google-cloud-monitoring-dashboard-v1 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +12 -0
  3. data/AUTHENTICATION.md +169 -0
  4. data/LICENSE.md +203 -0
  5. data/README.md +71 -0
  6. data/lib/google-cloud-monitoring-dashboard-v1.rb +21 -0
  7. data/lib/google/cloud/monitoring/dashboard/v1.rb +37 -0
  8. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service.rb +51 -0
  9. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/client.rb +699 -0
  10. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/credentials.rb +56 -0
  11. data/lib/google/cloud/monitoring/dashboard/v1/version.rb +30 -0
  12. data/lib/google/monitoring/dashboard/v1/common_pb.rb +98 -0
  13. data/lib/google/monitoring/dashboard/v1/dashboard_pb.rb +32 -0
  14. data/lib/google/monitoring/dashboard/v1/dashboards_service_pb.rb +54 -0
  15. data/lib/google/monitoring/dashboard/v1/dashboards_service_services_pb.rb +77 -0
  16. data/lib/google/monitoring/dashboard/v1/drilldowns_pb.rb +20 -0
  17. data/lib/google/monitoring/dashboard/v1/layouts_pb.rb +44 -0
  18. data/lib/google/monitoring/dashboard/v1/metrics_pb.rb +79 -0
  19. data/lib/google/monitoring/dashboard/v1/scorecard_pb.rb +41 -0
  20. data/lib/google/monitoring/dashboard/v1/service_pb.rb +20 -0
  21. data/lib/google/monitoring/dashboard/v1/text_pb.rb +31 -0
  22. data/lib/google/monitoring/dashboard/v1/widget_pb.rb +35 -0
  23. data/lib/google/monitoring/dashboard/v1/xychart_pb.rb +69 -0
  24. data/proto_docs/README.md +4 -0
  25. data/proto_docs/google/api/field_behavior.rb +59 -0
  26. data/proto_docs/google/api/resource.rb +247 -0
  27. data/proto_docs/google/monitoring/dashboard/v1/common.rb +409 -0
  28. data/proto_docs/google/monitoring/dashboard/v1/dashboard.rb +62 -0
  29. data/proto_docs/google/monitoring/dashboard/v1/dashboards_service.rb +106 -0
  30. data/proto_docs/google/monitoring/dashboard/v1/layouts.rb +92 -0
  31. data/proto_docs/google/monitoring/dashboard/v1/metrics.rb +172 -0
  32. data/proto_docs/google/monitoring/dashboard/v1/scorecard.rb +117 -0
  33. data/proto_docs/google/monitoring/dashboard/v1/text.rb +52 -0
  34. data/proto_docs/google/monitoring/dashboard/v1/widget.rb +50 -0
  35. data/proto_docs/google/monitoring/dashboard/v1/xychart.rb +159 -0
  36. data/proto_docs/google/protobuf/duration.rb +98 -0
  37. data/proto_docs/google/protobuf/empty.rb +36 -0
  38. data/proto_docs/google/protobuf/field_mask.rb +229 -0
  39. metadata +221 -0
@@ -0,0 +1,409 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Copyright 2020 Google LLC
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # https://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Auto-generated by gapic-generator-ruby. DO NOT EDIT!
18
+
19
+
20
+ module Google
21
+ module Cloud
22
+ module Monitoring
23
+ module Dashboard
24
+ module V1
25
+ # Describes how to combine multiple time series to provide different views of
26
+ # the data. Aggregation consists of an alignment step on individual time
27
+ # series (`alignment_period` and `per_series_aligner`) followed by an optional
28
+ # reduction step of the data across the aligned time series
29
+ # (`cross_series_reducer` and `group_by_fields`). For more details, see
30
+ # [Aggregation](/monitoring/api/learn_more#aggregation).
31
+ # @!attribute [rw] alignment_period
32
+ # @return [::Google::Protobuf::Duration]
33
+ # The alignment period for per-[time series][TimeSeries]
34
+ # alignment. If present, `alignmentPeriod` must be at least 60
35
+ # seconds. After per-time series alignment, each time series will
36
+ # contain data points only on the period boundaries. If
37
+ # `perSeriesAligner` is not specified or equals `ALIGN_NONE`, then
38
+ # this field is ignored. If `perSeriesAligner` is specified and
39
+ # does not equal `ALIGN_NONE`, then this field must be defined;
40
+ # otherwise an error is returned.
41
+ # @!attribute [rw] per_series_aligner
42
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Aligner]
43
+ # The approach to be used to align individual time series. Not all
44
+ # alignment functions may be applied to all time series, depending
45
+ # on the metric type and value type of the original time
46
+ # series. Alignment may change the metric type or the value type of
47
+ # the time series.
48
+ #
49
+ # Time series data must be aligned in order to perform cross-time
50
+ # series reduction. If `crossSeriesReducer` is specified, then
51
+ # `perSeriesAligner` must be specified and not equal `ALIGN_NONE`
52
+ # and `alignmentPeriod` must be specified; otherwise, an error is
53
+ # returned.
54
+ # @!attribute [rw] cross_series_reducer
55
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Reducer]
56
+ # The approach to be used to combine time series. Not all reducer
57
+ # functions may be applied to all time series, depending on the
58
+ # metric type and the value type of the original time
59
+ # series. Reduction may change the metric type of value type of the
60
+ # time series.
61
+ #
62
+ # Time series data must be aligned in order to perform cross-time
63
+ # series reduction. If `crossSeriesReducer` is specified, then
64
+ # `perSeriesAligner` must be specified and not equal `ALIGN_NONE`
65
+ # and `alignmentPeriod` must be specified; otherwise, an error is
66
+ # returned.
67
+ # @!attribute [rw] group_by_fields
68
+ # @return [::Array<::String>]
69
+ # The set of fields to preserve when `crossSeriesReducer` is
70
+ # specified. The `groupByFields` determine how the time series are
71
+ # partitioned into subsets prior to applying the aggregation
72
+ # function. Each subset contains time series that have the same
73
+ # value for each of the grouping fields. Each individual time
74
+ # series is a member of exactly one subset. The
75
+ # `crossSeriesReducer` is applied to each subset of time series.
76
+ # It is not possible to reduce across different resource types, so
77
+ # this field implicitly contains `resource.type`. Fields not
78
+ # specified in `groupByFields` are aggregated away. If
79
+ # `groupByFields` is not specified and all the time series have
80
+ # the same resource type, then the time series are aggregated into
81
+ # a single output time series. If `crossSeriesReducer` is not
82
+ # defined, this field is ignored.
83
+ class Aggregation
84
+ include ::Google::Protobuf::MessageExts
85
+ extend ::Google::Protobuf::MessageExts::ClassMethods
86
+
87
+ # The Aligner describes how to bring the data points in a single
88
+ # time series into temporal alignment.
89
+ module Aligner
90
+ # No alignment. Raw data is returned. Not valid if cross-time
91
+ # series reduction is requested. The value type of the result is
92
+ # the same as the value type of the input.
93
+ ALIGN_NONE = 0
94
+
95
+ # Align and convert to delta metric type. This alignment is valid
96
+ # for cumulative metrics and delta metrics. Aligning an existing
97
+ # delta metric to a delta metric requires that the alignment
98
+ # period be increased. The value type of the result is the same
99
+ # as the value type of the input.
100
+ #
101
+ # One can think of this aligner as a rate but without time units; that
102
+ # is, the output is conceptually (second_point - first_point).
103
+ ALIGN_DELTA = 1
104
+
105
+ # Align and convert to a rate. This alignment is valid for
106
+ # cumulative metrics and delta metrics with numeric values. The output is a
107
+ # gauge metric with value type
108
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
109
+ #
110
+ # One can think of this aligner as conceptually providing the slope of
111
+ # the line that passes through the value at the start and end of the
112
+ # window. In other words, this is conceptually ((y1 - y0)/(t1 - t0)),
113
+ # and the output unit is one that has a "/time" dimension.
114
+ #
115
+ # If, by rate, you are looking for percentage change, see the
116
+ # `ALIGN_PERCENT_CHANGE` aligner option.
117
+ ALIGN_RATE = 2
118
+
119
+ # Align by interpolating between adjacent points around the
120
+ # period boundary. This alignment is valid for gauge
121
+ # metrics with numeric values. The value type of the result is the same
122
+ # as the value type of the input.
123
+ ALIGN_INTERPOLATE = 3
124
+
125
+ # Align by shifting the oldest data point before the period
126
+ # boundary to the boundary. This alignment is valid for gauge
127
+ # metrics. The value type of the result is the same as the
128
+ # value type of the input.
129
+ ALIGN_NEXT_OLDER = 4
130
+
131
+ # Align time series via aggregation. The resulting data point in
132
+ # the alignment period is the minimum of all data points in the
133
+ # period. This alignment is valid for gauge and delta metrics with numeric
134
+ # values. The value type of the result is the same as the value
135
+ # type of the input.
136
+ ALIGN_MIN = 10
137
+
138
+ # Align time series via aggregation. The resulting data point in
139
+ # the alignment period is the maximum of all data points in the
140
+ # period. This alignment is valid for gauge and delta metrics with numeric
141
+ # values. The value type of the result is the same as the value
142
+ # type of the input.
143
+ ALIGN_MAX = 11
144
+
145
+ # Align time series via aggregation. The resulting data point in
146
+ # the alignment period is the average or arithmetic mean of all
147
+ # data points in the period. This alignment is valid for gauge and delta
148
+ # metrics with numeric values. The value type of the output is
149
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
150
+ ALIGN_MEAN = 12
151
+
152
+ # Align time series via aggregation. The resulting data point in
153
+ # the alignment period is the count of all data points in the
154
+ # period. This alignment is valid for gauge and delta metrics with numeric
155
+ # or Boolean values. The value type of the output is
156
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
157
+ ALIGN_COUNT = 13
158
+
159
+ # Align time series via aggregation. The resulting data point in
160
+ # the alignment period is the sum of all data points in the
161
+ # period. This alignment is valid for gauge and delta metrics with numeric
162
+ # and distribution values. The value type of the output is the
163
+ # same as the value type of the input.
164
+ ALIGN_SUM = 14
165
+
166
+ # Align time series via aggregation. The resulting data point in
167
+ # the alignment period is the standard deviation of all data
168
+ # points in the period. This alignment is valid for gauge and delta metrics
169
+ # with numeric values. The value type of the output is
170
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
171
+ ALIGN_STDDEV = 15
172
+
173
+ # Align time series via aggregation. The resulting data point in
174
+ # the alignment period is the count of True-valued data points in the
175
+ # period. This alignment is valid for gauge metrics with
176
+ # Boolean values. The value type of the output is
177
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
178
+ ALIGN_COUNT_TRUE = 16
179
+
180
+ # Align time series via aggregation. The resulting data point in
181
+ # the alignment period is the count of False-valued data points in the
182
+ # period. This alignment is valid for gauge metrics with
183
+ # Boolean values. The value type of the output is
184
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
185
+ ALIGN_COUNT_FALSE = 24
186
+
187
+ # Align time series via aggregation. The resulting data point in
188
+ # the alignment period is the fraction of True-valued data points in the
189
+ # period. This alignment is valid for gauge metrics with Boolean values.
190
+ # The output value is in the range [0, 1] and has value type
191
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
192
+ ALIGN_FRACTION_TRUE = 17
193
+
194
+ # Align time series via aggregation. The resulting data point in
195
+ # the alignment period is the 99th percentile of all data
196
+ # points in the period. This alignment is valid for gauge and delta metrics
197
+ # with distribution values. The output is a gauge metric with value type
198
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
199
+ ALIGN_PERCENTILE_99 = 18
200
+
201
+ # Align time series via aggregation. The resulting data point in
202
+ # the alignment period is the 95th percentile of all data
203
+ # points in the period. This alignment is valid for gauge and delta metrics
204
+ # with distribution values. The output is a gauge metric with value type
205
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
206
+ ALIGN_PERCENTILE_95 = 19
207
+
208
+ # Align time series via aggregation. The resulting data point in
209
+ # the alignment period is the 50th percentile of all data
210
+ # points in the period. This alignment is valid for gauge and delta metrics
211
+ # with distribution values. The output is a gauge metric with value type
212
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
213
+ ALIGN_PERCENTILE_50 = 20
214
+
215
+ # Align time series via aggregation. The resulting data point in
216
+ # the alignment period is the 5th percentile of all data
217
+ # points in the period. This alignment is valid for gauge and delta metrics
218
+ # with distribution values. The output is a gauge metric with value type
219
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
220
+ ALIGN_PERCENTILE_05 = 21
221
+
222
+ # Align and convert to a percentage change. This alignment is valid for
223
+ # gauge and delta metrics with numeric values. This alignment conceptually
224
+ # computes the equivalent of "((current - previous)/previous)*100"
225
+ # where previous value is determined based on the alignmentPeriod.
226
+ # In the event that previous is 0 the calculated value is infinity with the
227
+ # exception that if both (current - previous) and previous are 0 the
228
+ # calculated value is 0.
229
+ # A 10 minute moving mean is computed at each point of the time window
230
+ # prior to the above calculation to smooth the metric and prevent false
231
+ # positives from very short lived spikes.
232
+ # Only applicable for data that is >= 0. Any values < 0 are treated as
233
+ # no data. While delta metrics are accepted by this alignment special care
234
+ # should be taken that the values for the metric will always be positive.
235
+ # The output is a gauge metric with value type
236
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
237
+ ALIGN_PERCENT_CHANGE = 23
238
+ end
239
+
240
+ # A Reducer describes how to aggregate data points from multiple
241
+ # time series into a single time series.
242
+ module Reducer
243
+ # No cross-time series reduction. The output of the aligner is
244
+ # returned.
245
+ REDUCE_NONE = 0
246
+
247
+ # Reduce by computing the mean across time series for each
248
+ # alignment period. This reducer is valid for delta and
249
+ # gauge metrics with numeric or distribution values. The value type of the
250
+ # output is [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
251
+ REDUCE_MEAN = 1
252
+
253
+ # Reduce by computing the minimum across time series for each
254
+ # alignment period. This reducer is valid for delta and
255
+ # gauge metrics with numeric values. The value type of the output
256
+ # is the same as the value type of the input.
257
+ REDUCE_MIN = 2
258
+
259
+ # Reduce by computing the maximum across time series for each
260
+ # alignment period. This reducer is valid for delta and
261
+ # gauge metrics with numeric values. The value type of the output
262
+ # is the same as the value type of the input.
263
+ REDUCE_MAX = 3
264
+
265
+ # Reduce by computing the sum across time series for each
266
+ # alignment period. This reducer is valid for delta and
267
+ # gauge metrics with numeric and distribution values. The value type of
268
+ # the output is the same as the value type of the input.
269
+ REDUCE_SUM = 4
270
+
271
+ # Reduce by computing the standard deviation across time series
272
+ # for each alignment period. This reducer is valid for delta
273
+ # and gauge metrics with numeric or distribution values. The value type of
274
+ # the output is [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
275
+ REDUCE_STDDEV = 5
276
+
277
+ # Reduce by computing the count of data points across time series
278
+ # for each alignment period. This reducer is valid for delta
279
+ # and gauge metrics of numeric, Boolean, distribution, and string value
280
+ # type. The value type of the output is
281
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
282
+ REDUCE_COUNT = 6
283
+
284
+ # Reduce by computing the count of True-valued data points across time
285
+ # series for each alignment period. This reducer is valid for delta
286
+ # and gauge metrics of Boolean value type. The value type of
287
+ # the output is [INT64][google.api.MetricDescriptor.ValueType.INT64].
288
+ REDUCE_COUNT_TRUE = 7
289
+
290
+ # Reduce by computing the count of False-valued data points across time
291
+ # series for each alignment period. This reducer is valid for delta
292
+ # and gauge metrics of Boolean value type. The value type of
293
+ # the output is [INT64][google.api.MetricDescriptor.ValueType.INT64].
294
+ REDUCE_COUNT_FALSE = 15
295
+
296
+ # Reduce by computing the fraction of True-valued data points across time
297
+ # series for each alignment period. This reducer is valid for delta
298
+ # and gauge metrics of Boolean value type. The output value is in the
299
+ # range [0, 1] and has value type
300
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
301
+ REDUCE_FRACTION_TRUE = 8
302
+
303
+ # Reduce by computing 99th percentile of data points across time series
304
+ # for each alignment period. This reducer is valid for gauge and delta
305
+ # metrics of numeric and distribution type. The value of the output is
306
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
307
+ REDUCE_PERCENTILE_99 = 9
308
+
309
+ # Reduce by computing 95th percentile of data points across time series
310
+ # for each alignment period. This reducer is valid for gauge and delta
311
+ # metrics of numeric and distribution type. The value of the output is
312
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
313
+ REDUCE_PERCENTILE_95 = 10
314
+
315
+ # Reduce by computing 50th percentile of data points across time series
316
+ # for each alignment period. This reducer is valid for gauge and delta
317
+ # metrics of numeric and distribution type. The value of the output is
318
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
319
+ REDUCE_PERCENTILE_50 = 11
320
+
321
+ # Reduce by computing 5th percentile of data points across time series
322
+ # for each alignment period. This reducer is valid for gauge and delta
323
+ # metrics of numeric and distribution type. The value of the output is
324
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
325
+ REDUCE_PERCENTILE_05 = 12
326
+ end
327
+ end
328
+
329
+ # Describes a ranking-based time series filter. Each input time series is
330
+ # ranked with an aligner. The filter lets through up to `num_time_series` time
331
+ # series, selecting them based on the relative ranking.
332
+ # @!attribute [rw] ranking_method
333
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Method]
334
+ # `rankingMethod` is applied to each time series independently to produce the
335
+ # value which will be used to compare the time series to other time series.
336
+ # @!attribute [rw] num_time_series
337
+ # @return [::Integer]
338
+ # How many time series to return.
339
+ # @!attribute [rw] direction
340
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Direction]
341
+ # How to use the ranking to select time series that pass through the filter.
342
+ class PickTimeSeriesFilter
343
+ include ::Google::Protobuf::MessageExts
344
+ extend ::Google::Protobuf::MessageExts::ClassMethods
345
+
346
+ # The value reducers that can be applied to a PickTimeSeriesFilter.
347
+ module Method
348
+ # Not allowed in well-formed requests.
349
+ METHOD_UNSPECIFIED = 0
350
+
351
+ # Select the mean of all values.
352
+ METHOD_MEAN = 1
353
+
354
+ # Select the maximum value.
355
+ METHOD_MAX = 2
356
+
357
+ # Select the minimum value.
358
+ METHOD_MIN = 3
359
+
360
+ # Compute the sum of all values.
361
+ METHOD_SUM = 4
362
+
363
+ # Select the most recent value.
364
+ METHOD_LATEST = 5
365
+ end
366
+
367
+ # Describes the ranking directions.
368
+ module Direction
369
+ # Not allowed in well-formed requests.
370
+ DIRECTION_UNSPECIFIED = 0
371
+
372
+ # Pass the highest ranking inputs.
373
+ TOP = 1
374
+
375
+ # Pass the lowest ranking inputs.
376
+ BOTTOM = 2
377
+ end
378
+ end
379
+
380
+ # A filter that ranks streams based on their statistical relation to other
381
+ # streams in a request.
382
+ # @!attribute [rw] ranking_method
383
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::StatisticalTimeSeriesFilter::Method]
384
+ # `rankingMethod` is applied to a set of time series, and then the produced
385
+ # value for each individual time series is used to compare a given time
386
+ # series to others.
387
+ # These are methods that cannot be applied stream-by-stream, but rather
388
+ # require the full context of a request to evaluate time series.
389
+ # @!attribute [rw] num_time_series
390
+ # @return [::Integer]
391
+ # How many time series to output.
392
+ class StatisticalTimeSeriesFilter
393
+ include ::Google::Protobuf::MessageExts
394
+ extend ::Google::Protobuf::MessageExts::ClassMethods
395
+
396
+ # The filter methods that can be applied to a stream.
397
+ module Method
398
+ # Not allowed in well-formed requests.
399
+ METHOD_UNSPECIFIED = 0
400
+
401
+ # Compute the outlier score of each stream.
402
+ METHOD_CLUSTER_OUTLIER = 1
403
+ end
404
+ end
405
+ end
406
+ end
407
+ end
408
+ end
409
+ end
@@ -0,0 +1,62 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Copyright 2020 Google LLC
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # https://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Auto-generated by gapic-generator-ruby. DO NOT EDIT!
18
+
19
+
20
+ module Google
21
+ module Cloud
22
+ module Monitoring
23
+ module Dashboard
24
+ module V1
25
+ # A Google Stackdriver dashboard. Dashboards define the content and layout
26
+ # of pages in the Stackdriver web application.
27
+ # @!attribute [rw] name
28
+ # @return [::String]
29
+ # The resource name of the dashboard.
30
+ # @!attribute [rw] display_name
31
+ # @return [::String]
32
+ # The mutable, human-readable name.
33
+ # @!attribute [rw] etag
34
+ # @return [::String]
35
+ # `etag` is used for optimistic concurrency control as a way to help
36
+ # prevent simultaneous updates of a policy from overwriting each other.
37
+ # An `etag` is returned in the response to `GetDashboard`, and
38
+ # users are expected to put that etag in the request to `UpdateDashboard` to
39
+ # ensure that their change will be applied to the same version of the
40
+ # Dashboard configuration. The field should not be passed during
41
+ # dashboard creation.
42
+ # @!attribute [rw] grid_layout
43
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::GridLayout]
44
+ # Content is arranged with a basic layout that re-flows a simple list of
45
+ # informational elements like widgets or tiles.
46
+ # @!attribute [rw] row_layout
47
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::RowLayout]
48
+ # The content is divided into equally spaced rows and the widgets are
49
+ # arranged horizontally.
50
+ # @!attribute [rw] column_layout
51
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::ColumnLayout]
52
+ # The content is divided into equally spaced columns and the widgets are
53
+ # arranged vertically.
54
+ class Dashboard
55
+ include ::Google::Protobuf::MessageExts
56
+ extend ::Google::Protobuf::MessageExts::ClassMethods
57
+ end
58
+ end
59
+ end
60
+ end
61
+ end
62
+ end