google-cloud-automl-v1beta1 0.1.0 → 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/AUTHENTICATION.md +6 -6
- data/README.md +1 -1
- data/lib/google/cloud/automl/v1beta1.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl/client.rb +488 -488
- data/lib/google/cloud/automl/v1beta1/automl/credentials.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl/operations.rb +100 -100
- data/lib/google/cloud/automl/v1beta1/automl/paths.rb +25 -25
- data/lib/google/cloud/automl/v1beta1/prediction_service.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/prediction_service/client.rb +78 -78
- data/lib/google/cloud/automl/v1beta1/prediction_service/credentials.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/prediction_service/operations.rb +100 -100
- data/lib/google/cloud/automl/v1beta1/prediction_service/paths.rb +3 -3
- data/lib/google/cloud/automl/v1beta1/version.rb +1 -1
- data/proto_docs/google/api/resource.rb +12 -12
- data/proto_docs/google/cloud/automl/v1beta1/annotation_payload.rb +13 -13
- data/proto_docs/google/cloud/automl/v1beta1/annotation_spec.rb +5 -5
- data/proto_docs/google/cloud/automl/v1beta1/classification.rb +43 -43
- data/proto_docs/google/cloud/automl/v1beta1/column_spec.rb +12 -12
- data/proto_docs/google/cloud/automl/v1beta1/data_items.rb +49 -49
- data/proto_docs/google/cloud/automl/v1beta1/data_stats.rb +65 -65
- data/proto_docs/google/cloud/automl/v1beta1/data_types.rb +23 -23
- data/proto_docs/google/cloud/automl/v1beta1/dataset.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/detection.rb +32 -32
- data/proto_docs/google/cloud/automl/v1beta1/geometry.rb +7 -7
- data/proto_docs/google/cloud/automl/v1beta1/image.rb +38 -38
- data/proto_docs/google/cloud/automl/v1beta1/io.rb +85 -85
- data/proto_docs/google/cloud/automl/v1beta1/model.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/model_evaluation.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/operations.rb +56 -56
- data/proto_docs/google/cloud/automl/v1beta1/prediction_service.rb +41 -41
- data/proto_docs/google/cloud/automl/v1beta1/ranges.rb +4 -4
- data/proto_docs/google/cloud/automl/v1beta1/regression.rb +7 -7
- data/proto_docs/google/cloud/automl/v1beta1/service.rb +167 -167
- data/proto_docs/google/cloud/automl/v1beta1/table_spec.rb +9 -9
- data/proto_docs/google/cloud/automl/v1beta1/tables.rb +47 -47
- data/proto_docs/google/cloud/automl/v1beta1/temporal.rb +4 -4
- data/proto_docs/google/cloud/automl/v1beta1/text.rb +15 -15
- data/proto_docs/google/cloud/automl/v1beta1/text_extraction.rb +14 -14
- data/proto_docs/google/cloud/automl/v1beta1/text_segment.rb +5 -5
- data/proto_docs/google/cloud/automl/v1beta1/text_sentiment.rb +15 -15
- data/proto_docs/google/cloud/automl/v1beta1/translation.rb +16 -16
- data/proto_docs/google/cloud/automl/v1beta1/video.rb +8 -8
- data/proto_docs/google/longrunning/operations.rb +30 -30
- data/proto_docs/google/protobuf/any.rb +4 -4
- data/proto_docs/google/protobuf/duration.rb +4 -4
- data/proto_docs/google/protobuf/empty.rb +2 -2
- data/proto_docs/google/protobuf/field_mask.rb +3 -3
- data/proto_docs/google/protobuf/struct.rb +18 -18
- data/proto_docs/google/protobuf/timestamp.rb +4 -4
- data/proto_docs/google/rpc/status.rb +6 -6
- metadata +2 -2
@@ -31,13 +31,13 @@ module Google
|
|
31
31
|
# Used by:
|
32
32
|
# * Tables
|
33
33
|
# @!attribute [rw] name
|
34
|
-
# @return [String]
|
34
|
+
# @return [::String]
|
35
35
|
# Output only. The resource name of the table spec.
|
36
36
|
# Form:
|
37
37
|
#
|
38
38
|
# `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}`
|
39
39
|
# @!attribute [rw] time_column_spec_id
|
40
|
-
# @return [String]
|
40
|
+
# @return [::String]
|
41
41
|
# column_spec_id of the time column. Only used if the parent dataset's
|
42
42
|
# ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE
|
43
43
|
# and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and
|
@@ -47,27 +47,27 @@ module Google
|
|
47
47
|
# will be assigned by AutoML. NOTE: Updates of this field will instantly
|
48
48
|
# affect any other users concurrently working with the dataset.
|
49
49
|
# @!attribute [rw] row_count
|
50
|
-
# @return [Integer]
|
50
|
+
# @return [::Integer]
|
51
51
|
# Output only. The number of rows (i.e. examples) in the table.
|
52
52
|
# @!attribute [rw] valid_row_count
|
53
|
-
# @return [Integer]
|
53
|
+
# @return [::Integer]
|
54
54
|
# Output only. The number of valid rows (i.e. without values that don't match
|
55
55
|
# DataType-s of their columns).
|
56
56
|
# @!attribute [rw] column_count
|
57
|
-
# @return [Integer]
|
57
|
+
# @return [::Integer]
|
58
58
|
# Output only. The number of columns of the table. That is, the number of
|
59
59
|
# child ColumnSpec-s.
|
60
60
|
# @!attribute [rw] input_configs
|
61
|
-
# @return [Array
|
61
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::InputConfig>]
|
62
62
|
# Output only. Input configs via which data currently residing in the table
|
63
63
|
# had been imported.
|
64
64
|
# @!attribute [rw] etag
|
65
|
-
# @return [String]
|
65
|
+
# @return [::String]
|
66
66
|
# Used to perform consistent read-modify-write updates. If not set, a blind
|
67
67
|
# "overwrite" update happens.
|
68
68
|
class TableSpec
|
69
|
-
include Google::Protobuf::MessageExts
|
70
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
69
|
+
include ::Google::Protobuf::MessageExts
|
70
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
71
71
|
end
|
72
72
|
end
|
73
73
|
end
|
@@ -23,10 +23,10 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Metadata for a dataset used for AutoML Tables.
|
25
25
|
# @!attribute [rw] primary_table_spec_id
|
26
|
-
# @return [String]
|
26
|
+
# @return [::String]
|
27
27
|
# Output only. The table_spec_id of the primary table of this dataset.
|
28
28
|
# @!attribute [rw] target_column_spec_id
|
29
|
-
# @return [String]
|
29
|
+
# @return [::String]
|
30
30
|
# column_spec_id of the primary table's column that should be used as the
|
31
31
|
# training & prediction target.
|
32
32
|
# This column must be non-nullable and have one of following data types
|
@@ -42,7 +42,7 @@ module Google
|
|
42
42
|
# NOTE: Updates of this field will instantly affect any other users
|
43
43
|
# concurrently working with the dataset.
|
44
44
|
# @!attribute [rw] weight_column_spec_id
|
45
|
-
# @return [String]
|
45
|
+
# @return [::String]
|
46
46
|
# column_spec_id of the primary table's column that should be used as the
|
47
47
|
# weight column, i.e. the higher the value the more important the row will be
|
48
48
|
# during model training.
|
@@ -53,7 +53,7 @@ module Google
|
|
53
53
|
# NOTE: Updates of this field will instantly affect any other users
|
54
54
|
# concurrently working with the dataset.
|
55
55
|
# @!attribute [rw] ml_use_column_spec_id
|
56
|
-
# @return [String]
|
56
|
+
# @return [::String]
|
57
57
|
# column_spec_id of the primary table column which specifies a possible ML
|
58
58
|
# use of the row, i.e. the column will be used to split the rows into TRAIN,
|
59
59
|
# VALIDATE and TEST sets.
|
@@ -68,19 +68,19 @@ module Google
|
|
68
68
|
# NOTE: Updates of this field will instantly affect any other users
|
69
69
|
# concurrently working with the dataset.
|
70
70
|
# @!attribute [rw] target_column_correlations
|
71
|
-
# @return [Google::Protobuf::Map{String => Google::Cloud::AutoML::V1beta1::CorrelationStats}]
|
71
|
+
# @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AutoML::V1beta1::CorrelationStats}]
|
72
72
|
# Output only. Correlations between
|
73
73
|
#
|
74
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
|
74
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
|
75
75
|
# and other columns of the
|
76
76
|
#
|
77
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
|
77
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
|
78
78
|
# Only set if the target column is set. Mapping from other column spec id to
|
79
79
|
# its CorrelationStats with the target column.
|
80
80
|
# This field may be stale, see the stats_update_time field for
|
81
81
|
# for the timestamp at which these stats were last updated.
|
82
82
|
# @!attribute [rw] stats_update_time
|
83
|
-
# @return [Google::Protobuf::Timestamp]
|
83
|
+
# @return [::Google::Protobuf::Timestamp]
|
84
84
|
# Output only. The most recent timestamp when target_column_correlations
|
85
85
|
# field and all descendant ColumnSpec.data_stats and
|
86
86
|
# ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
|
@@ -88,30 +88,30 @@ module Google
|
|
88
88
|
# fields values. The regeneration happens in the background on a best effort
|
89
89
|
# basis.
|
90
90
|
class TablesDatasetMetadata
|
91
|
-
include Google::Protobuf::MessageExts
|
92
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
91
|
+
include ::Google::Protobuf::MessageExts
|
92
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
93
93
|
|
94
94
|
# @!attribute [rw] key
|
95
|
-
# @return [String]
|
95
|
+
# @return [::String]
|
96
96
|
# @!attribute [rw] value
|
97
|
-
# @return [Google::Cloud::AutoML::V1beta1::CorrelationStats]
|
97
|
+
# @return [::Google::Cloud::AutoML::V1beta1::CorrelationStats]
|
98
98
|
class TargetColumnCorrelationsEntry
|
99
|
-
include Google::Protobuf::MessageExts
|
100
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
99
|
+
include ::Google::Protobuf::MessageExts
|
100
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
101
101
|
end
|
102
102
|
end
|
103
103
|
|
104
104
|
# Model metadata specific to AutoML Tables.
|
105
105
|
# @!attribute [rw] optimization_objective_recall_value
|
106
|
-
# @return [Float]
|
106
|
+
# @return [::Float]
|
107
107
|
# Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
|
108
108
|
# Must be between 0 and 1, inclusive.
|
109
109
|
# @!attribute [rw] optimization_objective_precision_value
|
110
|
-
# @return [Float]
|
110
|
+
# @return [::Float]
|
111
111
|
# Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
|
112
112
|
# Must be between 0 and 1, inclusive.
|
113
113
|
# @!attribute [rw] target_column_spec
|
114
|
-
# @return [Google::Cloud::AutoML::V1beta1::ColumnSpec]
|
114
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ColumnSpec]
|
115
115
|
# Column spec of the dataset's primary table's column the model is
|
116
116
|
# predicting. Snapshotted when model creation started.
|
117
117
|
# Only 3 fields are used:
|
@@ -122,18 +122,18 @@ module Google
|
|
122
122
|
# display_name - Output only.
|
123
123
|
# data_type - Output only.
|
124
124
|
# @!attribute [rw] input_feature_column_specs
|
125
|
-
# @return [Array
|
125
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::ColumnSpec>]
|
126
126
|
# Column specs of the dataset's primary table's columns, on which
|
127
127
|
# the model is trained and which are used as the input for predictions.
|
128
128
|
# The
|
129
129
|
#
|
130
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
|
130
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
|
131
131
|
# as well as, according to dataset's state upon model creation,
|
132
132
|
#
|
133
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
|
133
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
|
134
134
|
# and
|
135
135
|
#
|
136
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
|
136
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
|
137
137
|
# must never be included here.
|
138
138
|
#
|
139
139
|
# Only 3 fields are used:
|
@@ -146,7 +146,7 @@ module Google
|
|
146
146
|
#
|
147
147
|
# * data_type - Output only.
|
148
148
|
# @!attribute [rw] optimization_objective
|
149
|
-
# @return [String]
|
149
|
+
# @return [::String]
|
150
150
|
# Objective function the model is optimizing towards. The training process
|
151
151
|
# creates a model that maximizes/minimizes the value of the objective
|
152
152
|
# function over the validation set.
|
@@ -173,11 +173,11 @@ module Google
|
|
173
173
|
# "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
|
174
174
|
# "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
|
175
175
|
# @!attribute [rw] tables_model_column_info
|
176
|
-
# @return [Array
|
176
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
177
177
|
# Output only. Auxiliary information for each of the
|
178
178
|
# input_feature_column_specs with respect to this particular model.
|
179
179
|
# @!attribute [rw] train_budget_milli_node_hours
|
180
|
-
# @return [Integer]
|
180
|
+
# @return [::Integer]
|
181
181
|
# Required. The train budget of creating this model, expressed in milli node
|
182
182
|
# hours i.e. 1,000 value in this field means 1 node hour.
|
183
183
|
#
|
@@ -193,41 +193,41 @@ module Google
|
|
193
193
|
# The train budget must be between 1,000 and 72,000 milli node hours,
|
194
194
|
# inclusive.
|
195
195
|
# @!attribute [rw] train_cost_milli_node_hours
|
196
|
-
# @return [Integer]
|
196
|
+
# @return [::Integer]
|
197
197
|
# Output only. The actual training cost of the model, expressed in milli
|
198
198
|
# node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
|
199
199
|
# to not exceed the train budget.
|
200
200
|
# @!attribute [rw] disable_early_stopping
|
201
|
-
# @return [Boolean]
|
201
|
+
# @return [::Boolean]
|
202
202
|
# Use the entire training budget. This disables the early stopping feature.
|
203
203
|
# By default, the early stopping feature is enabled, which means that AutoML
|
204
204
|
# Tables might stop training before the entire training budget has been used.
|
205
205
|
class TablesModelMetadata
|
206
|
-
include Google::Protobuf::MessageExts
|
207
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
206
|
+
include ::Google::Protobuf::MessageExts
|
207
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
208
208
|
end
|
209
209
|
|
210
210
|
# Contains annotation details specific to Tables.
|
211
211
|
# @!attribute [rw] score
|
212
|
-
# @return [Float]
|
212
|
+
# @return [::Float]
|
213
213
|
# Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
|
214
214
|
# value means greater confidence in the returned value.
|
215
215
|
# For
|
216
216
|
#
|
217
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
217
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
218
218
|
# of FLOAT64 data type the score is not populated.
|
219
219
|
# @!attribute [rw] prediction_interval
|
220
|
-
# @return [Google::Cloud::AutoML::V1beta1::DoubleRange]
|
220
|
+
# @return [::Google::Cloud::AutoML::V1beta1::DoubleRange]
|
221
221
|
# Output only. Only populated when
|
222
222
|
#
|
223
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
223
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
224
224
|
# has FLOAT64 data type. An interval in which the exactly correct target
|
225
225
|
# value has 95% chance to be in.
|
226
226
|
# @!attribute [rw] value
|
227
|
-
# @return [Google::Protobuf::Value]
|
227
|
+
# @return [::Google::Protobuf::Value]
|
228
228
|
# The predicted value of the row's
|
229
229
|
#
|
230
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
|
230
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
|
231
231
|
# The value depends on the column's DataType:
|
232
232
|
#
|
233
233
|
# * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
|
@@ -235,20 +235,20 @@ module Google
|
|
235
235
|
#
|
236
236
|
# * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
|
237
237
|
# @!attribute [rw] tables_model_column_info
|
238
|
-
# @return [Array
|
238
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
239
239
|
# Output only. Auxiliary information for each of the model's
|
240
240
|
#
|
241
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
|
241
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
|
242
242
|
# with respect to this particular prediction.
|
243
243
|
# If no other fields than
|
244
244
|
#
|
245
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
|
245
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
|
246
246
|
# and
|
247
247
|
#
|
248
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
|
248
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
|
249
249
|
# would be populated, then this whole field is not.
|
250
250
|
# @!attribute [rw] baseline_score
|
251
|
-
# @return [Float]
|
251
|
+
# @return [::Float]
|
252
252
|
# Output only. Stores the prediction score for the baseline example, which
|
253
253
|
# is defined as the example with all values set to their baseline values.
|
254
254
|
# This is used as part of the Sampled Shapley explanation of the model's
|
@@ -257,22 +257,22 @@ module Google
|
|
257
257
|
# the baseline example. For classification models, this holds the baseline
|
258
258
|
# prediction for the baseline example for the argmax class.
|
259
259
|
class TablesAnnotation
|
260
|
-
include Google::Protobuf::MessageExts
|
261
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
260
|
+
include ::Google::Protobuf::MessageExts
|
261
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
262
262
|
end
|
263
263
|
|
264
264
|
# An information specific to given column and Tables Model, in context
|
265
265
|
# of the Model and the predictions created by it.
|
266
266
|
# @!attribute [rw] column_spec_name
|
267
|
-
# @return [String]
|
267
|
+
# @return [::String]
|
268
268
|
# Output only. The name of the ColumnSpec describing the column. Not
|
269
269
|
# populated when this proto is outputted to BigQuery.
|
270
270
|
# @!attribute [rw] column_display_name
|
271
|
-
# @return [String]
|
271
|
+
# @return [::String]
|
272
272
|
# Output only. The display name of the column (same as the display_name of
|
273
273
|
# its ColumnSpec).
|
274
274
|
# @!attribute [rw] feature_importance
|
275
|
-
# @return [Float]
|
275
|
+
# @return [::Float]
|
276
276
|
# Output only. When given as part of a Model (always populated):
|
277
277
|
# Measurement of how much model predictions correctness on the TEST data
|
278
278
|
# depend on values in this column. A value between 0 and 1, higher means
|
@@ -283,7 +283,7 @@ module Google
|
|
283
283
|
# [feature_importance
|
284
284
|
# param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
|
285
285
|
# Predict (populated iff
|
286
|
-
# {Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
|
286
|
+
# {::Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
|
287
287
|
# param is set):
|
288
288
|
# Measurement of how impactful for the prediction returned for the given row
|
289
289
|
# the value in this column was. Specifically, the feature importance
|
@@ -291,8 +291,8 @@ module Google
|
|
291
291
|
# score compared to the baseline score. These values are computed using the
|
292
292
|
# Sampled Shapley method.
|
293
293
|
class TablesModelColumnInfo
|
294
|
-
include Google::Protobuf::MessageExts
|
295
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
294
|
+
include ::Google::Protobuf::MessageExts
|
295
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
296
296
|
end
|
297
297
|
end
|
298
298
|
end
|
@@ -23,16 +23,16 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# A time period inside of an example that has a time dimension (e.g. video).
|
25
25
|
# @!attribute [rw] start_time_offset
|
26
|
-
# @return [Google::Protobuf::Duration]
|
26
|
+
# @return [::Google::Protobuf::Duration]
|
27
27
|
# Start of the time segment (inclusive), represented as the duration since
|
28
28
|
# the example start.
|
29
29
|
# @!attribute [rw] end_time_offset
|
30
|
-
# @return [Google::Protobuf::Duration]
|
30
|
+
# @return [::Google::Protobuf::Duration]
|
31
31
|
# End of the time segment (exclusive), represented as the duration since the
|
32
32
|
# example start.
|
33
33
|
class TimeSegment
|
34
|
-
include Google::Protobuf::MessageExts
|
35
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
34
|
+
include ::Google::Protobuf::MessageExts
|
35
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
36
36
|
end
|
37
37
|
end
|
38
38
|
end
|
@@ -23,37 +23,37 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Dataset metadata for classification.
|
25
25
|
# @!attribute [rw] classification_type
|
26
|
-
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
26
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
|
27
27
|
# Required. Type of the classification problem.
|
28
28
|
class TextClassificationDatasetMetadata
|
29
|
-
include Google::Protobuf::MessageExts
|
30
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
29
|
+
include ::Google::Protobuf::MessageExts
|
30
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
31
31
|
end
|
32
32
|
|
33
33
|
# Model metadata that is specific to text classification.
|
34
34
|
# @!attribute [rw] classification_type
|
35
|
-
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
35
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
|
36
36
|
# Output only. Classification type of the dataset used to train this model.
|
37
37
|
class TextClassificationModelMetadata
|
38
|
-
include Google::Protobuf::MessageExts
|
39
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
38
|
+
include ::Google::Protobuf::MessageExts
|
39
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
40
40
|
end
|
41
41
|
|
42
42
|
# Dataset metadata that is specific to text extraction
|
43
43
|
class TextExtractionDatasetMetadata
|
44
|
-
include Google::Protobuf::MessageExts
|
45
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
44
|
+
include ::Google::Protobuf::MessageExts
|
45
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
46
46
|
end
|
47
47
|
|
48
48
|
# Model metadata that is specific to text extraction.
|
49
49
|
class TextExtractionModelMetadata
|
50
|
-
include Google::Protobuf::MessageExts
|
51
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
50
|
+
include ::Google::Protobuf::MessageExts
|
51
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
52
52
|
end
|
53
53
|
|
54
54
|
# Dataset metadata for text sentiment.
|
55
55
|
# @!attribute [rw] sentiment_max
|
56
|
-
# @return [Integer]
|
56
|
+
# @return [::Integer]
|
57
57
|
# Required. A sentiment is expressed as an integer ordinal, where higher value
|
58
58
|
# means a more positive sentiment. The range of sentiments that will be used
|
59
59
|
# is between 0 and sentiment_max (inclusive on both ends), and all the values
|
@@ -61,14 +61,14 @@ module Google
|
|
61
61
|
# created.
|
62
62
|
# sentiment_max value must be between 1 and 10 (inclusive).
|
63
63
|
class TextSentimentDatasetMetadata
|
64
|
-
include Google::Protobuf::MessageExts
|
65
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
64
|
+
include ::Google::Protobuf::MessageExts
|
65
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
66
66
|
end
|
67
67
|
|
68
68
|
# Model metadata that is specific to text sentiment.
|
69
69
|
class TextSentimentModelMetadata
|
70
|
-
include Google::Protobuf::MessageExts
|
71
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
70
|
+
include ::Google::Protobuf::MessageExts
|
71
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
72
72
|
end
|
73
73
|
end
|
74
74
|
end
|
@@ -23,48 +23,48 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Annotation for identifying spans of text.
|
25
25
|
# @!attribute [rw] text_segment
|
26
|
-
# @return [Google::Cloud::AutoML::V1beta1::TextSegment]
|
26
|
+
# @return [::Google::Cloud::AutoML::V1beta1::TextSegment]
|
27
27
|
# An entity annotation will set this, which is the part of the original
|
28
28
|
# text to which the annotation pertains.
|
29
29
|
# @!attribute [rw] score
|
30
|
-
# @return [Float]
|
30
|
+
# @return [::Float]
|
31
31
|
# Output only. A confidence estimate between 0.0 and 1.0. A higher value
|
32
32
|
# means greater confidence in correctness of the annotation.
|
33
33
|
class TextExtractionAnnotation
|
34
|
-
include Google::Protobuf::MessageExts
|
35
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
34
|
+
include ::Google::Protobuf::MessageExts
|
35
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
36
36
|
end
|
37
37
|
|
38
38
|
# Model evaluation metrics for text extraction problems.
|
39
39
|
# @!attribute [rw] au_prc
|
40
|
-
# @return [Float]
|
40
|
+
# @return [::Float]
|
41
41
|
# Output only. The Area under precision recall curve metric.
|
42
42
|
# @!attribute [rw] confidence_metrics_entries
|
43
|
-
# @return [Array
|
43
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TextExtractionEvaluationMetrics::ConfidenceMetricsEntry>]
|
44
44
|
# Output only. Metrics that have confidence thresholds.
|
45
45
|
# Precision-recall curve can be derived from it.
|
46
46
|
class TextExtractionEvaluationMetrics
|
47
|
-
include Google::Protobuf::MessageExts
|
48
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
47
|
+
include ::Google::Protobuf::MessageExts
|
48
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
49
49
|
|
50
50
|
# Metrics for a single confidence threshold.
|
51
51
|
# @!attribute [rw] confidence_threshold
|
52
|
-
# @return [Float]
|
52
|
+
# @return [::Float]
|
53
53
|
# Output only. The confidence threshold value used to compute the metrics.
|
54
54
|
# Only annotations with score of at least this threshold are considered to
|
55
55
|
# be ones the model would return.
|
56
56
|
# @!attribute [rw] recall
|
57
|
-
# @return [Float]
|
57
|
+
# @return [::Float]
|
58
58
|
# Output only. Recall under the given confidence threshold.
|
59
59
|
# @!attribute [rw] precision
|
60
|
-
# @return [Float]
|
60
|
+
# @return [::Float]
|
61
61
|
# Output only. Precision under the given confidence threshold.
|
62
62
|
# @!attribute [rw] f1_score
|
63
|
-
# @return [Float]
|
63
|
+
# @return [::Float]
|
64
64
|
# Output only. The harmonic mean of recall and precision.
|
65
65
|
class ConfidenceMetricsEntry
|
66
|
-
include Google::Protobuf::MessageExts
|
67
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
66
|
+
include ::Google::Protobuf::MessageExts
|
67
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
68
68
|
end
|
69
69
|
end
|
70
70
|
end
|