google-cloud-automl 0.2.0 → 0.3.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 5a884b6557b601de476761217ec7144f1a61fa1dc293f5cfe48e9d7cddfb9d1e
4
- data.tar.gz: b8e9291961dadca99ce64ca4283d93748f6483908c630381f8f973fdedc19476
3
+ metadata.gz: 7374774e7d04ac9f95b2f313daa23986c9d81708a66a48e40315e17b81d7cc93
4
+ data.tar.gz: 12baba889dfa5a99a8a9c87be3d5d1b8a4f021405d08e151ff6ab5b6ef33ddd4
5
5
  SHA512:
6
- metadata.gz: 563d9105be5fe9c0884267090cfd4c7fafbbf17de4587b586268fc9ab5d0dcbcb7fddcbde93ce196be4a86f448d6c4d96ff439d4f90d6fcf38648a30efa1719b
7
- data.tar.gz: 60f027e0ab389a58f6ffe09b7da80fc3f075665d0ff7f76fb5c770340f83132e178d7a0a5ea3eff36126d5584587a0f133e7e3de578a2dc4618efcb99c2c5cb4
6
+ metadata.gz: 84052af35bb2fc61b0a9dc0fbb65dc60bae5716ea393d1a262d2ff38f8e62c333f25328d3fc260caeb4444b475436f3447131b9664c84a03251157f34ffbb218
7
+ data.tar.gz: eca6889853699423249a5143856c7eda5d2b9a63be010de498da77f2916ddbdffa07da8f873faf705fec16e16a2dee1d693d001d00bbe1adbd564e408ebaa02e
@@ -1199,6 +1199,10 @@ module Google
1199
1199
  # Model deployment metadata specific to Image Object Detection.
1200
1200
  # A hash of the same form as `Google::Cloud::AutoML::V1beta1::ImageObjectDetectionModelDeploymentMetadata`
1201
1201
  # can also be provided.
1202
+ # @param image_classification_model_deployment_metadata [Google::Cloud::AutoML::V1beta1::ImageClassificationModelDeploymentMetadata | Hash]
1203
+ # Model deployment metadata specific to Image Classification.
1204
+ # A hash of the same form as `Google::Cloud::AutoML::V1beta1::ImageClassificationModelDeploymentMetadata`
1205
+ # can also be provided.
1202
1206
  # @param options [Google::Gax::CallOptions]
1203
1207
  # Overrides the default settings for this call, e.g, timeout,
1204
1208
  # retries, etc.
@@ -1240,10 +1244,12 @@ module Google
1240
1244
  def deploy_model \
1241
1245
  name,
1242
1246
  image_object_detection_model_deployment_metadata: nil,
1247
+ image_classification_model_deployment_metadata: nil,
1243
1248
  options: nil
1244
1249
  req = {
1245
1250
  name: name,
1246
- image_object_detection_model_deployment_metadata: image_object_detection_model_deployment_metadata
1251
+ image_object_detection_model_deployment_metadata: image_object_detection_model_deployment_metadata,
1252
+ image_classification_model_deployment_metadata: image_classification_model_deployment_metadata
1247
1253
  }.delete_if { |_, v| v.nil? }
1248
1254
  req = Google::Gax::to_proto(req, Google::Cloud::AutoML::V1beta1::DeployModelRequest)
1249
1255
  operation = Google::Gax::Operation.new(
@@ -54,34 +54,38 @@ module Google
54
54
  # This is the default value.
55
55
  # * `mobile-low-latency-1` - A model that, in addition to providing
56
56
  # prediction via AutoML API, can also be exported (see
57
- # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
58
- # with TensorFlow afterwards. Expected to have low latency, but
59
- # may have lower prediction quality than other models.
57
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
58
+ # and used on a mobile or edge device with TensorFlow
59
+ # afterwards. Expected to have low latency, but may have lower
60
+ # prediction quality than other models.
60
61
  # * `mobile-versatile-1` - A model that, in addition to providing
61
62
  # prediction via AutoML API, can also be exported (see
62
- # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
63
- # with TensorFlow afterwards.
63
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
64
+ # and used on a mobile or edge device with TensorFlow
65
+ # afterwards.
64
66
  # * `mobile-high-accuracy-1` - A model that, in addition to providing
65
67
  # prediction via AutoML API, can also be exported (see
66
- # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
67
- # with TensorFlow afterwards. Expected to have a higher
68
- # latency, but should also have a higher prediction quality
69
- # than other models.
68
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
69
+ # and used on a mobile or edge device with TensorFlow
70
+ # afterwards. Expected to have a higher latency, but should
71
+ # also have a higher prediction quality than other models.
70
72
  # * `mobile-core-ml-low-latency-1` - A model that, in addition to providing
71
73
  # prediction via AutoML API, can also be exported (see
72
- # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with Core
73
- # ML afterwards. Expected to have low latency, but may have
74
- # lower prediction quality than other models.
74
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
75
+ # and used on a mobile device with Core ML afterwards. Expected
76
+ # to have low latency, but may have lower prediction quality
77
+ # than other models.
75
78
  # * `mobile-core-ml-versatile-1` - A model that, in addition to providing
76
79
  # prediction via AutoML API, can also be exported (see
77
- # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with Core
78
- # ML afterwards.
80
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
81
+ # and used on a mobile device with Core ML afterwards.
79
82
  # * `mobile-core-ml-high-accuracy-1` - A model that, in addition to
80
83
  # providing prediction via AutoML API, can also be exported
81
- # (see {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with
82
- # Core ML afterwards. Expected to have a higher latency, but
83
- # should also have a higher prediction quality than other
84
- # models.
84
+ # (see
85
+ # {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel})
86
+ # and used on a mobile device with Core ML afterwards. Expected
87
+ # to have a higher latency, but should also have a higher
88
+ # prediction quality than other models.
85
89
  class ImageClassificationModelMetadata; end
86
90
 
87
91
  # Model metadata specific to image object detection.
@@ -132,6 +136,16 @@ module Google
132
136
  # Guaranteed to not exceed the train budget.
133
137
  class ImageObjectDetectionModelMetadata; end
134
138
 
139
+ # Model deployment metadata specific to Image Classification.
140
+ # @!attribute [rw] node_count
141
+ # @return [Integer]
142
+ # Input only. The number of nodes to deploy the model on. A node is an
143
+ # abstraction of a machine resource, which can handle online prediction QPS
144
+ # as given in the model's
145
+ # {Google::Cloud::AutoML::V1p1beta::ImageClassificationModelMetadata#node_qps node_qps}.
146
+ # Must be between 1 and 100, inclusive on both ends.
147
+ class ImageClassificationModelDeploymentMetadata; end
148
+
135
149
  # Model deployment metadata specific to Image Object Detection.
136
150
  # @!attribute [rw] node_count
137
151
  # @return [Integer]
@@ -269,6 +269,9 @@ module Google
269
269
  # @!attribute [rw] image_object_detection_model_deployment_metadata
270
270
  # @return [Google::Cloud::AutoML::V1beta1::ImageObjectDetectionModelDeploymentMetadata]
271
271
  # Model deployment metadata specific to Image Object Detection.
272
+ # @!attribute [rw] image_classification_model_deployment_metadata
273
+ # @return [Google::Cloud::AutoML::V1beta1::ImageClassificationModelDeploymentMetadata]
274
+ # Model deployment metadata specific to Image Classification.
272
275
  # @!attribute [rw] name
273
276
  # @return [String]
274
277
  # Resource name of the model to deploy.
@@ -88,11 +88,13 @@ module Google
88
88
  # 01:30 UTC on January 15, 2017.
89
89
  #
90
90
  # In JavaScript, one can convert a Date object to this format using the
91
- # standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
91
+ # standard
92
+ # [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
92
93
  # method. In Python, a standard `datetime.datetime` object can be converted
93
- # to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime)
94
- # with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one
95
- # can use the Joda Time's [`ISODateTimeFormat.dateTime()`](
94
+ # to this format using
95
+ # [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
96
+ # the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
97
+ # the Joda Time's [`ISODateTimeFormat.dateTime()`](
96
98
  # http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
97
99
  # ) to obtain a formatter capable of generating timestamps in this format.
98
100
  # @!attribute [rw] seconds
@@ -4,10 +4,10 @@
4
4
 
5
5
  require 'google/protobuf'
6
6
 
7
+ require 'google/api/annotations_pb'
7
8
  require 'google/cloud/automl/v1beta1/annotation_spec_pb'
8
9
  require 'google/cloud/automl/v1beta1/classification_pb'
9
10
  require 'google/protobuf/timestamp_pb'
10
- require 'google/api/annotations_pb'
11
11
  Google::Protobuf::DescriptorPool.generated_pool.build do
12
12
  add_message "google.cloud.automl.v1beta1.ImageClassificationDatasetMetadata" do
13
13
  optional :classification_type, :enum, 1, "google.cloud.automl.v1beta1.ClassificationType"
@@ -29,6 +29,9 @@ Google::Protobuf::DescriptorPool.generated_pool.build do
29
29
  optional :train_budget_milli_node_hours, :int64, 6
30
30
  optional :train_cost_milli_node_hours, :int64, 7
31
31
  end
32
+ add_message "google.cloud.automl.v1beta1.ImageClassificationModelDeploymentMetadata" do
33
+ optional :node_count, :int64, 1
34
+ end
32
35
  add_message "google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata" do
33
36
  optional :node_count, :int64, 1
34
37
  end
@@ -39,5 +42,6 @@ module Google::Cloud::AutoML::V1beta1
39
42
  ImageObjectDetectionDatasetMetadata = Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.automl.v1beta1.ImageObjectDetectionDatasetMetadata").msgclass
40
43
  ImageClassificationModelMetadata = Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.automl.v1beta1.ImageClassificationModelMetadata").msgclass
41
44
  ImageObjectDetectionModelMetadata = Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata").msgclass
45
+ ImageClassificationModelDeploymentMetadata = Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.automl.v1beta1.ImageClassificationModelDeploymentMetadata").msgclass
42
46
  ImageObjectDetectionModelDeploymentMetadata = Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata").msgclass
43
47
  end
@@ -116,6 +116,7 @@ Google::Protobuf::DescriptorPool.generated_pool.build do
116
116
  optional :name, :string, 1
117
117
  oneof :model_deployment_metadata do
118
118
  optional :image_object_detection_model_deployment_metadata, :message, 2, "google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata"
119
+ optional :image_classification_model_deployment_metadata, :message, 4, "google.cloud.automl.v1beta1.ImageClassificationModelDeploymentMetadata"
119
120
  end
120
121
  end
121
122
  add_message "google.cloud.automl.v1beta1.UndeployModelRequest" do
@@ -16,7 +16,7 @@
16
16
  module Google
17
17
  module Cloud
18
18
  module AutoML
19
- VERSION = "0.2.0".freeze
19
+ VERSION = "0.3.0".freeze
20
20
  end
21
21
  end
22
22
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: google-cloud-automl
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.2.0
4
+ version: 0.3.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Google LLC
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-08-23 00:00:00.000000000 Z
11
+ date: 2019-10-01 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: google-gax