google-cloud-automl 0.1.0 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +3 -3
  3. data/lib/google/cloud/automl.rb +2 -2
  4. data/lib/google/cloud/automl/v1beta1.rb +2 -2
  5. data/lib/google/cloud/automl/v1beta1/automl_client.rb +4 -20
  6. data/lib/google/cloud/automl/v1beta1/classification_pb.rb +1 -0
  7. data/lib/google/cloud/automl/v1beta1/data_items_pb.rb +40 -1
  8. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/classification.rb +9 -0
  9. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/column_spec.rb +1 -6
  10. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_items.rb +125 -9
  11. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_types.rb +0 -8
  12. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/detection.rb +4 -8
  13. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/image.rb +10 -3
  14. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/io.rb +257 -125
  15. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model.rb +4 -8
  16. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model_evaluation.rb +5 -9
  17. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/prediction_service.rb +56 -6
  18. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/service.rb +3 -18
  19. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/table_spec.rb +4 -0
  20. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb +26 -30
  21. data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text.rb +2 -4
  22. data/lib/google/cloud/automl/v1beta1/prediction_service_client.rb +40 -7
  23. data/lib/google/cloud/automl/v1beta1/prediction_service_pb.rb +3 -1
  24. data/lib/google/cloud/automl/v1beta1/prediction_service_services_pb.rb +10 -5
  25. data/lib/google/cloud/automl/v1beta1/service_services_pb.rb +1 -2
  26. data/lib/google/cloud/automl/v1beta1/table_spec_pb.rb +1 -0
  27. data/lib/google/cloud/automl/v1beta1/tables_pb.rb +0 -4
  28. data/lib/google/cloud/automl/version.rb +1 -1
  29. metadata +3 -3
@@ -47,8 +47,7 @@ module Google
47
47
  # Metadata for text sentiment models.
48
48
  # @!attribute [rw] name
49
49
  # @return [String]
50
- # Output only.
51
- # Resource name of the model.
50
+ # Output only. Resource name of the model.
52
51
  # Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
53
52
  # @!attribute [rw] display_name
54
53
  # @return [String]
@@ -58,17 +57,14 @@ module Google
58
57
  # (_), and ASCII digits 0-9. It must start with a letter.
59
58
  # @!attribute [rw] dataset_id
60
59
  # @return [String]
61
- # Required.
62
- # The resource ID of the dataset used to create the model. The dataset must
60
+ # Required. The resource ID of the dataset used to create the model. The dataset must
63
61
  # come from the same ancestor project and location.
64
62
  # @!attribute [rw] create_time
65
63
  # @return [Google::Protobuf::Timestamp]
66
- # Output only.
67
- # Timestamp when the model training finished and can be used for prediction.
64
+ # Output only. Timestamp when the model training finished and can be used for prediction.
68
65
  # @!attribute [rw] update_time
69
66
  # @return [Google::Protobuf::Timestamp]
70
- # Output only.
71
- # Timestamp when this model was last updated.
67
+ # Output only. Timestamp when this model was last updated.
72
68
  # @!attribute [rw] deployment_state
73
69
  # @return [Google::Cloud::AutoML::V1beta1::Model::DeploymentState]
74
70
  # Output only. Deployment state of the model. A model can only serve
@@ -46,15 +46,13 @@ module Google
46
46
  # Evaluation metrics for text extraction models.
47
47
  # @!attribute [rw] name
48
48
  # @return [String]
49
- # Output only.
50
- # Resource name of the model evaluation.
49
+ # Output only. Resource name of the model evaluation.
51
50
  # Format:
52
51
  #
53
52
  # `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
54
53
  # @!attribute [rw] annotation_spec_id
55
54
  # @return [String]
56
- # Output only.
57
- # The ID of the annotation spec that the model evaluation applies to. The
55
+ # Output only. The ID of the annotation spec that the model evaluation applies to. The
58
56
  # The ID is empty for the overall model evaluation.
59
57
  # For Tables annotation specs in the dataset do not exist and this ID is
60
58
  # always not set, but for CLASSIFICATION
@@ -66,7 +64,7 @@ module Google
66
64
  # @!attribute [rw] display_name
67
65
  # @return [String]
68
66
  # Output only. The value of
69
- # {Google::Cloud::AutoML::V1beta1::AnnotationSpec#dispay_name display_name} at
67
+ # {Google::Cloud::AutoML::V1beta1::AnnotationSpec#display_name display_name} at
70
68
  # the moment when the model was trained. Because this field returns a value
71
69
  # at model training time, for different models trained from the same dataset,
72
70
  # the values may differ, since display names could had been changed between
@@ -79,12 +77,10 @@ module Google
79
77
  # The display_name is empty for the overall model evaluation.
80
78
  # @!attribute [rw] create_time
81
79
  # @return [Google::Protobuf::Timestamp]
82
- # Output only.
83
- # Timestamp when this model evaluation was created.
80
+ # Output only. Timestamp when this model evaluation was created.
84
81
  # @!attribute [rw] evaluated_example_count
85
82
  # @return [Integer]
86
- # Output only.
87
- # The number of examples used for model evaluation, i.e. for
83
+ # Output only. The number of examples used for model evaluation, i.e. for
88
84
  # which ground truth from time of model creation is compared against the
89
85
  # predicted annotations created by the model.
90
86
  # For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is
@@ -17,14 +17,14 @@ module Google
17
17
  module Cloud
18
18
  module AutoML
19
19
  module V1beta1
20
- # Request message for {Google::Cloud::AutoML::V1beta1::PredictionService::Predict PredictionService::Predict}.
20
+ # Request message for
21
+ # {Google::Cloud::AutoML::V1beta1::PredictionService::Predict PredictionService::Predict}.
21
22
  # @!attribute [rw] name
22
23
  # @return [String]
23
24
  # Name of the model requested to serve the prediction.
24
25
  # @!attribute [rw] payload
25
26
  # @return [Google::Cloud::AutoML::V1beta1::ExamplePayload]
26
- # Required.
27
- # Payload to perform a prediction on. The payload must match the
27
+ # Required. Payload to perform a prediction on. The payload must match the
28
28
  # problem type that the model was trained to solve.
29
29
  # @!attribute [rw] params
30
30
  # @return [Hash{String => String}]
@@ -36,6 +36,14 @@ module Google
36
36
  # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
37
37
  # makes predictions for an image, it will only produce results that have
38
38
  # at least this confidence score. The default is 0.5.
39
+ #
40
+ # * For Image Object Detection:
41
+ # `score_threshold` - (float) When Model detects objects on the image,
42
+ # it will only produce bounding boxes which have at least this
43
+ # confidence score. Value in 0 to 1 range, default is 0.5.
44
+ # `max_bounding_box_count` - (int64) No more than this number of bounding
45
+ # boxes will be returned in the response. Default is 100, the
46
+ # requested value may be limited by server.
39
47
  # * For Tables:
40
48
  # `feature_importance` - (boolean) Whether
41
49
  #
@@ -46,11 +54,19 @@ module Google
46
54
  # The default is false.
47
55
  class PredictRequest; end
48
56
 
49
- # Response message for {Google::Cloud::AutoML::V1beta1::PredictionService::Predict PredictionService::Predict}.
57
+ # Response message for
58
+ # {Google::Cloud::AutoML::V1beta1::PredictionService::Predict PredictionService::Predict}.
50
59
  # @!attribute [rw] payload
51
60
  # @return [Array<Google::Cloud::AutoML::V1beta1::AnnotationPayload>]
52
61
  # Prediction result.
53
62
  # Translation and Text Sentiment will return precisely one payload.
63
+ # @!attribute [rw] preprocessed_input
64
+ # @return [Google::Cloud::AutoML::V1beta1::ExamplePayload]
65
+ # The preprocessed example that AutoML actually makes prediction on.
66
+ # Empty if AutoML does not preprocess the input example.
67
+ # * For Text Extraction:
68
+ # If the input is a .pdf file, the OCR'ed text will be provided in
69
+ # {Google::Cloud::AutoML::V1beta1::Document#document_text document_text}.
54
70
  # @!attribute [rw] metadata
55
71
  # @return [Hash{String => String}]
56
72
  # Additional domain-specific prediction response metadata.
@@ -70,7 +86,8 @@ module Google
70
86
  # from the previous Natural Language Sentiment Analysis API.
71
87
  class PredictResponse; end
72
88
 
73
- # Request message for {Google::Cloud::AutoML::V1beta1::PredictionService::BatchPredict PredictionService::BatchPredict}.
89
+ # Request message for
90
+ # {Google::Cloud::AutoML::V1beta1::PredictionService::BatchPredict PredictionService::BatchPredict}.
74
91
  # @!attribute [rw] name
75
92
  # @return [String]
76
93
  # Name of the model requested to serve the batch prediction.
@@ -86,6 +103,27 @@ module Google
86
103
  # Additional domain-specific parameters for the predictions, any string must
87
104
  # be up to 25000 characters long.
88
105
  #
106
+ # * For Text Classification:
107
+ #
108
+ # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
109
+ # makes predictions for a text snippet, it will only produce results
110
+ # that have at least this confidence score. The default is 0.5.
111
+ #
112
+ # * For Image Classification:
113
+ #
114
+ # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
115
+ # makes predictions for an image, it will only produce results that
116
+ # have at least this confidence score. The default is 0.5.
117
+ #
118
+ # * For Image Object Detection:
119
+ #
120
+ # `score_threshold` - (float) When Model detects objects on the image,
121
+ # it will only produce bounding boxes which have at least this
122
+ # confidence score. Value in 0 to 1 range, default is 0.5.
123
+ # `max_bounding_box_count` - (int64) No more than this number of bounding
124
+ # boxes will be produced per image. Default is 100, the
125
+ # requested value may be limited by server.
126
+ #
89
127
  # * For Video Classification :
90
128
  # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
91
129
  # makes predictions for a video, it will only produce results that
@@ -128,7 +166,19 @@ module Google
128
166
 
129
167
  # Result of the Batch Predict. This message is returned in
130
168
  # {Google::Longrunning::Operation#response response} of the operation returned
131
- # by the {Google::Cloud::AutoML::V1beta1::PredictionService::BatchPredict PredictionService::BatchPredict}.
169
+ # by the
170
+ # {Google::Cloud::AutoML::V1beta1::PredictionService::BatchPredict PredictionService::BatchPredict}.
171
+ # @!attribute [rw] metadata
172
+ # @return [Hash{String => String}]
173
+ # Additional domain-specific prediction response metadata.
174
+ #
175
+ # * For Image Object Detection:
176
+ # `max_bounding_box_count` - (int64) At most that many bounding boxes per
177
+ # image could have been returned.
178
+ #
179
+ # * For Video Object Tracking:
180
+ # `max_bounding_box_count` - (int64) At most that many bounding boxes per
181
+ # frame could have been returned.
132
182
  class BatchPredictResult; end
133
183
  end
134
184
  end
@@ -73,12 +73,7 @@ module Google
73
73
  # The dataset which replaces the resource on the server.
74
74
  # @!attribute [rw] update_mask
75
75
  # @return [Google::Protobuf::FieldMask]
76
- # The update mask applies to the resource. For the `FieldMask` definition,
77
- # see
78
- #
79
- # https:
80
- # //developers.google.com/protocol-buffers
81
- # // /docs/reference/google.protobuf#fieldmask
76
+ # The update mask applies to the resource.
82
77
  class UpdateDatasetRequest; end
83
78
 
84
79
  # Request message for {Google::Cloud::AutoML::V1beta1::AutoML::DeleteDataset AutoML::DeleteDataset}.
@@ -160,12 +155,7 @@ module Google
160
155
  # The table spec which replaces the resource on the server.
161
156
  # @!attribute [rw] update_mask
162
157
  # @return [Google::Protobuf::FieldMask]
163
- # The update mask applies to the resource. For the `FieldMask` definition,
164
- # see
165
- #
166
- # https:
167
- # //developers.google.com/protocol-buffers
168
- # // /docs/reference/google.protobuf#fieldmask
158
+ # The update mask applies to the resource.
169
159
  class UpdateTableSpecRequest; end
170
160
 
171
161
  # Request message for {Google::Cloud::AutoML::V1beta1::AutoML::GetColumnSpec AutoML::GetColumnSpec}.
@@ -215,12 +205,7 @@ module Google
215
205
  # The column spec which replaces the resource on the server.
216
206
  # @!attribute [rw] update_mask
217
207
  # @return [Google::Protobuf::FieldMask]
218
- # The update mask applies to the resource. For the `FieldMask` definition,
219
- # see
220
- #
221
- # https:
222
- # //developers.google.com/protocol-buffers
223
- # // /docs/reference/google.protobuf#fieldmask
208
+ # The update mask applies to the resource.
224
209
  class UpdateColumnSpecRequest; end
225
210
 
226
211
  # Request message for {Google::Cloud::AutoML::V1beta1::AutoML::CreateModel AutoML::CreateModel}.
@@ -45,6 +45,10 @@ module Google
45
45
  # @!attribute [rw] row_count
46
46
  # @return [Integer]
47
47
  # Output only. The number of rows (i.e. examples) in the table.
48
+ # @!attribute [rw] valid_row_count
49
+ # @return [Integer]
50
+ # Output only. The number of valid rows (i.e. without values that don't match
51
+ # DataType-s of their columns).
48
52
  # @!attribute [rw] column_count
49
53
  # @return [Integer]
50
54
  # Output only. The number of columns of the table. That is, the number of
@@ -27,10 +27,13 @@ module Google
27
27
  # training & prediction target.
28
28
  # This column must be non-nullable and have one of following data types
29
29
  # (otherwise model creation will error):
30
+ #
30
31
  # * CATEGORY
32
+ #
31
33
  # * FLOAT64
32
- # Furthermore, if the type is CATEGORY , then only up to
33
- # 100 unique values may exist in that column across all rows.
34
+ #
35
+ # If the type is CATEGORY , only up to
36
+ # 100 unique values may exist in that column across all rows.
34
37
  #
35
38
  # NOTE: Updates of this field will instantly affect any other users
36
39
  # concurrently working with the dataset.
@@ -74,11 +77,12 @@ module Google
74
77
  # for the timestamp at which these stats were last updated.
75
78
  # @!attribute [rw] stats_update_time
76
79
  # @return [Google::Protobuf::Timestamp]
77
- # The most recent timestamp when target_column_correlations field and all
78
- # descendant ColumnSpec.data_stats and ColumnSpec.top_correlated_columns
79
- # fields were last (re-)generated. Any changes that happened to the dataset
80
- # afterwards are not reflected in these fields values. The regeneration
81
- # happens in the background on a best effort basis.
80
+ # Output only. The most recent timestamp when target_column_correlations
81
+ # field and all descendant ColumnSpec.data_stats and
82
+ # ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
83
+ # changes that happened to the dataset afterwards are not reflected in these
84
+ # fields values. The regeneration happens in the background on a best effort
85
+ # basis.
82
86
  class TablesDatasetMetadata; end
83
87
 
84
88
  # Model metadata specific to AutoML Tables.
@@ -107,12 +111,16 @@ module Google
107
111
  #
108
112
  # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
109
113
  # must never be included here.
114
+ #
110
115
  # Only 3 fields are used:
111
- # name - May be set on CreateModel, if set only the columns specified are
112
- # used, otherwise all primary table's columns (except the ones listed
113
- # above) are used for the training and prediction input.
114
- # display_name - Output only.
115
- # data_type - Output only.
116
+ #
117
+ # * name - May be set on CreateModel, if set only the columns specified are
118
+ # used, otherwise all primary table's columns (except the ones listed
119
+ # above) are used for the training and prediction input.
120
+ #
121
+ # * display_name - Output only.
122
+ #
123
+ # * data_type - Output only.
116
124
  # @!attribute [rw] optimization_objective
117
125
  # @return [String]
118
126
  # Objective function the model is optimizing towards. The training process
@@ -140,18 +148,6 @@ module Google
140
148
  # "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
141
149
  # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
142
150
  # "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
143
- #
144
- # FORECASTING:
145
- # "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
146
- # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
147
- # @!attribute [rw] optimization_objective_recall_value
148
- # @return [Float]
149
- # Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
150
- # Must be between 0 and 1, inclusive.
151
- # @!attribute [rw] optimization_objective_precision_value
152
- # @return [Float]
153
- # Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
154
- # Must be between 0 and 1, inclusive.
155
151
  # @!attribute [rw] tables_model_column_info
156
152
  # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
157
153
  # Output only. Auxiliary information for each of the
@@ -206,9 +202,11 @@ module Google
206
202
  #
207
203
  # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
208
204
  # The value depends on the column's DataType:
209
- # CATEGORY - the predicted (with the above confidence `score`) CATEGORY
210
- # value.
211
- # FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
205
+ #
206
+ # * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
207
+ # value.
208
+ #
209
+ # * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
212
210
  # @!attribute [rw] tables_model_column_info
213
211
  # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
214
212
  # Output only. Auxiliary information for each of the model's
@@ -236,9 +234,7 @@ module Google
236
234
  # its ColumnSpec).
237
235
  # @!attribute [rw] feature_importance
238
236
  # @return [Float]
239
- # Output only.
240
- #
241
- # When given as part of a Model (always populated):
237
+ # Output only. When given as part of a Model (always populated):
242
238
  # Measurement of how much model predictions correctness on the TEST data
243
239
  # depend on values in this column. A value between 0 and 1, higher means
244
240
  # higher influence. These values are normalized - for all input feature
@@ -20,8 +20,7 @@ module Google
20
20
  # Dataset metadata for classification.
21
21
  # @!attribute [rw] classification_type
22
22
  # @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
23
- # Required.
24
- # Type of the classification problem.
23
+ # Required. Type of the classification problem.
25
24
  class TextClassificationDatasetMetadata; end
26
25
 
27
26
  # Model metadata that is specific to text classification.
@@ -36,8 +35,7 @@ module Google
36
35
  # Dataset metadata for text sentiment.
37
36
  # @!attribute [rw] sentiment_max
38
37
  # @return [Integer]
39
- # Required.
40
- # A sentiment is expressed as an integer ordinal, where higher value
38
+ # Required. A sentiment is expressed as an integer ordinal, where higher value
41
39
  # means a more positive sentiment. The range of sentiments that will be used
42
40
  # is between 0 and sentiment_max (inclusive on both ends), and all the values
43
41
  # in the range must be represented in the dataset before a model can be
@@ -244,12 +244,13 @@ module Google
244
244
  # up to 5MB. Not available for FORECASTING
245
245
  #
246
246
  # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#prediction_type prediction_type}.
247
+ # * Text Sentiment - TextSnippet, content up 500 characters, UTF-8
248
+ # encoded.
247
249
  #
248
250
  # @param name [String]
249
251
  # Name of the model requested to serve the prediction.
250
252
  # @param payload [Google::Cloud::AutoML::V1beta1::ExamplePayload | Hash]
251
- # Required.
252
- # Payload to perform a prediction on. The payload must match the
253
+ # Required. Payload to perform a prediction on. The payload must match the
253
254
  # problem type that the model was trained to solve.
254
255
  # A hash of the same form as `Google::Cloud::AutoML::V1beta1::ExamplePayload`
255
256
  # can also be provided.
@@ -262,6 +263,14 @@ module Google
262
263
  # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
263
264
  # makes predictions for an image, it will only produce results that have
264
265
  # at least this confidence score. The default is 0.5.
266
+ #
267
+ # * For Image Object Detection:
268
+ # `score_threshold` - (float) When Model detects objects on the image,
269
+ # it will only produce bounding boxes which have at least this
270
+ # confidence score. Value in 0 to 1 range, default is 0.5.
271
+ # `max_bounding_box_count` - (int64) No more than this number of bounding
272
+ # boxes will be returned in the response. Default is 100, the
273
+ # requested value may be limited by server.
265
274
  # * For Tables:
266
275
  # `feature_importance` - (boolean) Whether
267
276
  #
@@ -303,16 +312,19 @@ module Google
303
312
  @predict.call(req, options, &block)
304
313
  end
305
314
 
306
- # Perform a batch prediction. Unlike the online {Google::Cloud::AutoML::V1beta1::PredictionService::Predict Predict}, batch
315
+ # Perform a batch prediction. Unlike the online
316
+ # {Google::Cloud::AutoML::V1beta1::PredictionService::Predict Predict}, batch
307
317
  # prediction result won't be immediately available in the response. Instead,
308
318
  # a long running operation object is returned. User can poll the operation
309
319
  # result via {Google::Longrunning::Operations::GetOperation GetOperation}
310
- # method. Once the operation is done, {Google::Cloud::AutoML::V1beta1::BatchPredictResult BatchPredictResult} is returned in
311
- # the {Google::Longrunning::Operation#response response} field.
320
+ # method. Once the operation is done,
321
+ # {Google::Cloud::AutoML::V1beta1::BatchPredictResult BatchPredictResult} is
322
+ # returned in the {Google::Longrunning::Operation#response response} field.
312
323
  # Available for following ML problems:
324
+ # * Image Classification
325
+ # * Image Object Detection
313
326
  # * Video Classification
314
- # * Video Object Tracking
315
- # * Text Extraction
327
+ # * Video Object Tracking * Text Extraction
316
328
  # * Tables
317
329
  #
318
330
  # @param name [String]
@@ -330,6 +342,27 @@ module Google
330
342
  # Additional domain-specific parameters for the predictions, any string must
331
343
  # be up to 25000 characters long.
332
344
  #
345
+ # * For Text Classification:
346
+ #
347
+ # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
348
+ # makes predictions for a text snippet, it will only produce results
349
+ # that have at least this confidence score. The default is 0.5.
350
+ #
351
+ # * For Image Classification:
352
+ #
353
+ # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
354
+ # makes predictions for an image, it will only produce results that
355
+ # have at least this confidence score. The default is 0.5.
356
+ #
357
+ # * For Image Object Detection:
358
+ #
359
+ # `score_threshold` - (float) When Model detects objects on the image,
360
+ # it will only produce bounding boxes which have at least this
361
+ # confidence score. Value in 0 to 1 range, default is 0.5.
362
+ # `max_bounding_box_count` - (int64) No more than this number of bounding
363
+ # boxes will be produced per image. Default is 100, the
364
+ # requested value may be limited by server.
365
+ #
333
366
  # * For Video Classification :
334
367
  # `score_threshold` - (float) A value from 0.0 to 1.0. When the model
335
368
  # makes predictions for a video, it will only produce results that
@@ -5,12 +5,12 @@
5
5
  require 'google/protobuf'
6
6
 
7
7
  require 'google/api/annotations_pb'
8
+ require 'google/api/client_pb'
8
9
  require 'google/cloud/automl/v1beta1/annotation_payload_pb'
9
10
  require 'google/cloud/automl/v1beta1/data_items_pb'
10
11
  require 'google/cloud/automl/v1beta1/io_pb'
11
12
  require 'google/cloud/automl/v1beta1/operations_pb'
12
13
  require 'google/longrunning/operations_pb'
13
- require 'google/api/client_pb'
14
14
  Google::Protobuf::DescriptorPool.generated_pool.build do
15
15
  add_message "google.cloud.automl.v1beta1.PredictRequest" do
16
16
  optional :name, :string, 1
@@ -19,6 +19,7 @@ Google::Protobuf::DescriptorPool.generated_pool.build do
19
19
  end
20
20
  add_message "google.cloud.automl.v1beta1.PredictResponse" do
21
21
  repeated :payload, :message, 1, "google.cloud.automl.v1beta1.AnnotationPayload"
22
+ optional :preprocessed_input, :message, 3, "google.cloud.automl.v1beta1.ExamplePayload"
22
23
  map :metadata, :string, :string, 2
23
24
  end
24
25
  add_message "google.cloud.automl.v1beta1.BatchPredictRequest" do
@@ -28,6 +29,7 @@ Google::Protobuf::DescriptorPool.generated_pool.build do
28
29
  map :params, :string, :string, 5
29
30
  end
30
31
  add_message "google.cloud.automl.v1beta1.BatchPredictResult" do
32
+ map :metadata, :string, :string, 1
31
33
  end
32
34
  end
33
35