google-cloud-automl-v1beta1 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/AUTHENTICATION.md +6 -6
- data/README.md +1 -1
- data/lib/google/cloud/automl/v1beta1.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl/client.rb +488 -488
- data/lib/google/cloud/automl/v1beta1/automl/credentials.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/automl/operations.rb +100 -100
- data/lib/google/cloud/automl/v1beta1/automl/paths.rb +25 -25
- data/lib/google/cloud/automl/v1beta1/prediction_service.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/prediction_service/client.rb +78 -78
- data/lib/google/cloud/automl/v1beta1/prediction_service/credentials.rb +1 -1
- data/lib/google/cloud/automl/v1beta1/prediction_service/operations.rb +100 -100
- data/lib/google/cloud/automl/v1beta1/prediction_service/paths.rb +3 -3
- data/lib/google/cloud/automl/v1beta1/version.rb +1 -1
- data/proto_docs/google/api/resource.rb +12 -12
- data/proto_docs/google/cloud/automl/v1beta1/annotation_payload.rb +13 -13
- data/proto_docs/google/cloud/automl/v1beta1/annotation_spec.rb +5 -5
- data/proto_docs/google/cloud/automl/v1beta1/classification.rb +43 -43
- data/proto_docs/google/cloud/automl/v1beta1/column_spec.rb +12 -12
- data/proto_docs/google/cloud/automl/v1beta1/data_items.rb +49 -49
- data/proto_docs/google/cloud/automl/v1beta1/data_stats.rb +65 -65
- data/proto_docs/google/cloud/automl/v1beta1/data_types.rb +23 -23
- data/proto_docs/google/cloud/automl/v1beta1/dataset.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/detection.rb +32 -32
- data/proto_docs/google/cloud/automl/v1beta1/geometry.rb +7 -7
- data/proto_docs/google/cloud/automl/v1beta1/image.rb +38 -38
- data/proto_docs/google/cloud/automl/v1beta1/io.rb +85 -85
- data/proto_docs/google/cloud/automl/v1beta1/model.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/model_evaluation.rb +17 -17
- data/proto_docs/google/cloud/automl/v1beta1/operations.rb +56 -56
- data/proto_docs/google/cloud/automl/v1beta1/prediction_service.rb +41 -41
- data/proto_docs/google/cloud/automl/v1beta1/ranges.rb +4 -4
- data/proto_docs/google/cloud/automl/v1beta1/regression.rb +7 -7
- data/proto_docs/google/cloud/automl/v1beta1/service.rb +167 -167
- data/proto_docs/google/cloud/automl/v1beta1/table_spec.rb +9 -9
- data/proto_docs/google/cloud/automl/v1beta1/tables.rb +47 -47
- data/proto_docs/google/cloud/automl/v1beta1/temporal.rb +4 -4
- data/proto_docs/google/cloud/automl/v1beta1/text.rb +15 -15
- data/proto_docs/google/cloud/automl/v1beta1/text_extraction.rb +14 -14
- data/proto_docs/google/cloud/automl/v1beta1/text_segment.rb +5 -5
- data/proto_docs/google/cloud/automl/v1beta1/text_sentiment.rb +15 -15
- data/proto_docs/google/cloud/automl/v1beta1/translation.rb +16 -16
- data/proto_docs/google/cloud/automl/v1beta1/video.rb +8 -8
- data/proto_docs/google/longrunning/operations.rb +30 -30
- data/proto_docs/google/protobuf/any.rb +4 -4
- data/proto_docs/google/protobuf/duration.rb +4 -4
- data/proto_docs/google/protobuf/empty.rb +2 -2
- data/proto_docs/google/protobuf/field_mask.rb +3 -3
- data/proto_docs/google/protobuf/struct.rb +18 -18
- data/proto_docs/google/protobuf/timestamp.rb +4 -4
- data/proto_docs/google/rpc/status.rb +6 -6
- metadata +2 -2
@@ -31,13 +31,13 @@ module Google
|
|
31
31
|
# Used by:
|
32
32
|
# * Tables
|
33
33
|
# @!attribute [rw] name
|
34
|
-
# @return [String]
|
34
|
+
# @return [::String]
|
35
35
|
# Output only. The resource name of the table spec.
|
36
36
|
# Form:
|
37
37
|
#
|
38
38
|
# `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}`
|
39
39
|
# @!attribute [rw] time_column_spec_id
|
40
|
-
# @return [String]
|
40
|
+
# @return [::String]
|
41
41
|
# column_spec_id of the time column. Only used if the parent dataset's
|
42
42
|
# ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE
|
43
43
|
# and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and
|
@@ -47,27 +47,27 @@ module Google
|
|
47
47
|
# will be assigned by AutoML. NOTE: Updates of this field will instantly
|
48
48
|
# affect any other users concurrently working with the dataset.
|
49
49
|
# @!attribute [rw] row_count
|
50
|
-
# @return [Integer]
|
50
|
+
# @return [::Integer]
|
51
51
|
# Output only. The number of rows (i.e. examples) in the table.
|
52
52
|
# @!attribute [rw] valid_row_count
|
53
|
-
# @return [Integer]
|
53
|
+
# @return [::Integer]
|
54
54
|
# Output only. The number of valid rows (i.e. without values that don't match
|
55
55
|
# DataType-s of their columns).
|
56
56
|
# @!attribute [rw] column_count
|
57
|
-
# @return [Integer]
|
57
|
+
# @return [::Integer]
|
58
58
|
# Output only. The number of columns of the table. That is, the number of
|
59
59
|
# child ColumnSpec-s.
|
60
60
|
# @!attribute [rw] input_configs
|
61
|
-
# @return [Array
|
61
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::InputConfig>]
|
62
62
|
# Output only. Input configs via which data currently residing in the table
|
63
63
|
# had been imported.
|
64
64
|
# @!attribute [rw] etag
|
65
|
-
# @return [String]
|
65
|
+
# @return [::String]
|
66
66
|
# Used to perform consistent read-modify-write updates. If not set, a blind
|
67
67
|
# "overwrite" update happens.
|
68
68
|
class TableSpec
|
69
|
-
include Google::Protobuf::MessageExts
|
70
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
69
|
+
include ::Google::Protobuf::MessageExts
|
70
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
71
71
|
end
|
72
72
|
end
|
73
73
|
end
|
@@ -23,10 +23,10 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Metadata for a dataset used for AutoML Tables.
|
25
25
|
# @!attribute [rw] primary_table_spec_id
|
26
|
-
# @return [String]
|
26
|
+
# @return [::String]
|
27
27
|
# Output only. The table_spec_id of the primary table of this dataset.
|
28
28
|
# @!attribute [rw] target_column_spec_id
|
29
|
-
# @return [String]
|
29
|
+
# @return [::String]
|
30
30
|
# column_spec_id of the primary table's column that should be used as the
|
31
31
|
# training & prediction target.
|
32
32
|
# This column must be non-nullable and have one of following data types
|
@@ -42,7 +42,7 @@ module Google
|
|
42
42
|
# NOTE: Updates of this field will instantly affect any other users
|
43
43
|
# concurrently working with the dataset.
|
44
44
|
# @!attribute [rw] weight_column_spec_id
|
45
|
-
# @return [String]
|
45
|
+
# @return [::String]
|
46
46
|
# column_spec_id of the primary table's column that should be used as the
|
47
47
|
# weight column, i.e. the higher the value the more important the row will be
|
48
48
|
# during model training.
|
@@ -53,7 +53,7 @@ module Google
|
|
53
53
|
# NOTE: Updates of this field will instantly affect any other users
|
54
54
|
# concurrently working with the dataset.
|
55
55
|
# @!attribute [rw] ml_use_column_spec_id
|
56
|
-
# @return [String]
|
56
|
+
# @return [::String]
|
57
57
|
# column_spec_id of the primary table column which specifies a possible ML
|
58
58
|
# use of the row, i.e. the column will be used to split the rows into TRAIN,
|
59
59
|
# VALIDATE and TEST sets.
|
@@ -68,19 +68,19 @@ module Google
|
|
68
68
|
# NOTE: Updates of this field will instantly affect any other users
|
69
69
|
# concurrently working with the dataset.
|
70
70
|
# @!attribute [rw] target_column_correlations
|
71
|
-
# @return [Google::Protobuf::Map{String => Google::Cloud::AutoML::V1beta1::CorrelationStats}]
|
71
|
+
# @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AutoML::V1beta1::CorrelationStats}]
|
72
72
|
# Output only. Correlations between
|
73
73
|
#
|
74
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
|
74
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata.target_column_spec_id},
|
75
75
|
# and other columns of the
|
76
76
|
#
|
77
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
|
77
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
|
78
78
|
# Only set if the target column is set. Mapping from other column spec id to
|
79
79
|
# its CorrelationStats with the target column.
|
80
80
|
# This field may be stale, see the stats_update_time field for
|
81
81
|
# for the timestamp at which these stats were last updated.
|
82
82
|
# @!attribute [rw] stats_update_time
|
83
|
-
# @return [Google::Protobuf::Timestamp]
|
83
|
+
# @return [::Google::Protobuf::Timestamp]
|
84
84
|
# Output only. The most recent timestamp when target_column_correlations
|
85
85
|
# field and all descendant ColumnSpec.data_stats and
|
86
86
|
# ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
|
@@ -88,30 +88,30 @@ module Google
|
|
88
88
|
# fields values. The regeneration happens in the background on a best effort
|
89
89
|
# basis.
|
90
90
|
class TablesDatasetMetadata
|
91
|
-
include Google::Protobuf::MessageExts
|
92
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
91
|
+
include ::Google::Protobuf::MessageExts
|
92
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
93
93
|
|
94
94
|
# @!attribute [rw] key
|
95
|
-
# @return [String]
|
95
|
+
# @return [::String]
|
96
96
|
# @!attribute [rw] value
|
97
|
-
# @return [Google::Cloud::AutoML::V1beta1::CorrelationStats]
|
97
|
+
# @return [::Google::Cloud::AutoML::V1beta1::CorrelationStats]
|
98
98
|
class TargetColumnCorrelationsEntry
|
99
|
-
include Google::Protobuf::MessageExts
|
100
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
99
|
+
include ::Google::Protobuf::MessageExts
|
100
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
101
101
|
end
|
102
102
|
end
|
103
103
|
|
104
104
|
# Model metadata specific to AutoML Tables.
|
105
105
|
# @!attribute [rw] optimization_objective_recall_value
|
106
|
-
# @return [Float]
|
106
|
+
# @return [::Float]
|
107
107
|
# Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
|
108
108
|
# Must be between 0 and 1, inclusive.
|
109
109
|
# @!attribute [rw] optimization_objective_precision_value
|
110
|
-
# @return [Float]
|
110
|
+
# @return [::Float]
|
111
111
|
# Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
|
112
112
|
# Must be between 0 and 1, inclusive.
|
113
113
|
# @!attribute [rw] target_column_spec
|
114
|
-
# @return [Google::Cloud::AutoML::V1beta1::ColumnSpec]
|
114
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ColumnSpec]
|
115
115
|
# Column spec of the dataset's primary table's column the model is
|
116
116
|
# predicting. Snapshotted when model creation started.
|
117
117
|
# Only 3 fields are used:
|
@@ -122,18 +122,18 @@ module Google
|
|
122
122
|
# display_name - Output only.
|
123
123
|
# data_type - Output only.
|
124
124
|
# @!attribute [rw] input_feature_column_specs
|
125
|
-
# @return [Array
|
125
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::ColumnSpec>]
|
126
126
|
# Column specs of the dataset's primary table's columns, on which
|
127
127
|
# the model is trained and which are used as the input for predictions.
|
128
128
|
# The
|
129
129
|
#
|
130
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
|
130
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
|
131
131
|
# as well as, according to dataset's state upon model creation,
|
132
132
|
#
|
133
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
|
133
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
|
134
134
|
# and
|
135
135
|
#
|
136
|
-
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
|
136
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
|
137
137
|
# must never be included here.
|
138
138
|
#
|
139
139
|
# Only 3 fields are used:
|
@@ -146,7 +146,7 @@ module Google
|
|
146
146
|
#
|
147
147
|
# * data_type - Output only.
|
148
148
|
# @!attribute [rw] optimization_objective
|
149
|
-
# @return [String]
|
149
|
+
# @return [::String]
|
150
150
|
# Objective function the model is optimizing towards. The training process
|
151
151
|
# creates a model that maximizes/minimizes the value of the objective
|
152
152
|
# function over the validation set.
|
@@ -173,11 +173,11 @@ module Google
|
|
173
173
|
# "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
|
174
174
|
# "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
|
175
175
|
# @!attribute [rw] tables_model_column_info
|
176
|
-
# @return [Array
|
176
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
177
177
|
# Output only. Auxiliary information for each of the
|
178
178
|
# input_feature_column_specs with respect to this particular model.
|
179
179
|
# @!attribute [rw] train_budget_milli_node_hours
|
180
|
-
# @return [Integer]
|
180
|
+
# @return [::Integer]
|
181
181
|
# Required. The train budget of creating this model, expressed in milli node
|
182
182
|
# hours i.e. 1,000 value in this field means 1 node hour.
|
183
183
|
#
|
@@ -193,41 +193,41 @@ module Google
|
|
193
193
|
# The train budget must be between 1,000 and 72,000 milli node hours,
|
194
194
|
# inclusive.
|
195
195
|
# @!attribute [rw] train_cost_milli_node_hours
|
196
|
-
# @return [Integer]
|
196
|
+
# @return [::Integer]
|
197
197
|
# Output only. The actual training cost of the model, expressed in milli
|
198
198
|
# node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
|
199
199
|
# to not exceed the train budget.
|
200
200
|
# @!attribute [rw] disable_early_stopping
|
201
|
-
# @return [Boolean]
|
201
|
+
# @return [::Boolean]
|
202
202
|
# Use the entire training budget. This disables the early stopping feature.
|
203
203
|
# By default, the early stopping feature is enabled, which means that AutoML
|
204
204
|
# Tables might stop training before the entire training budget has been used.
|
205
205
|
class TablesModelMetadata
|
206
|
-
include Google::Protobuf::MessageExts
|
207
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
206
|
+
include ::Google::Protobuf::MessageExts
|
207
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
208
208
|
end
|
209
209
|
|
210
210
|
# Contains annotation details specific to Tables.
|
211
211
|
# @!attribute [rw] score
|
212
|
-
# @return [Float]
|
212
|
+
# @return [::Float]
|
213
213
|
# Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
|
214
214
|
# value means greater confidence in the returned value.
|
215
215
|
# For
|
216
216
|
#
|
217
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
217
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
218
218
|
# of FLOAT64 data type the score is not populated.
|
219
219
|
# @!attribute [rw] prediction_interval
|
220
|
-
# @return [Google::Cloud::AutoML::V1beta1::DoubleRange]
|
220
|
+
# @return [::Google::Cloud::AutoML::V1beta1::DoubleRange]
|
221
221
|
# Output only. Only populated when
|
222
222
|
#
|
223
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
223
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
224
224
|
# has FLOAT64 data type. An interval in which the exactly correct target
|
225
225
|
# value has 95% chance to be in.
|
226
226
|
# @!attribute [rw] value
|
227
|
-
# @return [Google::Protobuf::Value]
|
227
|
+
# @return [::Google::Protobuf::Value]
|
228
228
|
# The predicted value of the row's
|
229
229
|
#
|
230
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
|
230
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
|
231
231
|
# The value depends on the column's DataType:
|
232
232
|
#
|
233
233
|
# * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
|
@@ -235,20 +235,20 @@ module Google
|
|
235
235
|
#
|
236
236
|
# * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
|
237
237
|
# @!attribute [rw] tables_model_column_info
|
238
|
-
# @return [Array
|
238
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
239
239
|
# Output only. Auxiliary information for each of the model's
|
240
240
|
#
|
241
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
|
241
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
|
242
242
|
# with respect to this particular prediction.
|
243
243
|
# If no other fields than
|
244
244
|
#
|
245
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
|
245
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
|
246
246
|
# and
|
247
247
|
#
|
248
|
-
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
|
248
|
+
# {::Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
|
249
249
|
# would be populated, then this whole field is not.
|
250
250
|
# @!attribute [rw] baseline_score
|
251
|
-
# @return [Float]
|
251
|
+
# @return [::Float]
|
252
252
|
# Output only. Stores the prediction score for the baseline example, which
|
253
253
|
# is defined as the example with all values set to their baseline values.
|
254
254
|
# This is used as part of the Sampled Shapley explanation of the model's
|
@@ -257,22 +257,22 @@ module Google
|
|
257
257
|
# the baseline example. For classification models, this holds the baseline
|
258
258
|
# prediction for the baseline example for the argmax class.
|
259
259
|
class TablesAnnotation
|
260
|
-
include Google::Protobuf::MessageExts
|
261
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
260
|
+
include ::Google::Protobuf::MessageExts
|
261
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
262
262
|
end
|
263
263
|
|
264
264
|
# An information specific to given column and Tables Model, in context
|
265
265
|
# of the Model and the predictions created by it.
|
266
266
|
# @!attribute [rw] column_spec_name
|
267
|
-
# @return [String]
|
267
|
+
# @return [::String]
|
268
268
|
# Output only. The name of the ColumnSpec describing the column. Not
|
269
269
|
# populated when this proto is outputted to BigQuery.
|
270
270
|
# @!attribute [rw] column_display_name
|
271
|
-
# @return [String]
|
271
|
+
# @return [::String]
|
272
272
|
# Output only. The display name of the column (same as the display_name of
|
273
273
|
# its ColumnSpec).
|
274
274
|
# @!attribute [rw] feature_importance
|
275
|
-
# @return [Float]
|
275
|
+
# @return [::Float]
|
276
276
|
# Output only. When given as part of a Model (always populated):
|
277
277
|
# Measurement of how much model predictions correctness on the TEST data
|
278
278
|
# depend on values in this column. A value between 0 and 1, higher means
|
@@ -283,7 +283,7 @@ module Google
|
|
283
283
|
# [feature_importance
|
284
284
|
# param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
|
285
285
|
# Predict (populated iff
|
286
|
-
# {Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
|
286
|
+
# {::Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
|
287
287
|
# param is set):
|
288
288
|
# Measurement of how impactful for the prediction returned for the given row
|
289
289
|
# the value in this column was. Specifically, the feature importance
|
@@ -291,8 +291,8 @@ module Google
|
|
291
291
|
# score compared to the baseline score. These values are computed using the
|
292
292
|
# Sampled Shapley method.
|
293
293
|
class TablesModelColumnInfo
|
294
|
-
include Google::Protobuf::MessageExts
|
295
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
294
|
+
include ::Google::Protobuf::MessageExts
|
295
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
296
296
|
end
|
297
297
|
end
|
298
298
|
end
|
@@ -23,16 +23,16 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# A time period inside of an example that has a time dimension (e.g. video).
|
25
25
|
# @!attribute [rw] start_time_offset
|
26
|
-
# @return [Google::Protobuf::Duration]
|
26
|
+
# @return [::Google::Protobuf::Duration]
|
27
27
|
# Start of the time segment (inclusive), represented as the duration since
|
28
28
|
# the example start.
|
29
29
|
# @!attribute [rw] end_time_offset
|
30
|
-
# @return [Google::Protobuf::Duration]
|
30
|
+
# @return [::Google::Protobuf::Duration]
|
31
31
|
# End of the time segment (exclusive), represented as the duration since the
|
32
32
|
# example start.
|
33
33
|
class TimeSegment
|
34
|
-
include Google::Protobuf::MessageExts
|
35
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
34
|
+
include ::Google::Protobuf::MessageExts
|
35
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
36
36
|
end
|
37
37
|
end
|
38
38
|
end
|
@@ -23,37 +23,37 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Dataset metadata for classification.
|
25
25
|
# @!attribute [rw] classification_type
|
26
|
-
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
26
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
|
27
27
|
# Required. Type of the classification problem.
|
28
28
|
class TextClassificationDatasetMetadata
|
29
|
-
include Google::Protobuf::MessageExts
|
30
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
29
|
+
include ::Google::Protobuf::MessageExts
|
30
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
31
31
|
end
|
32
32
|
|
33
33
|
# Model metadata that is specific to text classification.
|
34
34
|
# @!attribute [rw] classification_type
|
35
|
-
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
35
|
+
# @return [::Google::Cloud::AutoML::V1beta1::ClassificationType]
|
36
36
|
# Output only. Classification type of the dataset used to train this model.
|
37
37
|
class TextClassificationModelMetadata
|
38
|
-
include Google::Protobuf::MessageExts
|
39
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
38
|
+
include ::Google::Protobuf::MessageExts
|
39
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
40
40
|
end
|
41
41
|
|
42
42
|
# Dataset metadata that is specific to text extraction
|
43
43
|
class TextExtractionDatasetMetadata
|
44
|
-
include Google::Protobuf::MessageExts
|
45
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
44
|
+
include ::Google::Protobuf::MessageExts
|
45
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
46
46
|
end
|
47
47
|
|
48
48
|
# Model metadata that is specific to text extraction.
|
49
49
|
class TextExtractionModelMetadata
|
50
|
-
include Google::Protobuf::MessageExts
|
51
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
50
|
+
include ::Google::Protobuf::MessageExts
|
51
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
52
52
|
end
|
53
53
|
|
54
54
|
# Dataset metadata for text sentiment.
|
55
55
|
# @!attribute [rw] sentiment_max
|
56
|
-
# @return [Integer]
|
56
|
+
# @return [::Integer]
|
57
57
|
# Required. A sentiment is expressed as an integer ordinal, where higher value
|
58
58
|
# means a more positive sentiment. The range of sentiments that will be used
|
59
59
|
# is between 0 and sentiment_max (inclusive on both ends), and all the values
|
@@ -61,14 +61,14 @@ module Google
|
|
61
61
|
# created.
|
62
62
|
# sentiment_max value must be between 1 and 10 (inclusive).
|
63
63
|
class TextSentimentDatasetMetadata
|
64
|
-
include Google::Protobuf::MessageExts
|
65
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
64
|
+
include ::Google::Protobuf::MessageExts
|
65
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
66
66
|
end
|
67
67
|
|
68
68
|
# Model metadata that is specific to text sentiment.
|
69
69
|
class TextSentimentModelMetadata
|
70
|
-
include Google::Protobuf::MessageExts
|
71
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
70
|
+
include ::Google::Protobuf::MessageExts
|
71
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
72
72
|
end
|
73
73
|
end
|
74
74
|
end
|
@@ -23,48 +23,48 @@ module Google
|
|
23
23
|
module V1beta1
|
24
24
|
# Annotation for identifying spans of text.
|
25
25
|
# @!attribute [rw] text_segment
|
26
|
-
# @return [Google::Cloud::AutoML::V1beta1::TextSegment]
|
26
|
+
# @return [::Google::Cloud::AutoML::V1beta1::TextSegment]
|
27
27
|
# An entity annotation will set this, which is the part of the original
|
28
28
|
# text to which the annotation pertains.
|
29
29
|
# @!attribute [rw] score
|
30
|
-
# @return [Float]
|
30
|
+
# @return [::Float]
|
31
31
|
# Output only. A confidence estimate between 0.0 and 1.0. A higher value
|
32
32
|
# means greater confidence in correctness of the annotation.
|
33
33
|
class TextExtractionAnnotation
|
34
|
-
include Google::Protobuf::MessageExts
|
35
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
34
|
+
include ::Google::Protobuf::MessageExts
|
35
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
36
36
|
end
|
37
37
|
|
38
38
|
# Model evaluation metrics for text extraction problems.
|
39
39
|
# @!attribute [rw] au_prc
|
40
|
-
# @return [Float]
|
40
|
+
# @return [::Float]
|
41
41
|
# Output only. The Area under precision recall curve metric.
|
42
42
|
# @!attribute [rw] confidence_metrics_entries
|
43
|
-
# @return [Array
|
43
|
+
# @return [::Array<::Google::Cloud::AutoML::V1beta1::TextExtractionEvaluationMetrics::ConfidenceMetricsEntry>]
|
44
44
|
# Output only. Metrics that have confidence thresholds.
|
45
45
|
# Precision-recall curve can be derived from it.
|
46
46
|
class TextExtractionEvaluationMetrics
|
47
|
-
include Google::Protobuf::MessageExts
|
48
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
47
|
+
include ::Google::Protobuf::MessageExts
|
48
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
49
49
|
|
50
50
|
# Metrics for a single confidence threshold.
|
51
51
|
# @!attribute [rw] confidence_threshold
|
52
|
-
# @return [Float]
|
52
|
+
# @return [::Float]
|
53
53
|
# Output only. The confidence threshold value used to compute the metrics.
|
54
54
|
# Only annotations with score of at least this threshold are considered to
|
55
55
|
# be ones the model would return.
|
56
56
|
# @!attribute [rw] recall
|
57
|
-
# @return [Float]
|
57
|
+
# @return [::Float]
|
58
58
|
# Output only. Recall under the given confidence threshold.
|
59
59
|
# @!attribute [rw] precision
|
60
|
-
# @return [Float]
|
60
|
+
# @return [::Float]
|
61
61
|
# Output only. Precision under the given confidence threshold.
|
62
62
|
# @!attribute [rw] f1_score
|
63
|
-
# @return [Float]
|
63
|
+
# @return [::Float]
|
64
64
|
# Output only. The harmonic mean of recall and precision.
|
65
65
|
class ConfidenceMetricsEntry
|
66
|
-
include Google::Protobuf::MessageExts
|
67
|
-
extend Google::Protobuf::MessageExts::ClassMethods
|
66
|
+
include ::Google::Protobuf::MessageExts
|
67
|
+
extend ::Google::Protobuf::MessageExts::ClassMethods
|
68
68
|
end
|
69
69
|
end
|
70
70
|
end
|