google-cloud-automl-v1beta1 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. checksums.yaml +4 -4
  2. data/AUTHENTICATION.md +6 -6
  3. data/README.md +1 -1
  4. data/lib/google/cloud/automl/v1beta1.rb +1 -1
  5. data/lib/google/cloud/automl/v1beta1/automl.rb +1 -1
  6. data/lib/google/cloud/automl/v1beta1/automl/client.rb +488 -488
  7. data/lib/google/cloud/automl/v1beta1/automl/credentials.rb +1 -1
  8. data/lib/google/cloud/automl/v1beta1/automl/operations.rb +100 -100
  9. data/lib/google/cloud/automl/v1beta1/automl/paths.rb +25 -25
  10. data/lib/google/cloud/automl/v1beta1/prediction_service.rb +1 -1
  11. data/lib/google/cloud/automl/v1beta1/prediction_service/client.rb +78 -78
  12. data/lib/google/cloud/automl/v1beta1/prediction_service/credentials.rb +1 -1
  13. data/lib/google/cloud/automl/v1beta1/prediction_service/operations.rb +100 -100
  14. data/lib/google/cloud/automl/v1beta1/prediction_service/paths.rb +3 -3
  15. data/lib/google/cloud/automl/v1beta1/version.rb +1 -1
  16. data/proto_docs/google/api/resource.rb +12 -12
  17. data/proto_docs/google/cloud/automl/v1beta1/annotation_payload.rb +13 -13
  18. data/proto_docs/google/cloud/automl/v1beta1/annotation_spec.rb +5 -5
  19. data/proto_docs/google/cloud/automl/v1beta1/classification.rb +43 -43
  20. data/proto_docs/google/cloud/automl/v1beta1/column_spec.rb +12 -12
  21. data/proto_docs/google/cloud/automl/v1beta1/data_items.rb +49 -49
  22. data/proto_docs/google/cloud/automl/v1beta1/data_stats.rb +65 -65
  23. data/proto_docs/google/cloud/automl/v1beta1/data_types.rb +23 -23
  24. data/proto_docs/google/cloud/automl/v1beta1/dataset.rb +17 -17
  25. data/proto_docs/google/cloud/automl/v1beta1/detection.rb +32 -32
  26. data/proto_docs/google/cloud/automl/v1beta1/geometry.rb +7 -7
  27. data/proto_docs/google/cloud/automl/v1beta1/image.rb +38 -38
  28. data/proto_docs/google/cloud/automl/v1beta1/io.rb +85 -85
  29. data/proto_docs/google/cloud/automl/v1beta1/model.rb +17 -17
  30. data/proto_docs/google/cloud/automl/v1beta1/model_evaluation.rb +17 -17
  31. data/proto_docs/google/cloud/automl/v1beta1/operations.rb +56 -56
  32. data/proto_docs/google/cloud/automl/v1beta1/prediction_service.rb +41 -41
  33. data/proto_docs/google/cloud/automl/v1beta1/ranges.rb +4 -4
  34. data/proto_docs/google/cloud/automl/v1beta1/regression.rb +7 -7
  35. data/proto_docs/google/cloud/automl/v1beta1/service.rb +167 -167
  36. data/proto_docs/google/cloud/automl/v1beta1/table_spec.rb +9 -9
  37. data/proto_docs/google/cloud/automl/v1beta1/tables.rb +47 -47
  38. data/proto_docs/google/cloud/automl/v1beta1/temporal.rb +4 -4
  39. data/proto_docs/google/cloud/automl/v1beta1/text.rb +15 -15
  40. data/proto_docs/google/cloud/automl/v1beta1/text_extraction.rb +14 -14
  41. data/proto_docs/google/cloud/automl/v1beta1/text_segment.rb +5 -5
  42. data/proto_docs/google/cloud/automl/v1beta1/text_sentiment.rb +15 -15
  43. data/proto_docs/google/cloud/automl/v1beta1/translation.rb +16 -16
  44. data/proto_docs/google/cloud/automl/v1beta1/video.rb +8 -8
  45. data/proto_docs/google/longrunning/operations.rb +30 -30
  46. data/proto_docs/google/protobuf/any.rb +4 -4
  47. data/proto_docs/google/protobuf/duration.rb +4 -4
  48. data/proto_docs/google/protobuf/empty.rb +2 -2
  49. data/proto_docs/google/protobuf/field_mask.rb +3 -3
  50. data/proto_docs/google/protobuf/struct.rb +18 -18
  51. data/proto_docs/google/protobuf/timestamp.rb +4 -4
  52. data/proto_docs/google/rpc/status.rb +6 -6
  53. metadata +2 -2
@@ -31,13 +31,13 @@ module Google
31
31
  # Used by:
32
32
  # * Tables
33
33
  # @!attribute [rw] name
34
- # @return [String]
34
+ # @return [::String]
35
35
  # Output only. The resource name of the table spec.
36
36
  # Form:
37
37
  #
38
38
  # `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}`
39
39
  # @!attribute [rw] time_column_spec_id
40
- # @return [String]
40
+ # @return [::String]
41
41
  # column_spec_id of the time column. Only used if the parent dataset's
42
42
  # ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE
43
43
  # and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and
@@ -47,27 +47,27 @@ module Google
47
47
  # will be assigned by AutoML. NOTE: Updates of this field will instantly
48
48
  # affect any other users concurrently working with the dataset.
49
49
  # @!attribute [rw] row_count
50
- # @return [Integer]
50
+ # @return [::Integer]
51
51
  # Output only. The number of rows (i.e. examples) in the table.
52
52
  # @!attribute [rw] valid_row_count
53
- # @return [Integer]
53
+ # @return [::Integer]
54
54
  # Output only. The number of valid rows (i.e. without values that don't match
55
55
  # DataType-s of their columns).
56
56
  # @!attribute [rw] column_count
57
- # @return [Integer]
57
+ # @return [::Integer]
58
58
  # Output only. The number of columns of the table. That is, the number of
59
59
  # child ColumnSpec-s.
60
60
  # @!attribute [rw] input_configs
61
- # @return [Array<Google::Cloud::AutoML::V1beta1::InputConfig>]
61
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::InputConfig>]
62
62
  # Output only. Input configs via which data currently residing in the table
63
63
  # had been imported.
64
64
  # @!attribute [rw] etag
65
- # @return [String]
65
+ # @return [::String]
66
66
  # Used to perform consistent read-modify-write updates. If not set, a blind
67
67
  # "overwrite" update happens.
68
68
  class TableSpec
69
- include Google::Protobuf::MessageExts
70
- extend Google::Protobuf::MessageExts::ClassMethods
69
+ include ::Google::Protobuf::MessageExts
70
+ extend ::Google::Protobuf::MessageExts::ClassMethods
71
71
  end
72
72
  end
73
73
  end
@@ -23,10 +23,10 @@ module Google
23
23
  module V1beta1
24
24
  # Metadata for a dataset used for AutoML Tables.
25
25
  # @!attribute [rw] primary_table_spec_id
26
- # @return [String]
26
+ # @return [::String]
27
27
  # Output only. The table_spec_id of the primary table of this dataset.
28
28
  # @!attribute [rw] target_column_spec_id
29
- # @return [String]
29
+ # @return [::String]
30
30
  # column_spec_id of the primary table's column that should be used as the
31
31
  # training & prediction target.
32
32
  # This column must be non-nullable and have one of following data types
@@ -42,7 +42,7 @@ module Google
42
42
  # NOTE: Updates of this field will instantly affect any other users
43
43
  # concurrently working with the dataset.
44
44
  # @!attribute [rw] weight_column_spec_id
45
- # @return [String]
45
+ # @return [::String]
46
46
  # column_spec_id of the primary table's column that should be used as the
47
47
  # weight column, i.e. the higher the value the more important the row will be
48
48
  # during model training.
@@ -53,7 +53,7 @@ module Google
53
53
  # NOTE: Updates of this field will instantly affect any other users
54
54
  # concurrently working with the dataset.
55
55
  # @!attribute [rw] ml_use_column_spec_id
56
- # @return [String]
56
+ # @return [::String]
57
57
  # column_spec_id of the primary table column which specifies a possible ML
58
58
  # use of the row, i.e. the column will be used to split the rows into TRAIN,
59
59
  # VALIDATE and TEST sets.
@@ -68,19 +68,19 @@ module Google
68
68
  # NOTE: Updates of this field will instantly affect any other users
69
69
  # concurrently working with the dataset.
70
70
  # @!attribute [rw] target_column_correlations
71
- # @return [Google::Protobuf::Map{String => Google::Cloud::AutoML::V1beta1::CorrelationStats}]
71
+ # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AutoML::V1beta1::CorrelationStats}]
72
72
  # Output only. Correlations between
73
73
  #
74
- # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
74
+ # {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
75
75
  # and other columns of the
76
76
  #
77
- # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
77
+ # {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
78
78
  # Only set if the target column is set. Mapping from other column spec id to
79
79
  # its CorrelationStats with the target column.
80
80
  # This field may be stale, see the stats_update_time field for
81
81
  # for the timestamp at which these stats were last updated.
82
82
  # @!attribute [rw] stats_update_time
83
- # @return [Google::Protobuf::Timestamp]
83
+ # @return [::Google::Protobuf::Timestamp]
84
84
  # Output only. The most recent timestamp when target_column_correlations
85
85
  # field and all descendant ColumnSpec.data_stats and
86
86
  # ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
@@ -88,30 +88,30 @@ module Google
88
88
  # fields values. The regeneration happens in the background on a best effort
89
89
  # basis.
90
90
  class TablesDatasetMetadata
91
- include Google::Protobuf::MessageExts
92
- extend Google::Protobuf::MessageExts::ClassMethods
91
+ include ::Google::Protobuf::MessageExts
92
+ extend ::Google::Protobuf::MessageExts::ClassMethods
93
93
 
94
94
  # @!attribute [rw] key
95
- # @return [String]
95
+ # @return [::String]
96
96
  # @!attribute [rw] value
97
- # @return [Google::Cloud::AutoML::V1beta1::CorrelationStats]
97
+ # @return [::Google::Cloud::AutoML::V1beta1::CorrelationStats]
98
98
  class TargetColumnCorrelationsEntry
99
- include Google::Protobuf::MessageExts
100
- extend Google::Protobuf::MessageExts::ClassMethods
99
+ include ::Google::Protobuf::MessageExts
100
+ extend ::Google::Protobuf::MessageExts::ClassMethods
101
101
  end
102
102
  end
103
103
 
104
104
  # Model metadata specific to AutoML Tables.
105
105
  # @!attribute [rw] optimization_objective_recall_value
106
- # @return [Float]
106
+ # @return [::Float]
107
107
  # Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
108
108
  # Must be between 0 and 1, inclusive.
109
109
  # @!attribute [rw] optimization_objective_precision_value
110
- # @return [Float]
110
+ # @return [::Float]
111
111
  # Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
112
112
  # Must be between 0 and 1, inclusive.
113
113
  # @!attribute [rw] target_column_spec
114
- # @return [Google::Cloud::AutoML::V1beta1::ColumnSpec]
114
+ # @return [::Google::Cloud::AutoML::V1beta1::ColumnSpec]
115
115
  # Column spec of the dataset's primary table's column the model is
116
116
  # predicting. Snapshotted when model creation started.
117
117
  # Only 3 fields are used:
@@ -122,18 +122,18 @@ module Google
122
122
  # display_name - Output only.
123
123
  # data_type - Output only.
124
124
  # @!attribute [rw] input_feature_column_specs
125
- # @return [Array<Google::Cloud::AutoML::V1beta1::ColumnSpec>]
125
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::ColumnSpec>]
126
126
  # Column specs of the dataset's primary table's columns, on which
127
127
  # the model is trained and which are used as the input for predictions.
128
128
  # The
129
129
  #
130
- # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
130
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
131
131
  # as well as, according to dataset's state upon model creation,
132
132
  #
133
- # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
133
+ # {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
134
134
  # and
135
135
  #
136
- # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
136
+ # {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
137
137
  # must never be included here.
138
138
  #
139
139
  # Only 3 fields are used:
@@ -146,7 +146,7 @@ module Google
146
146
  #
147
147
  # * data_type - Output only.
148
148
  # @!attribute [rw] optimization_objective
149
- # @return [String]
149
+ # @return [::String]
150
150
  # Objective function the model is optimizing towards. The training process
151
151
  # creates a model that maximizes/minimizes the value of the objective
152
152
  # function over the validation set.
@@ -173,11 +173,11 @@ module Google
173
173
  # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
174
174
  # "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
175
175
  # @!attribute [rw] tables_model_column_info
176
- # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
176
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
177
177
  # Output only. Auxiliary information for each of the
178
178
  # input_feature_column_specs with respect to this particular model.
179
179
  # @!attribute [rw] train_budget_milli_node_hours
180
- # @return [Integer]
180
+ # @return [::Integer]
181
181
  # Required. The train budget of creating this model, expressed in milli node
182
182
  # hours i.e. 1,000 value in this field means 1 node hour.
183
183
  #
@@ -193,41 +193,41 @@ module Google
193
193
  # The train budget must be between 1,000 and 72,000 milli node hours,
194
194
  # inclusive.
195
195
  # @!attribute [rw] train_cost_milli_node_hours
196
- # @return [Integer]
196
+ # @return [::Integer]
197
197
  # Output only. The actual training cost of the model, expressed in milli
198
198
  # node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
199
199
  # to not exceed the train budget.
200
200
  # @!attribute [rw] disable_early_stopping
201
- # @return [Boolean]
201
+ # @return [::Boolean]
202
202
  # Use the entire training budget. This disables the early stopping feature.
203
203
  # By default, the early stopping feature is enabled, which means that AutoML
204
204
  # Tables might stop training before the entire training budget has been used.
205
205
  class TablesModelMetadata
206
- include Google::Protobuf::MessageExts
207
- extend Google::Protobuf::MessageExts::ClassMethods
206
+ include ::Google::Protobuf::MessageExts
207
+ extend ::Google::Protobuf::MessageExts::ClassMethods
208
208
  end
209
209
 
210
210
  # Contains annotation details specific to Tables.
211
211
  # @!attribute [rw] score
212
- # @return [Float]
212
+ # @return [::Float]
213
213
  # Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
214
214
  # value means greater confidence in the returned value.
215
215
  # For
216
216
  #
217
- # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
217
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
218
218
  # of FLOAT64 data type the score is not populated.
219
219
  # @!attribute [rw] prediction_interval
220
- # @return [Google::Cloud::AutoML::V1beta1::DoubleRange]
220
+ # @return [::Google::Cloud::AutoML::V1beta1::DoubleRange]
221
221
  # Output only. Only populated when
222
222
  #
223
- # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
223
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
224
224
  # has FLOAT64 data type. An interval in which the exactly correct target
225
225
  # value has 95% chance to be in.
226
226
  # @!attribute [rw] value
227
- # @return [Google::Protobuf::Value]
227
+ # @return [::Google::Protobuf::Value]
228
228
  # The predicted value of the row's
229
229
  #
230
- # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
230
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
231
231
  # The value depends on the column's DataType:
232
232
  #
233
233
  # * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
@@ -235,20 +235,20 @@ module Google
235
235
  #
236
236
  # * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
237
237
  # @!attribute [rw] tables_model_column_info
238
- # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
238
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
239
239
  # Output only. Auxiliary information for each of the model's
240
240
  #
241
- # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
241
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
242
242
  # with respect to this particular prediction.
243
243
  # If no other fields than
244
244
  #
245
- # {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
245
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
246
246
  # and
247
247
  #
248
- # {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
248
+ # {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
249
249
  # would be populated, then this whole field is not.
250
250
  # @!attribute [rw] baseline_score
251
- # @return [Float]
251
+ # @return [::Float]
252
252
  # Output only. Stores the prediction score for the baseline example, which
253
253
  # is defined as the example with all values set to their baseline values.
254
254
  # This is used as part of the Sampled Shapley explanation of the model's
@@ -257,22 +257,22 @@ module Google
257
257
  # the baseline example. For classification models, this holds the baseline
258
258
  # prediction for the baseline example for the argmax class.
259
259
  class TablesAnnotation
260
- include Google::Protobuf::MessageExts
261
- extend Google::Protobuf::MessageExts::ClassMethods
260
+ include ::Google::Protobuf::MessageExts
261
+ extend ::Google::Protobuf::MessageExts::ClassMethods
262
262
  end
263
263
 
264
264
  # An information specific to given column and Tables Model, in context
265
265
  # of the Model and the predictions created by it.
266
266
  # @!attribute [rw] column_spec_name
267
- # @return [String]
267
+ # @return [::String]
268
268
  # Output only. The name of the ColumnSpec describing the column. Not
269
269
  # populated when this proto is outputted to BigQuery.
270
270
  # @!attribute [rw] column_display_name
271
- # @return [String]
271
+ # @return [::String]
272
272
  # Output only. The display name of the column (same as the display_name of
273
273
  # its ColumnSpec).
274
274
  # @!attribute [rw] feature_importance
275
- # @return [Float]
275
+ # @return [::Float]
276
276
  # Output only. When given as part of a Model (always populated):
277
277
  # Measurement of how much model predictions correctness on the TEST data
278
278
  # depend on values in this column. A value between 0 and 1, higher means
@@ -283,7 +283,7 @@ module Google
283
283
  # [feature_importance
284
284
  # param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
285
285
  # Predict (populated iff
286
- # {Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
286
+ # {::Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
287
287
  # param is set):
288
288
  # Measurement of how impactful for the prediction returned for the given row
289
289
  # the value in this column was. Specifically, the feature importance
@@ -291,8 +291,8 @@ module Google
291
291
  # score compared to the baseline score. These values are computed using the
292
292
  # Sampled Shapley method.
293
293
  class TablesModelColumnInfo
294
- include Google::Protobuf::MessageExts
295
- extend Google::Protobuf::MessageExts::ClassMethods
294
+ include ::Google::Protobuf::MessageExts
295
+ extend ::Google::Protobuf::MessageExts::ClassMethods
296
296
  end
297
297
  end
298
298
  end
@@ -23,16 +23,16 @@ module Google
23
23
  module V1beta1
24
24
  # A time period inside of an example that has a time dimension (e.g. video).
25
25
  # @!attribute [rw] start_time_offset
26
- # @return [Google::Protobuf::Duration]
26
+ # @return [::Google::Protobuf::Duration]
27
27
  # Start of the time segment (inclusive), represented as the duration since
28
28
  # the example start.
29
29
  # @!attribute [rw] end_time_offset
30
- # @return [Google::Protobuf::Duration]
30
+ # @return [::Google::Protobuf::Duration]
31
31
  # End of the time segment (exclusive), represented as the duration since the
32
32
  # example start.
33
33
  class TimeSegment
34
- include Google::Protobuf::MessageExts
35
- extend Google::Protobuf::MessageExts::ClassMethods
34
+ include ::Google::Protobuf::MessageExts
35
+ extend ::Google::Protobuf::MessageExts::ClassMethods
36
36
  end
37
37
  end
38
38
  end
@@ -23,37 +23,37 @@ module Google
23
23
  module V1beta1
24
24
  # Dataset metadata for classification.
25
25
  # @!attribute [rw] classification_type
26
- # @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
26
+ # @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
27
27
  # Required. Type of the classification problem.
28
28
  class TextClassificationDatasetMetadata
29
- include Google::Protobuf::MessageExts
30
- extend Google::Protobuf::MessageExts::ClassMethods
29
+ include ::Google::Protobuf::MessageExts
30
+ extend ::Google::Protobuf::MessageExts::ClassMethods
31
31
  end
32
32
 
33
33
  # Model metadata that is specific to text classification.
34
34
  # @!attribute [rw] classification_type
35
- # @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
35
+ # @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
36
36
  # Output only. Classification type of the dataset used to train this model.
37
37
  class TextClassificationModelMetadata
38
- include Google::Protobuf::MessageExts
39
- extend Google::Protobuf::MessageExts::ClassMethods
38
+ include ::Google::Protobuf::MessageExts
39
+ extend ::Google::Protobuf::MessageExts::ClassMethods
40
40
  end
41
41
 
42
42
  # Dataset metadata that is specific to text extraction
43
43
  class TextExtractionDatasetMetadata
44
- include Google::Protobuf::MessageExts
45
- extend Google::Protobuf::MessageExts::ClassMethods
44
+ include ::Google::Protobuf::MessageExts
45
+ extend ::Google::Protobuf::MessageExts::ClassMethods
46
46
  end
47
47
 
48
48
  # Model metadata that is specific to text extraction.
49
49
  class TextExtractionModelMetadata
50
- include Google::Protobuf::MessageExts
51
- extend Google::Protobuf::MessageExts::ClassMethods
50
+ include ::Google::Protobuf::MessageExts
51
+ extend ::Google::Protobuf::MessageExts::ClassMethods
52
52
  end
53
53
 
54
54
  # Dataset metadata for text sentiment.
55
55
  # @!attribute [rw] sentiment_max
56
- # @return [Integer]
56
+ # @return [::Integer]
57
57
  # Required. A sentiment is expressed as an integer ordinal, where higher value
58
58
  # means a more positive sentiment. The range of sentiments that will be used
59
59
  # is between 0 and sentiment_max (inclusive on both ends), and all the values
@@ -61,14 +61,14 @@ module Google
61
61
  # created.
62
62
  # sentiment_max value must be between 1 and 10 (inclusive).
63
63
  class TextSentimentDatasetMetadata
64
- include Google::Protobuf::MessageExts
65
- extend Google::Protobuf::MessageExts::ClassMethods
64
+ include ::Google::Protobuf::MessageExts
65
+ extend ::Google::Protobuf::MessageExts::ClassMethods
66
66
  end
67
67
 
68
68
  # Model metadata that is specific to text sentiment.
69
69
  class TextSentimentModelMetadata
70
- include Google::Protobuf::MessageExts
71
- extend Google::Protobuf::MessageExts::ClassMethods
70
+ include ::Google::Protobuf::MessageExts
71
+ extend ::Google::Protobuf::MessageExts::ClassMethods
72
72
  end
73
73
  end
74
74
  end
@@ -23,48 +23,48 @@ module Google
23
23
  module V1beta1
24
24
  # Annotation for identifying spans of text.
25
25
  # @!attribute [rw] text_segment
26
- # @return [Google::Cloud::AutoML::V1beta1::TextSegment]
26
+ # @return [::Google::Cloud::AutoML::V1beta1::TextSegment]
27
27
  # An entity annotation will set this, which is the part of the original
28
28
  # text to which the annotation pertains.
29
29
  # @!attribute [rw] score
30
- # @return [Float]
30
+ # @return [::Float]
31
31
  # Output only. A confidence estimate between 0.0 and 1.0. A higher value
32
32
  # means greater confidence in correctness of the annotation.
33
33
  class TextExtractionAnnotation
34
- include Google::Protobuf::MessageExts
35
- extend Google::Protobuf::MessageExts::ClassMethods
34
+ include ::Google::Protobuf::MessageExts
35
+ extend ::Google::Protobuf::MessageExts::ClassMethods
36
36
  end
37
37
 
38
38
  # Model evaluation metrics for text extraction problems.
39
39
  # @!attribute [rw] au_prc
40
- # @return [Float]
40
+ # @return [::Float]
41
41
  # Output only. The Area under precision recall curve metric.
42
42
  # @!attribute [rw] confidence_metrics_entries
43
- # @return [Array<Google::Cloud::AutoML::V1beta1::TextExtractionEvaluationMetrics::ConfidenceMetricsEntry>]
43
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::TextExtractionEvaluationMetrics::ConfidenceMetricsEntry>]
44
44
  # Output only. Metrics that have confidence thresholds.
45
45
  # Precision-recall curve can be derived from it.
46
46
  class TextExtractionEvaluationMetrics
47
- include Google::Protobuf::MessageExts
48
- extend Google::Protobuf::MessageExts::ClassMethods
47
+ include ::Google::Protobuf::MessageExts
48
+ extend ::Google::Protobuf::MessageExts::ClassMethods
49
49
 
50
50
  # Metrics for a single confidence threshold.
51
51
  # @!attribute [rw] confidence_threshold
52
- # @return [Float]
52
+ # @return [::Float]
53
53
  # Output only. The confidence threshold value used to compute the metrics.
54
54
  # Only annotations with score of at least this threshold are considered to
55
55
  # be ones the model would return.
56
56
  # @!attribute [rw] recall
57
- # @return [Float]
57
+ # @return [::Float]
58
58
  # Output only. Recall under the given confidence threshold.
59
59
  # @!attribute [rw] precision
60
- # @return [Float]
60
+ # @return [::Float]
61
61
  # Output only. Precision under the given confidence threshold.
62
62
  # @!attribute [rw] f1_score
63
- # @return [Float]
63
+ # @return [::Float]
64
64
  # Output only. The harmonic mean of recall and precision.
65
65
  class ConfidenceMetricsEntry
66
- include Google::Protobuf::MessageExts
67
- extend Google::Protobuf::MessageExts::ClassMethods
66
+ include ::Google::Protobuf::MessageExts
67
+ extend ::Google::Protobuf::MessageExts::ClassMethods
68
68
  end
69
69
  end
70
70
  end