google-cloud-monitoring-dashboard-v1 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (39) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +12 -0
  3. data/AUTHENTICATION.md +169 -0
  4. data/LICENSE.md +203 -0
  5. data/README.md +71 -0
  6. data/lib/google-cloud-monitoring-dashboard-v1.rb +21 -0
  7. data/lib/google/cloud/monitoring/dashboard/v1.rb +37 -0
  8. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service.rb +51 -0
  9. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/client.rb +699 -0
  10. data/lib/google/cloud/monitoring/dashboard/v1/dashboards_service/credentials.rb +56 -0
  11. data/lib/google/cloud/monitoring/dashboard/v1/version.rb +30 -0
  12. data/lib/google/monitoring/dashboard/v1/common_pb.rb +98 -0
  13. data/lib/google/monitoring/dashboard/v1/dashboard_pb.rb +32 -0
  14. data/lib/google/monitoring/dashboard/v1/dashboards_service_pb.rb +54 -0
  15. data/lib/google/monitoring/dashboard/v1/dashboards_service_services_pb.rb +77 -0
  16. data/lib/google/monitoring/dashboard/v1/drilldowns_pb.rb +20 -0
  17. data/lib/google/monitoring/dashboard/v1/layouts_pb.rb +44 -0
  18. data/lib/google/monitoring/dashboard/v1/metrics_pb.rb +79 -0
  19. data/lib/google/monitoring/dashboard/v1/scorecard_pb.rb +41 -0
  20. data/lib/google/monitoring/dashboard/v1/service_pb.rb +20 -0
  21. data/lib/google/monitoring/dashboard/v1/text_pb.rb +31 -0
  22. data/lib/google/monitoring/dashboard/v1/widget_pb.rb +35 -0
  23. data/lib/google/monitoring/dashboard/v1/xychart_pb.rb +69 -0
  24. data/proto_docs/README.md +4 -0
  25. data/proto_docs/google/api/field_behavior.rb +59 -0
  26. data/proto_docs/google/api/resource.rb +247 -0
  27. data/proto_docs/google/monitoring/dashboard/v1/common.rb +409 -0
  28. data/proto_docs/google/monitoring/dashboard/v1/dashboard.rb +62 -0
  29. data/proto_docs/google/monitoring/dashboard/v1/dashboards_service.rb +106 -0
  30. data/proto_docs/google/monitoring/dashboard/v1/layouts.rb +92 -0
  31. data/proto_docs/google/monitoring/dashboard/v1/metrics.rb +172 -0
  32. data/proto_docs/google/monitoring/dashboard/v1/scorecard.rb +117 -0
  33. data/proto_docs/google/monitoring/dashboard/v1/text.rb +52 -0
  34. data/proto_docs/google/monitoring/dashboard/v1/widget.rb +50 -0
  35. data/proto_docs/google/monitoring/dashboard/v1/xychart.rb +159 -0
  36. data/proto_docs/google/protobuf/duration.rb +98 -0
  37. data/proto_docs/google/protobuf/empty.rb +36 -0
  38. data/proto_docs/google/protobuf/field_mask.rb +229 -0
  39. metadata +221 -0
@@ -0,0 +1,409 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Copyright 2020 Google LLC
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # https://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Auto-generated by gapic-generator-ruby. DO NOT EDIT!
18
+
19
+
20
+ module Google
21
+ module Cloud
22
+ module Monitoring
23
+ module Dashboard
24
+ module V1
25
+ # Describes how to combine multiple time series to provide different views of
26
+ # the data. Aggregation consists of an alignment step on individual time
27
+ # series (`alignment_period` and `per_series_aligner`) followed by an optional
28
+ # reduction step of the data across the aligned time series
29
+ # (`cross_series_reducer` and `group_by_fields`). For more details, see
30
+ # [Aggregation](/monitoring/api/learn_more#aggregation).
31
+ # @!attribute [rw] alignment_period
32
+ # @return [::Google::Protobuf::Duration]
33
+ # The alignment period for per-[time series][TimeSeries]
34
+ # alignment. If present, `alignmentPeriod` must be at least 60
35
+ # seconds. After per-time series alignment, each time series will
36
+ # contain data points only on the period boundaries. If
37
+ # `perSeriesAligner` is not specified or equals `ALIGN_NONE`, then
38
+ # this field is ignored. If `perSeriesAligner` is specified and
39
+ # does not equal `ALIGN_NONE`, then this field must be defined;
40
+ # otherwise an error is returned.
41
+ # @!attribute [rw] per_series_aligner
42
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Aligner]
43
+ # The approach to be used to align individual time series. Not all
44
+ # alignment functions may be applied to all time series, depending
45
+ # on the metric type and value type of the original time
46
+ # series. Alignment may change the metric type or the value type of
47
+ # the time series.
48
+ #
49
+ # Time series data must be aligned in order to perform cross-time
50
+ # series reduction. If `crossSeriesReducer` is specified, then
51
+ # `perSeriesAligner` must be specified and not equal `ALIGN_NONE`
52
+ # and `alignmentPeriod` must be specified; otherwise, an error is
53
+ # returned.
54
+ # @!attribute [rw] cross_series_reducer
55
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::Aggregation::Reducer]
56
+ # The approach to be used to combine time series. Not all reducer
57
+ # functions may be applied to all time series, depending on the
58
+ # metric type and the value type of the original time
59
+ # series. Reduction may change the metric type of value type of the
60
+ # time series.
61
+ #
62
+ # Time series data must be aligned in order to perform cross-time
63
+ # series reduction. If `crossSeriesReducer` is specified, then
64
+ # `perSeriesAligner` must be specified and not equal `ALIGN_NONE`
65
+ # and `alignmentPeriod` must be specified; otherwise, an error is
66
+ # returned.
67
+ # @!attribute [rw] group_by_fields
68
+ # @return [::Array<::String>]
69
+ # The set of fields to preserve when `crossSeriesReducer` is
70
+ # specified. The `groupByFields` determine how the time series are
71
+ # partitioned into subsets prior to applying the aggregation
72
+ # function. Each subset contains time series that have the same
73
+ # value for each of the grouping fields. Each individual time
74
+ # series is a member of exactly one subset. The
75
+ # `crossSeriesReducer` is applied to each subset of time series.
76
+ # It is not possible to reduce across different resource types, so
77
+ # this field implicitly contains `resource.type`. Fields not
78
+ # specified in `groupByFields` are aggregated away. If
79
+ # `groupByFields` is not specified and all the time series have
80
+ # the same resource type, then the time series are aggregated into
81
+ # a single output time series. If `crossSeriesReducer` is not
82
+ # defined, this field is ignored.
83
+ class Aggregation
84
+ include ::Google::Protobuf::MessageExts
85
+ extend ::Google::Protobuf::MessageExts::ClassMethods
86
+
87
+ # The Aligner describes how to bring the data points in a single
88
+ # time series into temporal alignment.
89
+ module Aligner
90
+ # No alignment. Raw data is returned. Not valid if cross-time
91
+ # series reduction is requested. The value type of the result is
92
+ # the same as the value type of the input.
93
+ ALIGN_NONE = 0
94
+
95
+ # Align and convert to delta metric type. This alignment is valid
96
+ # for cumulative metrics and delta metrics. Aligning an existing
97
+ # delta metric to a delta metric requires that the alignment
98
+ # period be increased. The value type of the result is the same
99
+ # as the value type of the input.
100
+ #
101
+ # One can think of this aligner as a rate but without time units; that
102
+ # is, the output is conceptually (second_point - first_point).
103
+ ALIGN_DELTA = 1
104
+
105
+ # Align and convert to a rate. This alignment is valid for
106
+ # cumulative metrics and delta metrics with numeric values. The output is a
107
+ # gauge metric with value type
108
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
109
+ #
110
+ # One can think of this aligner as conceptually providing the slope of
111
+ # the line that passes through the value at the start and end of the
112
+ # window. In other words, this is conceptually ((y1 - y0)/(t1 - t0)),
113
+ # and the output unit is one that has a "/time" dimension.
114
+ #
115
+ # If, by rate, you are looking for percentage change, see the
116
+ # `ALIGN_PERCENT_CHANGE` aligner option.
117
+ ALIGN_RATE = 2
118
+
119
+ # Align by interpolating between adjacent points around the
120
+ # period boundary. This alignment is valid for gauge
121
+ # metrics with numeric values. The value type of the result is the same
122
+ # as the value type of the input.
123
+ ALIGN_INTERPOLATE = 3
124
+
125
+ # Align by shifting the oldest data point before the period
126
+ # boundary to the boundary. This alignment is valid for gauge
127
+ # metrics. The value type of the result is the same as the
128
+ # value type of the input.
129
+ ALIGN_NEXT_OLDER = 4
130
+
131
+ # Align time series via aggregation. The resulting data point in
132
+ # the alignment period is the minimum of all data points in the
133
+ # period. This alignment is valid for gauge and delta metrics with numeric
134
+ # values. The value type of the result is the same as the value
135
+ # type of the input.
136
+ ALIGN_MIN = 10
137
+
138
+ # Align time series via aggregation. The resulting data point in
139
+ # the alignment period is the maximum of all data points in the
140
+ # period. This alignment is valid for gauge and delta metrics with numeric
141
+ # values. The value type of the result is the same as the value
142
+ # type of the input.
143
+ ALIGN_MAX = 11
144
+
145
+ # Align time series via aggregation. The resulting data point in
146
+ # the alignment period is the average or arithmetic mean of all
147
+ # data points in the period. This alignment is valid for gauge and delta
148
+ # metrics with numeric values. The value type of the output is
149
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
150
+ ALIGN_MEAN = 12
151
+
152
+ # Align time series via aggregation. The resulting data point in
153
+ # the alignment period is the count of all data points in the
154
+ # period. This alignment is valid for gauge and delta metrics with numeric
155
+ # or Boolean values. The value type of the output is
156
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
157
+ ALIGN_COUNT = 13
158
+
159
+ # Align time series via aggregation. The resulting data point in
160
+ # the alignment period is the sum of all data points in the
161
+ # period. This alignment is valid for gauge and delta metrics with numeric
162
+ # and distribution values. The value type of the output is the
163
+ # same as the value type of the input.
164
+ ALIGN_SUM = 14
165
+
166
+ # Align time series via aggregation. The resulting data point in
167
+ # the alignment period is the standard deviation of all data
168
+ # points in the period. This alignment is valid for gauge and delta metrics
169
+ # with numeric values. The value type of the output is
170
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
171
+ ALIGN_STDDEV = 15
172
+
173
+ # Align time series via aggregation. The resulting data point in
174
+ # the alignment period is the count of True-valued data points in the
175
+ # period. This alignment is valid for gauge metrics with
176
+ # Boolean values. The value type of the output is
177
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
178
+ ALIGN_COUNT_TRUE = 16
179
+
180
+ # Align time series via aggregation. The resulting data point in
181
+ # the alignment period is the count of False-valued data points in the
182
+ # period. This alignment is valid for gauge metrics with
183
+ # Boolean values. The value type of the output is
184
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
185
+ ALIGN_COUNT_FALSE = 24
186
+
187
+ # Align time series via aggregation. The resulting data point in
188
+ # the alignment period is the fraction of True-valued data points in the
189
+ # period. This alignment is valid for gauge metrics with Boolean values.
190
+ # The output value is in the range [0, 1] and has value type
191
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
192
+ ALIGN_FRACTION_TRUE = 17
193
+
194
+ # Align time series via aggregation. The resulting data point in
195
+ # the alignment period is the 99th percentile of all data
196
+ # points in the period. This alignment is valid for gauge and delta metrics
197
+ # with distribution values. The output is a gauge metric with value type
198
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
199
+ ALIGN_PERCENTILE_99 = 18
200
+
201
+ # Align time series via aggregation. The resulting data point in
202
+ # the alignment period is the 95th percentile of all data
203
+ # points in the period. This alignment is valid for gauge and delta metrics
204
+ # with distribution values. The output is a gauge metric with value type
205
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
206
+ ALIGN_PERCENTILE_95 = 19
207
+
208
+ # Align time series via aggregation. The resulting data point in
209
+ # the alignment period is the 50th percentile of all data
210
+ # points in the period. This alignment is valid for gauge and delta metrics
211
+ # with distribution values. The output is a gauge metric with value type
212
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
213
+ ALIGN_PERCENTILE_50 = 20
214
+
215
+ # Align time series via aggregation. The resulting data point in
216
+ # the alignment period is the 5th percentile of all data
217
+ # points in the period. This alignment is valid for gauge and delta metrics
218
+ # with distribution values. The output is a gauge metric with value type
219
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
220
+ ALIGN_PERCENTILE_05 = 21
221
+
222
+ # Align and convert to a percentage change. This alignment is valid for
223
+ # gauge and delta metrics with numeric values. This alignment conceptually
224
+ # computes the equivalent of "((current - previous)/previous)*100"
225
+ # where previous value is determined based on the alignmentPeriod.
226
+ # In the event that previous is 0 the calculated value is infinity with the
227
+ # exception that if both (current - previous) and previous are 0 the
228
+ # calculated value is 0.
229
+ # A 10 minute moving mean is computed at each point of the time window
230
+ # prior to the above calculation to smooth the metric and prevent false
231
+ # positives from very short lived spikes.
232
+ # Only applicable for data that is >= 0. Any values < 0 are treated as
233
+ # no data. While delta metrics are accepted by this alignment special care
234
+ # should be taken that the values for the metric will always be positive.
235
+ # The output is a gauge metric with value type
236
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
237
+ ALIGN_PERCENT_CHANGE = 23
238
+ end
239
+
240
+ # A Reducer describes how to aggregate data points from multiple
241
+ # time series into a single time series.
242
+ module Reducer
243
+ # No cross-time series reduction. The output of the aligner is
244
+ # returned.
245
+ REDUCE_NONE = 0
246
+
247
+ # Reduce by computing the mean across time series for each
248
+ # alignment period. This reducer is valid for delta and
249
+ # gauge metrics with numeric or distribution values. The value type of the
250
+ # output is [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
251
+ REDUCE_MEAN = 1
252
+
253
+ # Reduce by computing the minimum across time series for each
254
+ # alignment period. This reducer is valid for delta and
255
+ # gauge metrics with numeric values. The value type of the output
256
+ # is the same as the value type of the input.
257
+ REDUCE_MIN = 2
258
+
259
+ # Reduce by computing the maximum across time series for each
260
+ # alignment period. This reducer is valid for delta and
261
+ # gauge metrics with numeric values. The value type of the output
262
+ # is the same as the value type of the input.
263
+ REDUCE_MAX = 3
264
+
265
+ # Reduce by computing the sum across time series for each
266
+ # alignment period. This reducer is valid for delta and
267
+ # gauge metrics with numeric and distribution values. The value type of
268
+ # the output is the same as the value type of the input.
269
+ REDUCE_SUM = 4
270
+
271
+ # Reduce by computing the standard deviation across time series
272
+ # for each alignment period. This reducer is valid for delta
273
+ # and gauge metrics with numeric or distribution values. The value type of
274
+ # the output is [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
275
+ REDUCE_STDDEV = 5
276
+
277
+ # Reduce by computing the count of data points across time series
278
+ # for each alignment period. This reducer is valid for delta
279
+ # and gauge metrics of numeric, Boolean, distribution, and string value
280
+ # type. The value type of the output is
281
+ # [INT64][google.api.MetricDescriptor.ValueType.INT64].
282
+ REDUCE_COUNT = 6
283
+
284
+ # Reduce by computing the count of True-valued data points across time
285
+ # series for each alignment period. This reducer is valid for delta
286
+ # and gauge metrics of Boolean value type. The value type of
287
+ # the output is [INT64][google.api.MetricDescriptor.ValueType.INT64].
288
+ REDUCE_COUNT_TRUE = 7
289
+
290
+ # Reduce by computing the count of False-valued data points across time
291
+ # series for each alignment period. This reducer is valid for delta
292
+ # and gauge metrics of Boolean value type. The value type of
293
+ # the output is [INT64][google.api.MetricDescriptor.ValueType.INT64].
294
+ REDUCE_COUNT_FALSE = 15
295
+
296
+ # Reduce by computing the fraction of True-valued data points across time
297
+ # series for each alignment period. This reducer is valid for delta
298
+ # and gauge metrics of Boolean value type. The output value is in the
299
+ # range [0, 1] and has value type
300
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE].
301
+ REDUCE_FRACTION_TRUE = 8
302
+
303
+ # Reduce by computing 99th percentile of data points across time series
304
+ # for each alignment period. This reducer is valid for gauge and delta
305
+ # metrics of numeric and distribution type. The value of the output is
306
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
307
+ REDUCE_PERCENTILE_99 = 9
308
+
309
+ # Reduce by computing 95th percentile of data points across time series
310
+ # for each alignment period. This reducer is valid for gauge and delta
311
+ # metrics of numeric and distribution type. The value of the output is
312
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
313
+ REDUCE_PERCENTILE_95 = 10
314
+
315
+ # Reduce by computing 50th percentile of data points across time series
316
+ # for each alignment period. This reducer is valid for gauge and delta
317
+ # metrics of numeric and distribution type. The value of the output is
318
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
319
+ REDUCE_PERCENTILE_50 = 11
320
+
321
+ # Reduce by computing 5th percentile of data points across time series
322
+ # for each alignment period. This reducer is valid for gauge and delta
323
+ # metrics of numeric and distribution type. The value of the output is
324
+ # [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]
325
+ REDUCE_PERCENTILE_05 = 12
326
+ end
327
+ end
328
+
329
+ # Describes a ranking-based time series filter. Each input time series is
330
+ # ranked with an aligner. The filter lets through up to `num_time_series` time
331
+ # series, selecting them based on the relative ranking.
332
+ # @!attribute [rw] ranking_method
333
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Method]
334
+ # `rankingMethod` is applied to each time series independently to produce the
335
+ # value which will be used to compare the time series to other time series.
336
+ # @!attribute [rw] num_time_series
337
+ # @return [::Integer]
338
+ # How many time series to return.
339
+ # @!attribute [rw] direction
340
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::PickTimeSeriesFilter::Direction]
341
+ # How to use the ranking to select time series that pass through the filter.
342
+ class PickTimeSeriesFilter
343
+ include ::Google::Protobuf::MessageExts
344
+ extend ::Google::Protobuf::MessageExts::ClassMethods
345
+
346
+ # The value reducers that can be applied to a PickTimeSeriesFilter.
347
+ module Method
348
+ # Not allowed in well-formed requests.
349
+ METHOD_UNSPECIFIED = 0
350
+
351
+ # Select the mean of all values.
352
+ METHOD_MEAN = 1
353
+
354
+ # Select the maximum value.
355
+ METHOD_MAX = 2
356
+
357
+ # Select the minimum value.
358
+ METHOD_MIN = 3
359
+
360
+ # Compute the sum of all values.
361
+ METHOD_SUM = 4
362
+
363
+ # Select the most recent value.
364
+ METHOD_LATEST = 5
365
+ end
366
+
367
+ # Describes the ranking directions.
368
+ module Direction
369
+ # Not allowed in well-formed requests.
370
+ DIRECTION_UNSPECIFIED = 0
371
+
372
+ # Pass the highest ranking inputs.
373
+ TOP = 1
374
+
375
+ # Pass the lowest ranking inputs.
376
+ BOTTOM = 2
377
+ end
378
+ end
379
+
380
+ # A filter that ranks streams based on their statistical relation to other
381
+ # streams in a request.
382
+ # @!attribute [rw] ranking_method
383
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::StatisticalTimeSeriesFilter::Method]
384
+ # `rankingMethod` is applied to a set of time series, and then the produced
385
+ # value for each individual time series is used to compare a given time
386
+ # series to others.
387
+ # These are methods that cannot be applied stream-by-stream, but rather
388
+ # require the full context of a request to evaluate time series.
389
+ # @!attribute [rw] num_time_series
390
+ # @return [::Integer]
391
+ # How many time series to output.
392
+ class StatisticalTimeSeriesFilter
393
+ include ::Google::Protobuf::MessageExts
394
+ extend ::Google::Protobuf::MessageExts::ClassMethods
395
+
396
+ # The filter methods that can be applied to a stream.
397
+ module Method
398
+ # Not allowed in well-formed requests.
399
+ METHOD_UNSPECIFIED = 0
400
+
401
+ # Compute the outlier score of each stream.
402
+ METHOD_CLUSTER_OUTLIER = 1
403
+ end
404
+ end
405
+ end
406
+ end
407
+ end
408
+ end
409
+ end
@@ -0,0 +1,62 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Copyright 2020 Google LLC
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # https://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Auto-generated by gapic-generator-ruby. DO NOT EDIT!
18
+
19
+
20
+ module Google
21
+ module Cloud
22
+ module Monitoring
23
+ module Dashboard
24
+ module V1
25
+ # A Google Stackdriver dashboard. Dashboards define the content and layout
26
+ # of pages in the Stackdriver web application.
27
+ # @!attribute [rw] name
28
+ # @return [::String]
29
+ # The resource name of the dashboard.
30
+ # @!attribute [rw] display_name
31
+ # @return [::String]
32
+ # The mutable, human-readable name.
33
+ # @!attribute [rw] etag
34
+ # @return [::String]
35
+ # `etag` is used for optimistic concurrency control as a way to help
36
+ # prevent simultaneous updates of a policy from overwriting each other.
37
+ # An `etag` is returned in the response to `GetDashboard`, and
38
+ # users are expected to put that etag in the request to `UpdateDashboard` to
39
+ # ensure that their change will be applied to the same version of the
40
+ # Dashboard configuration. The field should not be passed during
41
+ # dashboard creation.
42
+ # @!attribute [rw] grid_layout
43
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::GridLayout]
44
+ # Content is arranged with a basic layout that re-flows a simple list of
45
+ # informational elements like widgets or tiles.
46
+ # @!attribute [rw] row_layout
47
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::RowLayout]
48
+ # The content is divided into equally spaced rows and the widgets are
49
+ # arranged horizontally.
50
+ # @!attribute [rw] column_layout
51
+ # @return [::Google::Cloud::Monitoring::Dashboard::V1::ColumnLayout]
52
+ # The content is divided into equally spaced columns and the widgets are
53
+ # arranged vertically.
54
+ class Dashboard
55
+ include ::Google::Protobuf::MessageExts
56
+ extend ::Google::Protobuf::MessageExts::ClassMethods
57
+ end
58
+ end
59
+ end
60
+ end
61
+ end
62
+ end