google-cloud-automl-v1 0.4.6 → 0.4.7

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: e5e7220e71feb45348e9009bd6c4269b0a86d4059a817287fd11682d18542fe7
4
- data.tar.gz: 9babe7653583f09730f78ad1552fa3d2e51d8069f06f40d59979c0245422f1ac
3
+ metadata.gz: e34a60834369c7f894765af52b2898ade9f2bd5066eadcf233801bdb6b027f0e
4
+ data.tar.gz: cbb338015644740f053d79db0aa1a61c31ad7531d3fe335f594bb71b45063489
5
5
  SHA512:
6
- metadata.gz: ca10093ffcad2221388b7c1eec1f233d5fec77bee6a1710185fc31300124d7f361e8da0fb86a4e8bbd145465650041436b048d2218fa9ecf0f6213fd9c8ff37e
7
- data.tar.gz: 72cc7496bf82cdeece1c90264fe8cb5cc0a105a4c44f98318a3cad53af98f5410c848b8202aca6fa84bfa07dcb586de2bcad03ca367801441ad66e6d9566adc1
6
+ metadata.gz: f3a9919440483bec81bef533116474a45551a4a85c9f9db3976625248848bd4ddba9142b4fcb2b2561c77e221f60953ed3da862b77eb53d530aad9bcaaa2ec94
7
+ data.tar.gz: 22ff140e173f70d4bd69379e27ed7e49320ee05f0759633bb9e54fc28d5ffe8245c8801fc6f53d40f3aa062578e6b5254a2229bbe00c09fcc8abd34566ad684b
@@ -40,7 +40,7 @@ module Google
40
40
  # Currently the only supported `location_id` is "us-central1".
41
41
  #
42
42
  # On any input that is documented to expect a string parameter in
43
- # snake_case or kebab-case, either of those cases is accepted.
43
+ # snake_case or dash-case, either of those cases is accepted.
44
44
  #
45
45
  class Client
46
46
  include Paths
@@ -437,8 +437,7 @@ module Google
437
437
  # An expression for filtering the results of the request.
438
438
  #
439
439
  # * `dataset_metadata` - for existence of the case (e.g.
440
- # `image_classification_dataset_metadata:*`). Some examples of
441
- # using the filter are:
440
+ # `image_classification_dataset_metadata:*`). Some examples of using the filter are:
442
441
  #
443
442
  # * `translation_dataset_metadata:*` --> The dataset has
444
443
  # `translation_dataset_metadata`.
@@ -1474,7 +1473,6 @@ module Google
1474
1473
  # Deploys a model. If a model is already deployed, deploying it with the
1475
1474
  # same parameters has no effect. Deploying with different parametrs
1476
1475
  # (as e.g. changing
1477
- #
1478
1476
  # [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
1479
1477
  # will reset the deployment state without pausing the model's availability.
1480
1478
  #
@@ -45,7 +45,7 @@ module Google
45
45
  # Currently the only supported `location_id` is "us-central1".
46
46
  #
47
47
  # On any input that is documented to expect a string parameter in
48
- # snake_case or kebab-case, either of those cases is accepted.
48
+ # snake_case or dash-case, either of those cases is accepted.
49
49
  #
50
50
  # To load this service and instantiate a client:
51
51
  #
@@ -1,6 +1,7 @@
1
1
  # Generated by the protocol buffer compiler. DO NOT EDIT!
2
2
  # source: google/cloud/automl/v1/image.proto
3
3
 
4
+ require 'google/api/field_behavior_pb'
4
5
  require 'google/api/resource_pb'
5
6
  require 'google/cloud/automl/v1/annotation_spec_pb'
6
7
  require 'google/cloud/automl/v1/classification_pb'
@@ -3,6 +3,11 @@
3
3
 
4
4
  require 'google/cloud/automl/v1/dataset_pb'
5
5
  require 'google/cloud/automl/v1/io_pb'
6
+ require 'google/cloud/automl/v1/model_pb'
7
+ require 'google/cloud/automl/v1/model_evaluation_pb'
8
+ require 'google/cloud/automl/v1/prediction_service_pb'
9
+ require 'google/cloud/automl/v1/service_pb'
10
+ require 'google/protobuf/empty_pb'
6
11
  require 'google/protobuf/timestamp_pb'
7
12
  require 'google/rpc/status_pb'
8
13
  require 'google/api/annotations_pb'
@@ -30,7 +30,7 @@ module Google
30
30
  # AutoML Prediction API.
31
31
  #
32
32
  # On any input that is documented to expect a string parameter in
33
- # snake_case or kebab-case, either of those cases is accepted.
33
+ # snake_case or dash-case, either of those cases is accepted.
34
34
  #
35
35
  class Client
36
36
  include Paths
@@ -249,7 +249,6 @@ module Google
249
249
  #
250
250
  # `feature_importance`
251
251
  # : (boolean) Whether
252
- #
253
252
  # [feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
254
253
  # is populated in the returned list of
255
254
  # [TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
@@ -35,7 +35,7 @@ module Google
35
35
  # AutoML Prediction API.
36
36
  #
37
37
  # On any input that is documented to expect a string parameter in
38
- # snake_case or kebab-case, either of those cases is accepted.
38
+ # snake_case or dash-case, either of those cases is accepted.
39
39
  #
40
40
  # To load this service and instantiate a client:
41
41
  #
@@ -8,7 +8,6 @@ require 'google/api/resource_pb'
8
8
  require 'google/cloud/automl/v1/annotation_payload_pb'
9
9
  require 'google/cloud/automl/v1/data_items_pb'
10
10
  require 'google/cloud/automl/v1/io_pb'
11
- require 'google/cloud/automl/v1/operations_pb'
12
11
  require 'google/longrunning/operations_pb'
13
12
  require 'google/protobuf'
14
13
 
@@ -27,7 +27,7 @@ module Google
27
27
  # AutoML Prediction API.
28
28
  #
29
29
  # On any input that is documented to expect a string parameter in
30
- # snake_case or kebab-case, either of those cases is accepted.
30
+ # snake_case or dash-case, either of those cases is accepted.
31
31
  class Service
32
32
 
33
33
  include ::GRPC::GenericService
@@ -12,7 +12,6 @@ require 'google/cloud/automl/v1/image_pb'
12
12
  require 'google/cloud/automl/v1/io_pb'
13
13
  require 'google/cloud/automl/v1/model_pb'
14
14
  require 'google/cloud/automl/v1/model_evaluation_pb'
15
- require 'google/cloud/automl/v1/operations_pb'
16
15
  require 'google/longrunning/operations_pb'
17
16
  require 'google/protobuf/field_mask_pb'
18
17
  require 'google/protobuf'
@@ -37,7 +37,7 @@ module Google
37
37
  # Currently the only supported `location_id` is "us-central1".
38
38
  #
39
39
  # On any input that is documented to expect a string parameter in
40
- # snake_case or kebab-case, either of those cases is accepted.
40
+ # snake_case or dash-case, either of those cases is accepted.
41
41
  class Service
42
42
 
43
43
  include ::GRPC::GenericService
@@ -97,7 +97,6 @@ module Google
97
97
  # Deploys a model. If a model is already deployed, deploying it with the
98
98
  # same parameters has no effect. Deploying with different parametrs
99
99
  # (as e.g. changing
100
- #
101
100
  # [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
102
101
  # will reset the deployment state without pausing the model's availability.
103
102
  #
@@ -1,6 +1,7 @@
1
1
  # Generated by the protocol buffer compiler. DO NOT EDIT!
2
2
  # source: google/cloud/automl/v1/text.proto
3
3
 
4
+ require 'google/api/field_behavior_pb'
4
5
  require 'google/cloud/automl/v1/classification_pb'
5
6
  require 'google/api/annotations_pb'
6
7
  require 'google/protobuf'
@@ -21,7 +21,7 @@ module Google
21
21
  module Cloud
22
22
  module AutoML
23
23
  module V1
24
- VERSION = "0.4.6"
24
+ VERSION = "0.4.7"
25
25
  end
26
26
  end
27
27
  end
@@ -45,7 +45,7 @@ module Google
45
45
  # @!attribute [rw] display_name
46
46
  # @return [::String]
47
47
  # Output only. The value of
48
- # {::Google::Cloud::AutoML::V1::AnnotationSpec#display_name display_name}
48
+ # [display_name][google.cloud.automl.v1p1beta.AnnotationSpec.display_name]
49
49
  # when the model was trained. Because this field returns a value at model
50
50
  # training time, for different models trained using the same dataset, the
51
51
  # returned value could be different as model owner could update the
@@ -26,7 +26,6 @@ module Google
26
26
  # @return [::String]
27
27
  # Output only. Resource name of the annotation spec.
28
28
  # Form:
29
- #
30
29
  # 'projects/\\{project_id}/locations/\\{location_id}/datasets/\\{dataset_id}/annotationSpecs/\\{annotation_spec_id}'
31
30
  # @!attribute [rw] display_name
32
31
  # @return [::String]
@@ -137,7 +137,6 @@ module Google
137
137
  # @return [::Array<::String>]
138
138
  # Output only. IDs of the annotation specs used in the confusion matrix.
139
139
  # For Tables CLASSIFICATION
140
- #
141
140
  # [prediction_type][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]
142
141
  # only list of [annotation_spec_display_name-s][] is populated.
143
142
  # @!attribute [rw] display_name
@@ -145,7 +144,6 @@ module Google
145
144
  # Output only. Display name of the annotation specs used in the confusion
146
145
  # matrix, as they were at the moment of the evaluation. For Tables
147
146
  # CLASSIFICATION
148
- #
149
147
  # [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type],
150
148
  # distinct values of the target column at the moment of the model
151
149
  # evaluation are populated here.
@@ -118,7 +118,6 @@ module Google
118
118
  # @return [::Google::Cloud::AutoML::V1::BoundingPoly]
119
119
  # The position of the {::Google::Cloud::AutoML::V1::Document::Layout#text_segment text_segment} in the page.
120
120
  # Contains exactly 4
121
- #
122
121
  # [normalized_vertices][google.cloud.automl.v1p1beta.BoundingPoly.normalized_vertices]
123
122
  # and they are connected by edges in the order provided, which will
124
123
  # represent a rectangle parallel to the frame. The
@@ -46,7 +46,7 @@ module Google
46
46
  # `model_type`.
47
47
  # @!attribute [rw] train_budget_milli_node_hours
48
48
  # @return [::Integer]
49
- # The train budget of creating this model, expressed in milli node
49
+ # Optional. The train budget of creating this model, expressed in milli node
50
50
  # hours i.e. 1,000 value in this field means 1 node hour. The actual
51
51
  # `train_cost` will be equal or less than this value. If further model
52
52
  # training ceases to provide any improvements, it will stop without using
@@ -60,12 +60,12 @@ module Google
60
60
  # `mobile-core-ml-high-accuracy-1`, the train budget must be between 1,000
61
61
  # and 100,000 milli node hours, inclusive. The default value is 24, 000 which
62
62
  # represents one day in wall time.
63
- # @!attribute [rw] train_cost_milli_node_hours
63
+ # @!attribute [r] train_cost_milli_node_hours
64
64
  # @return [::Integer]
65
65
  # Output only. The actual train cost of creating this model, expressed in
66
66
  # milli node hours, i.e. 1,000 value in this field means 1 node hour.
67
67
  # Guaranteed to not exceed the train budget.
68
- # @!attribute [rw] stop_reason
68
+ # @!attribute [r] stop_reason
69
69
  # @return [::String]
70
70
  # Output only. The reason that this create model operation stopped,
71
71
  # e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
@@ -104,11 +104,11 @@ module Google
104
104
  # Core ML afterwards. Expected to have a higher latency, but
105
105
  # should also have a higher prediction quality than other
106
106
  # models.
107
- # @!attribute [rw] node_qps
107
+ # @!attribute [r] node_qps
108
108
  # @return [::Float]
109
109
  # Output only. An approximate number of online prediction QPS that can
110
110
  # be supported by this model per each node on which it is deployed.
111
- # @!attribute [rw] node_count
111
+ # @!attribute [r] node_count
112
112
  # @return [::Integer]
113
113
  # Output only. The number of nodes this model is deployed on. A node is an
114
114
  # abstraction of a machine resource, which can handle online prediction QPS
@@ -144,22 +144,22 @@ module Google
144
144
  # with TensorFlow afterwards. Expected to have a higher
145
145
  # latency, but should also have a higher prediction quality
146
146
  # than other models.
147
- # @!attribute [rw] node_count
147
+ # @!attribute [r] node_count
148
148
  # @return [::Integer]
149
149
  # Output only. The number of nodes this model is deployed on. A node is an
150
150
  # abstraction of a machine resource, which can handle online prediction QPS
151
151
  # as given in the qps_per_node field.
152
- # @!attribute [rw] node_qps
152
+ # @!attribute [r] node_qps
153
153
  # @return [::Float]
154
154
  # Output only. An approximate number of online prediction QPS that can
155
155
  # be supported by this model per each node on which it is deployed.
156
- # @!attribute [rw] stop_reason
156
+ # @!attribute [r] stop_reason
157
157
  # @return [::String]
158
158
  # Output only. The reason that this create model operation stopped,
159
159
  # e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
160
160
  # @!attribute [rw] train_budget_milli_node_hours
161
161
  # @return [::Integer]
162
- # The train budget of creating this model, expressed in milli node
162
+ # Optional. The train budget of creating this model, expressed in milli node
163
163
  # hours i.e. 1,000 value in this field means 1 node hour. The actual
164
164
  # `train_cost` will be equal or less than this value. If further model
165
165
  # training ceases to provide any improvements, it will stop without using
@@ -174,7 +174,7 @@ module Google
174
174
  # `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
175
175
  # budget must be between 1,000 and 100,000 milli node hours, inclusive.
176
176
  # The default value is 24, 000 which represents one day in wall time.
177
- # @!attribute [rw] train_cost_milli_node_hours
177
+ # @!attribute [r] train_cost_milli_node_hours
178
178
  # @return [::Integer]
179
179
  # Output only. The actual train cost of creating this model, expressed in
180
180
  # milli node hours, i.e. 1,000 value in this field means 1 node hour.
@@ -190,7 +190,6 @@ module Google
190
190
  # Input only. The number of nodes to deploy the model on. A node is an
191
191
  # abstraction of a machine resource, which can handle online prediction QPS
192
192
  # as given in the model's
193
- #
194
193
  # {::Google::Cloud::AutoML::V1::ImageClassificationModelMetadata#node_qps node_qps}.
195
194
  # Must be between 1 and 100, inclusive on both ends.
196
195
  class ImageClassificationModelDeploymentMetadata
@@ -204,7 +203,6 @@ module Google
204
203
  # Input only. The number of nodes to deploy the model on. A node is an
205
204
  # abstraction of a machine resource, which can handle online prediction QPS
206
205
  # as given in the model's
207
- #
208
206
  # [qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
209
207
  # Must be between 1 and 100, inclusive on both ends.
210
208
  class ImageObjectDetectionModelDeploymentMetadata
@@ -527,7 +527,6 @@ module Google
527
527
  # [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
528
528
  # All input is concatenated into a
529
529
  # single
530
- #
531
530
  # [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
532
531
  #
533
532
  # **For gcs_source:**
@@ -544,9 +543,7 @@ module Google
544
543
  # First three sample rows of a CSV file:
545
544
  # <pre>
546
545
  # "Id","First Name","Last Name","Dob","Addresses"
547
- #
548
546
  # "1","John","Doe","1968-01-22","[\\{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},\\{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
549
- #
550
547
  # "2","Jane","Doe","1980-10-16","[\\{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},\\{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
551
548
  # </pre>
552
549
  # **For bigquery_source:**
@@ -882,7 +879,6 @@ module Google
882
879
  # contain values for the corresponding columns.
883
880
  #
884
881
  # The column names must contain the model's
885
- #
886
882
  # [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
887
883
  # display_name-s
888
884
  # (order doesn't matter). The columns corresponding to the model's
@@ -894,9 +890,7 @@ module Google
894
890
  # Sample rows from a CSV file:
895
891
  # <pre>
896
892
  # "First Name","Last Name","Dob","Addresses"
897
- #
898
893
  # "John","Doe","1968-01-22","[\\{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},\\{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
899
- #
900
894
  # "Jane","Doe","1980-10-16","[\\{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},\\{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
901
895
  # </pre>
902
896
  # **For bigquery_source:**
@@ -905,7 +899,6 @@ module Google
905
899
  # table must be 100GB or smaller.
906
900
  #
907
901
  # The column names must contain the model's
908
- #
909
902
  # [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
910
903
  # display_name-s
911
904
  # (order doesn't matter). The columns corresponding to the model's
@@ -979,19 +972,16 @@ module Google
979
972
  # Output depends on whether the dataset was imported from Google Cloud
980
973
  # Storage or BigQuery.
981
974
  # Google Cloud Storage case:
982
- #
983
- # [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
975
+ # [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
984
976
  # must be set. Exported are CSV file(s) `tables_1.csv`,
985
977
  # `tables_2.csv`,...,`tables_N.csv` with each having as header line
986
978
  # the table's column names, and all other lines contain values for
987
979
  # the header columns.
988
980
  # BigQuery case:
989
- #
990
- # [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
981
+ # [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
991
982
  # pointing to a BigQuery project must be set. In the given project a
992
983
  # new dataset will be created with name
993
- #
994
- # `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
984
+ # `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
995
985
  # where <automl-dataset-display-name> will be made
996
986
  # BigQuery-dataset-name compatible (e.g. most special characters will
997
987
  # become underscores), and timestamp will be in
@@ -1014,7 +1004,6 @@ module Google
1014
1004
  # Output configuration for BatchPredict Action.
1015
1005
  #
1016
1006
  # As destination the
1017
- #
1018
1007
  # {::Google::Cloud::AutoML::V1::BatchPredictOutputConfig#gcs_destination gcs_destination}
1019
1008
  # must be set unless specified otherwise for a domain. If gcs_destination is
1020
1009
  # set then in the given directory a new directory is created. Its name
@@ -1040,8 +1029,7 @@ module Google
1040
1029
  # predictions). These files will have a JSON representation of a proto
1041
1030
  # that wraps the same "ID" : "<id_value>" but here followed by
1042
1031
  # exactly one
1043
- #
1044
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1032
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1045
1033
  # containing only `code` and `message`fields.
1046
1034
  #
1047
1035
  # * For Image Object Detection:
@@ -1061,8 +1049,7 @@ module Google
1061
1049
  # predictions). These files will have a JSON representation of a proto
1062
1050
  # that wraps the same "ID" : "<id_value>" but here followed by
1063
1051
  # exactly one
1064
- #
1065
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1052
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1066
1053
  # containing only `code` and `message`fields.
1067
1054
  # * For Video Classification:
1068
1055
  # In the created directory a video_classification.csv file, and a .JSON
@@ -1070,8 +1057,7 @@ module Google
1070
1057
  # line in given CSV(s)), will be created.
1071
1058
  #
1072
1059
  # The format of video_classification.csv is:
1073
- #
1074
- # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
1060
+ # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
1075
1061
  # where:
1076
1062
  # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
1077
1063
  # the prediction input lines (i.e. video_classification.csv has
@@ -1099,8 +1085,7 @@ module Google
1099
1085
  # lines in given CSV(s)).
1100
1086
  #
1101
1087
  # The format of video_object_tracking.csv is:
1102
- #
1103
- # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
1088
+ # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
1104
1089
  # where:
1105
1090
  # GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
1106
1091
  # the prediction input lines (i.e. video_object_tracking.csv has
@@ -1135,8 +1120,7 @@ module Google
1135
1120
  # `errors_N.jsonl` files will be created (N depends on total number of
1136
1121
  # failed predictions). These files will have a JSON representation of a
1137
1122
  # proto that wraps input file followed by exactly one
1138
- #
1139
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1123
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1140
1124
  # containing only `code` and `message`.
1141
1125
  #
1142
1126
  # * For Text Sentiment:
@@ -1158,8 +1142,7 @@ module Google
1158
1142
  # `errors_N.jsonl` files will be created (N depends on total number of
1159
1143
  # failed predictions). These files will have a JSON representation of a
1160
1144
  # proto that wraps input file followed by exactly one
1161
- #
1162
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1145
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1163
1146
  # containing only `code` and `message`.
1164
1147
  #
1165
1148
  # * For Text Extraction:
@@ -1193,33 +1176,26 @@ module Google
1193
1176
  # proto that wraps either the "id" : "<id_value>" (in case of inline)
1194
1177
  # or the document proto (in case of document) but here followed by
1195
1178
  # exactly one
1196
- #
1197
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1179
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1198
1180
  # containing only `code` and `message`.
1199
1181
  #
1200
1182
  # * For Tables:
1201
1183
  # Output depends on whether
1202
- #
1203
- # [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
1184
+ # [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
1204
1185
  # or
1205
- #
1206
- # [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
1186
+ # [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
1207
1187
  # is set (either is allowed).
1208
1188
  # Google Cloud Storage case:
1209
1189
  # In the created directory files `tables_1.csv`, `tables_2.csv`,...,
1210
1190
  # `tables_N.csv` will be created, where N may be 1, and depends on
1211
1191
  # the total number of the successfully predicted rows.
1212
1192
  # For all CLASSIFICATION
1213
- #
1214
- # [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
1193
+ # [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
1215
1194
  # Each .csv file will contain a header, listing all columns'
1216
- #
1217
- # [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
1195
+ # [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
1218
1196
  # given on input followed by M target column names in the format of
1219
- #
1220
- # "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1221
- #
1222
- # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
1197
+ # "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1198
+ # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
1223
1199
  # value>_score" where M is the number of distinct target values,
1224
1200
  # i.e. number of distinct values in the target column of the table
1225
1201
  # used to train the model. Subsequent lines will contain the
@@ -1227,16 +1203,13 @@ module Google
1227
1203
  # i.e. the target, columns having the corresponding prediction
1228
1204
  # [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score].
1229
1205
  # For REGRESSION and FORECASTING
1230
- #
1231
- # [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
1206
+ # [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
1232
1207
  # Each .csv file will contain a header, listing all columns'
1233
1208
  # [display_name-s][google.cloud.automl.v1p1beta.display_name]
1234
1209
  # given on input followed by the predicted target column with name
1235
1210
  # in the format of
1236
- #
1237
- # "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1238
- #
1239
- # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
1211
+ # "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1212
+ # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
1240
1213
  # Subsequent lines will contain the respective values of
1241
1214
  # successfully predicted rows, with the last, i.e. the target,
1242
1215
  # column having the predicted target value.
@@ -1245,13 +1218,11 @@ module Google
1245
1218
  # created (N depends on total number of failed rows). These files
1246
1219
  # will have analogous format as `tables_*.csv`, but always with a
1247
1220
  # single target column having
1248
- #
1249
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1221
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1250
1222
  # represented as a JSON string, and containing only `code` and
1251
1223
  # `message`.
1252
1224
  # BigQuery case:
1253
- #
1254
- # [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
1225
+ # [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
1255
1226
  # pointing to a BigQuery project must be set. In the given project a
1256
1227
  # new dataset will be created with name
1257
1228
  # `prediction_<model-display-name>_<timestamp-of-prediction-call>`
@@ -1261,30 +1232,23 @@ module Google
1261
1232
  # YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
1262
1233
  # two tables will be created, `predictions`, and `errors`.
1263
1234
  # The `predictions` table's column names will be the input columns'
1264
- #
1265
- # [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
1235
+ # [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
1266
1236
  # followed by the target column with name in the format of
1267
- #
1268
- # "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1269
- #
1270
- # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
1237
+ # "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1238
+ # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
1271
1239
  # The input feature columns will contain the respective values of
1272
1240
  # successfully predicted rows, with the target column having an
1273
1241
  # ARRAY of
1274
- #
1275
- # [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
1242
+ # [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
1276
1243
  # represented as STRUCT-s, containing
1277
1244
  # [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation].
1278
1245
  # The `errors` table contains rows for which the prediction has
1279
1246
  # failed, it has analogous input columns while the target column name
1280
1247
  # is in the format of
1281
- #
1282
- # "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1283
- #
1284
- # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
1248
+ # "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
1249
+ # [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
1285
1250
  # and as a value has
1286
- #
1287
- # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1251
+ # [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1288
1252
  # represented as a STRUCT, and containing only `code` and `message`.
1289
1253
  # @!attribute [rw] gcs_destination
1290
1254
  # @return [::Google::Cloud::AutoML::V1::GcsDestination]
@@ -1338,9 +1302,7 @@ module Google
1338
1302
  # the container. The container is verified to work correctly on
1339
1303
  # ubuntu 16.04 operating system. See more at
1340
1304
  # [containers
1341
- #
1342
- # quickstart](https:
1343
- # //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
1305
+ # quickstart](https://cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
1344
1306
  # * core_ml - Used for iOS mobile devices.
1345
1307
  # @!attribute [rw] params
1346
1308
  # @return [::Google::Protobuf::Map{::String => ::String}]
@@ -44,7 +44,6 @@ module Google
44
44
  # @return [::String]
45
45
  # Output only. Resource name of the model evaluation.
46
46
  # Format:
47
- #
48
47
  # `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
49
48
  # @!attribute [rw] annotation_spec_id
50
49
  # @return [::String]
@@ -52,7 +51,6 @@ module Google
52
51
  # The ID is empty for the overall model evaluation.
53
52
  # For Tables annotation specs in the dataset do not exist and this ID is
54
53
  # always not set, but for CLASSIFICATION
55
- #
56
54
  # [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
57
55
  # the
58
56
  # {::Google::Cloud::AutoML::V1::ModelEvaluation#display_name display_name}
@@ -65,7 +63,6 @@ module Google
65
63
  # value at model training time, for different models trained from the same
66
64
  # dataset, the values may differ, since display names could had been changed
67
65
  # between the two model's trainings. For Tables CLASSIFICATION
68
- #
69
66
  # [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
70
67
  # distinct values of the target column at the moment of the model evaluation
71
68
  # are populated here.
@@ -82,7 +79,6 @@ module Google
82
79
  # the total number of all examples used for evaluation.
83
80
  # Otherwise, this is the count of examples that according to the ground
84
81
  # truth were annotated by the
85
- #
86
82
  # {::Google::Cloud::AutoML::V1::ModelEvaluation#annotation_spec_id annotation_spec_id}.
87
83
  class ModelEvaluation
88
84
  include ::Google::Protobuf::MessageExts
@@ -141,7 +141,6 @@ module Google
141
141
 
142
142
  # Further describes this batch predict's output.
143
143
  # Supplements
144
- #
145
144
  # {::Google::Cloud::AutoML::V1::BatchPredictOutputConfig BatchPredictOutputConfig}.
146
145
  # @!attribute [rw] gcs_output_directory
147
146
  # @return [::String]
@@ -57,7 +57,6 @@ module Google
57
57
  #
58
58
  # `feature_importance`
59
59
  # : (boolean) Whether
60
- #
61
60
  # [feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
62
61
  # is populated in the returned list of
63
62
  # [TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
@@ -51,8 +51,7 @@ module Google
51
51
  # An expression for filtering the results of the request.
52
52
  #
53
53
  # * `dataset_metadata` - for existence of the case (e.g.
54
- # `image_classification_dataset_metadata:*`). Some examples of
55
- # using the filter are:
54
+ # `image_classification_dataset_metadata:*`). Some examples of using the filter are:
56
55
  #
57
56
  # * `translation_dataset_metadata:*` --> The dataset has
58
57
  # `translation_dataset_metadata`.
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: google-cloud-automl-v1
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.4.6
4
+ version: 0.4.7
5
5
  platform: ruby
6
6
  authors:
7
7
  - Google LLC
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-01-11 00:00:00.000000000 Z
11
+ date: 2022-01-13 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: gapic-common
@@ -256,7 +256,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
256
256
  - !ruby/object:Gem::Version
257
257
  version: '0'
258
258
  requirements: []
259
- rubygems_version: 3.3.4
259
+ rubygems_version: 3.3.5
260
260
  signing_key:
261
261
  specification_version: 4
262
262
  summary: API Client library for the Cloud AutoML V1 API