
265
305
|
# Reduce by computing the sum across time series for each
|
266
|
-
# alignment period. This reducer is valid for
|
267
|
-
#
|
268
|
-
# the
|
306
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
307
|
+
# with numeric and distribution values. The `value_type` of the output is
|
308
|
+
# the same as the `value_type` of the input.
|
269
309
|
REDUCE_SUM = 4
|
270
310
|
|
271
311
|
# Reduce by computing the standard deviation across time series
|
272
|
-
# for each alignment period. This reducer is valid for
|
273
|
-
#
|
274
|
-
# the output is
|
312
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
313
|
+
# `GAUGE` metrics with numeric or distribution values. The `value_type`
|
314
|
+
# of the output is `DOUBLE`.
|
275
315
|
REDUCE_STDDEV = 5
|
276
316
|
|
277
|
-
# Reduce by computing the
|
278
|
-
# for each alignment period. This reducer is valid for
|
279
|
-
#
|
280
|
-
#
|
281
|
-
# [INT64][google.api.MetricDescriptor.ValueType.INT64].
|
317
|
+
# Reduce by computing the number of data points across time series
|
318
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
319
|
+
# `GAUGE` metrics of numeric, Boolean, distribution, and string
|
320
|
+
# `value_type`. The `value_type` of the output is `INT64`.
|
282
321
|
REDUCE_COUNT = 6
|
283
322
|
|
284
|
-
# Reduce by computing the
|
285
|
-
# series for each alignment period. This reducer is valid for
|
286
|
-
#
|
287
|
-
#
|
323
|
+
# Reduce by computing the number of `True`-valued data points across time
|
324
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
325
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
326
|
+
# is `INT64`.
|
288
327
|
REDUCE_COUNT_TRUE = 7
|
289
328
|
|
290
|
-
# Reduce by computing the
|
291
|
-
# series for each alignment period. This reducer is valid for
|
292
|
-
#
|
293
|
-
#
|
329
|
+
# Reduce by computing the number of `False`-valued data points across time
|
330
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
331
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
332
|
+
# is `INT64`.
|
294
333
|
REDUCE_COUNT_FALSE = 15
|
295
334
|
|
296
|
-
# Reduce by computing the
|
297
|
-
#
|
298
|
-
#
|
299
|
-
# range [0, 1] and has
|
300
|
-
#
|
335
|
+
# Reduce by computing the ratio of the number of `True`-valued data points
|
336
|
+
# to the total number of data points for each alignment period. This
|
337
|
+
# reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`.
|
338
|
+
# The output value is in the range [0.0, 1.0] and has `value_type`
|
339
|
+
# `DOUBLE`.
|
301
340
|
REDUCE_FRACTION_TRUE = 8
|
302
341
|
|
303
|
-
# Reduce by computing 99th
|
304
|
-
#
|
305
|
-
#
|
306
|
-
#
|
342
|
+
# Reduce by computing the [99th
|
343
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
344
|
+
# across time series for each alignment period. This reducer is valid for
|
345
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
346
|
+
# of the output is `DOUBLE`.
|
307
347
|
REDUCE_PERCENTILE_99 = 9
|
308
348
|
|
309
|
-
# Reduce by computing 95th
|
310
|
-
#
|
311
|
-
#
|
312
|
-
#
|
349
|
+
# Reduce by computing the [95th
|
350
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
351
|
+
# across time series for each alignment period. This reducer is valid for
|
352
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
353
|
+
# of the output is `DOUBLE`.
|
313
354
|
REDUCE_PERCENTILE_95 = 10
|
314
355
|
|
315
|
-
# Reduce by computing 50th
|
316
|
-
#
|
317
|
-
#
|
318
|
-
#
|
356
|
+
# Reduce by computing the [50th
|
357
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
358
|
+
# across time series for each alignment period. This reducer is valid for
|
359
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
360
|
+
# of the output is `DOUBLE`.
|
319
361
|
REDUCE_PERCENTILE_50 = 11
|
320
362
|
|
321
|
-
# Reduce by computing 5th
|
322
|
-
#
|
323
|
-
#
|
324
|
-
#
|
363
|
+
# Reduce by computing the [5th
|
364
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
365
|
+
# across time series for each alignment period. This reducer is valid for
|
366
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
367
|
+
# of the output is `DOUBLE`.
|
325
368
|
REDUCE_PERCENTILE_05 = 12
|
326
369
|
end
|
327
370
|
end
|
328
371
|
|
329
372
|
# Describes a ranking-based time series filter. Each input time series is
|
330
|
-
# ranked with an aligner. The filter
|
331
|
-
# series, selecting them based on the relative ranking.
|
373
|
+
# ranked with an aligner. The filter will allow up to `num_time_series` time
|
374
|
+
# series to pass through it, selecting them based on the relative ranking.
|
375
|
+
#
|
376
|
+
# For example, if `ranking_method` is `METHOD_MEAN`,`direction` is `BOTTOM`,
|
377
|
+
# and `num_time_series` is 3, then the 3 times series with the lowest mean
|
378
|
+
# values will pass through the filter.
|
332
379
|
# @!attribute [rw] ranking_method
|
333
380
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Method]
|
334
|
-
# `
|
335
|
-
# value which will be used to compare the time series to other time
|
381
|
+
# `ranking_method` is applied to each time series independently to produce
|
382
|
+
# the value which will be used to compare the time series to other time
|
383
|
+
# series.
|
336
384
|
# @!attribute [rw] num_time_series
|
337
385
|
# @return [::Integer]
|
338
|
-
# How many time series to
|
386
|
+
# How many time series to allow to pass through the filter.
|
339
387
|
# @!attribute [rw] direction
|
340
388
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Direction]
|
341
389
|
# How to use the ranking to select time series that pass through the filter.
|
@@ -343,9 +391,10 @@ module Google
|
|
343
391
|
include ::Google::Protobuf::MessageExts
|
344
392
|
extend ::Google::Protobuf::MessageExts::ClassMethods
|
345
393
|
|
346
|
-
# The value reducers that can be applied to a PickTimeSeriesFilter
|
394
|
+
# The value reducers that can be applied to a `PickTimeSeriesFilter`.
|
347
395
|
module Method
|
348
|
-
# Not allowed
|
396
|
+
# Not allowed. You must specify a different `Method` if you specify a
|
397
|
+
# `PickTimeSeriesFilter`.
|
349
398
|
METHOD_UNSPECIFIED = 0
|
350
399
|
|
351
400
|
# Select the mean of all values.
|
@@ -366,19 +415,21 @@ module Google
|
|
366
415
|
|
367
416
|
# Describes the ranking directions.
|
368
417
|
module Direction
|
369
|
-
# Not allowed
|
418
|
+
# Not allowed. You must specify a different `Direction` if you specify a
|
419
|
+
# `PickTimeSeriesFilter`.
|
370
420
|
DIRECTION_UNSPECIFIED = 0
|
371
421
|
|
372
|
-
# Pass the highest ranking inputs.
|
422
|
+
# Pass the highest `num_time_series` ranking inputs.
|
373
423
|
TOP = 1
|
374
424
|
|
375
|
-
# Pass the lowest ranking inputs.
|
425
|
+
# Pass the lowest `num_time_series` ranking inputs.
|
376
426
|
BOTTOM = 2
|
377
427
|
end
|
378
428
|
end
|
379
429
|
|
380
430
|
# A filter that ranks streams based on their statistical relation to other
|
381
431
|
# streams in a request.
|
432
|
+
# Note: This field is deprecated and completely ignored by the API.
|
382
433
|
# @!attribute [rw] ranking_method
|
383
434
|
# @return [::Google::Cloud::Monitoring::Dashboard::V1::StatisticalTimeSeriesFilter::Method]
|
384
435
|
# `rankingMethod` is applied to a set of time series, and then the produced
|