google-cloud-automl-v1 0.4.6 → 0.4.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/google/cloud/automl/v1/automl/client.rb +2 -4
- data/lib/google/cloud/automl/v1/automl.rb +1 -1
- data/lib/google/cloud/automl/v1/image_pb.rb +1 -0
- data/lib/google/cloud/automl/v1/operations_pb.rb +5 -0
- data/lib/google/cloud/automl/v1/prediction_service/client.rb +1 -2
- data/lib/google/cloud/automl/v1/prediction_service.rb +1 -1
- data/lib/google/cloud/automl/v1/prediction_service_pb.rb +0 -1
- data/lib/google/cloud/automl/v1/prediction_service_services_pb.rb +1 -1
- data/lib/google/cloud/automl/v1/service_pb.rb +0 -1
- data/lib/google/cloud/automl/v1/service_services_pb.rb +1 -2
- data/lib/google/cloud/automl/v1/text_pb.rb +1 -0
- data/lib/google/cloud/automl/v1/version.rb +1 -1
- data/proto_docs/google/cloud/automl/v1/annotation_payload.rb +1 -1
- data/proto_docs/google/cloud/automl/v1/annotation_spec.rb +0 -1
- data/proto_docs/google/cloud/automl/v1/classification.rb +0 -2
- data/proto_docs/google/cloud/automl/v1/data_items.rb +0 -1
- data/proto_docs/google/cloud/automl/v1/image.rb +10 -12
- data/proto_docs/google/cloud/automl/v1/io.rb +29 -67
- data/proto_docs/google/cloud/automl/v1/model_evaluation.rb +0 -4
- data/proto_docs/google/cloud/automl/v1/operations.rb +0 -1
- data/proto_docs/google/cloud/automl/v1/prediction_service.rb +0 -1
- data/proto_docs/google/cloud/automl/v1/service.rb +1 -2
- metadata +3 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e34a60834369c7f894765af52b2898ade9f2bd5066eadcf233801bdb6b027f0e
|
4
|
+
data.tar.gz: cbb338015644740f053d79db0aa1a61c31ad7531d3fe335f594bb71b45063489
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f3a9919440483bec81bef533116474a45551a4a85c9f9db3976625248848bd4ddba9142b4fcb2b2561c77e221f60953ed3da862b77eb53d530aad9bcaaa2ec94
|
7
|
+
data.tar.gz: 22ff140e173f70d4bd69379e27ed7e49320ee05f0759633bb9e54fc28d5ffe8245c8801fc6f53d40f3aa062578e6b5254a2229bbe00c09fcc8abd34566ad684b
|
@@ -40,7 +40,7 @@ module Google
|
|
40
40
|
# Currently the only supported `location_id` is "us-central1".
|
41
41
|
#
|
42
42
|
# On any input that is documented to expect a string parameter in
|
43
|
-
# snake_case or
|
43
|
+
# snake_case or dash-case, either of those cases is accepted.
|
44
44
|
#
|
45
45
|
class Client
|
46
46
|
include Paths
|
@@ -437,8 +437,7 @@ module Google
|
|
437
437
|
# An expression for filtering the results of the request.
|
438
438
|
#
|
439
439
|
# * `dataset_metadata` - for existence of the case (e.g.
|
440
|
-
# `image_classification_dataset_metadata:*`). Some examples of
|
441
|
-
# using the filter are:
|
440
|
+
# `image_classification_dataset_metadata:*`). Some examples of using the filter are:
|
442
441
|
#
|
443
442
|
# * `translation_dataset_metadata:*` --> The dataset has
|
444
443
|
# `translation_dataset_metadata`.
|
@@ -1474,7 +1473,6 @@ module Google
|
|
1474
1473
|
# Deploys a model. If a model is already deployed, deploying it with the
|
1475
1474
|
# same parameters has no effect. Deploying with different parametrs
|
1476
1475
|
# (as e.g. changing
|
1477
|
-
#
|
1478
1476
|
# [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
|
1479
1477
|
# will reset the deployment state without pausing the model's availability.
|
1480
1478
|
#
|
@@ -45,7 +45,7 @@ module Google
|
|
45
45
|
# Currently the only supported `location_id` is "us-central1".
|
46
46
|
#
|
47
47
|
# On any input that is documented to expect a string parameter in
|
48
|
-
# snake_case or
|
48
|
+
# snake_case or dash-case, either of those cases is accepted.
|
49
49
|
#
|
50
50
|
# To load this service and instantiate a client:
|
51
51
|
#
|
@@ -1,6 +1,7 @@
|
|
1
1
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
2
2
|
# source: google/cloud/automl/v1/image.proto
|
3
3
|
|
4
|
+
require 'google/api/field_behavior_pb'
|
4
5
|
require 'google/api/resource_pb'
|
5
6
|
require 'google/cloud/automl/v1/annotation_spec_pb'
|
6
7
|
require 'google/cloud/automl/v1/classification_pb'
|
@@ -3,6 +3,11 @@
|
|
3
3
|
|
4
4
|
require 'google/cloud/automl/v1/dataset_pb'
|
5
5
|
require 'google/cloud/automl/v1/io_pb'
|
6
|
+
require 'google/cloud/automl/v1/model_pb'
|
7
|
+
require 'google/cloud/automl/v1/model_evaluation_pb'
|
8
|
+
require 'google/cloud/automl/v1/prediction_service_pb'
|
9
|
+
require 'google/cloud/automl/v1/service_pb'
|
10
|
+
require 'google/protobuf/empty_pb'
|
6
11
|
require 'google/protobuf/timestamp_pb'
|
7
12
|
require 'google/rpc/status_pb'
|
8
13
|
require 'google/api/annotations_pb'
|
@@ -30,7 +30,7 @@ module Google
|
|
30
30
|
# AutoML Prediction API.
|
31
31
|
#
|
32
32
|
# On any input that is documented to expect a string parameter in
|
33
|
-
# snake_case or
|
33
|
+
# snake_case or dash-case, either of those cases is accepted.
|
34
34
|
#
|
35
35
|
class Client
|
36
36
|
include Paths
|
@@ -249,7 +249,6 @@ module Google
|
|
249
249
|
#
|
250
250
|
# `feature_importance`
|
251
251
|
# : (boolean) Whether
|
252
|
-
#
|
253
252
|
# [feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
|
254
253
|
# is populated in the returned list of
|
255
254
|
# [TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
|
@@ -35,7 +35,7 @@ module Google
|
|
35
35
|
# AutoML Prediction API.
|
36
36
|
#
|
37
37
|
# On any input that is documented to expect a string parameter in
|
38
|
-
# snake_case or
|
38
|
+
# snake_case or dash-case, either of those cases is accepted.
|
39
39
|
#
|
40
40
|
# To load this service and instantiate a client:
|
41
41
|
#
|
@@ -8,7 +8,6 @@ require 'google/api/resource_pb'
|
|
8
8
|
require 'google/cloud/automl/v1/annotation_payload_pb'
|
9
9
|
require 'google/cloud/automl/v1/data_items_pb'
|
10
10
|
require 'google/cloud/automl/v1/io_pb'
|
11
|
-
require 'google/cloud/automl/v1/operations_pb'
|
12
11
|
require 'google/longrunning/operations_pb'
|
13
12
|
require 'google/protobuf'
|
14
13
|
|
@@ -27,7 +27,7 @@ module Google
|
|
27
27
|
# AutoML Prediction API.
|
28
28
|
#
|
29
29
|
# On any input that is documented to expect a string parameter in
|
30
|
-
# snake_case or
|
30
|
+
# snake_case or dash-case, either of those cases is accepted.
|
31
31
|
class Service
|
32
32
|
|
33
33
|
include ::GRPC::GenericService
|
@@ -12,7 +12,6 @@ require 'google/cloud/automl/v1/image_pb'
|
|
12
12
|
require 'google/cloud/automl/v1/io_pb'
|
13
13
|
require 'google/cloud/automl/v1/model_pb'
|
14
14
|
require 'google/cloud/automl/v1/model_evaluation_pb'
|
15
|
-
require 'google/cloud/automl/v1/operations_pb'
|
16
15
|
require 'google/longrunning/operations_pb'
|
17
16
|
require 'google/protobuf/field_mask_pb'
|
18
17
|
require 'google/protobuf'
|
@@ -37,7 +37,7 @@ module Google
|
|
37
37
|
# Currently the only supported `location_id` is "us-central1".
|
38
38
|
#
|
39
39
|
# On any input that is documented to expect a string parameter in
|
40
|
-
# snake_case or
|
40
|
+
# snake_case or dash-case, either of those cases is accepted.
|
41
41
|
class Service
|
42
42
|
|
43
43
|
include ::GRPC::GenericService
|
@@ -97,7 +97,6 @@ module Google
|
|
97
97
|
# Deploys a model. If a model is already deployed, deploying it with the
|
98
98
|
# same parameters has no effect. Deploying with different parametrs
|
99
99
|
# (as e.g. changing
|
100
|
-
#
|
101
100
|
# [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
|
102
101
|
# will reset the deployment state without pausing the model's availability.
|
103
102
|
#
|
@@ -45,7 +45,7 @@ module Google
|
|
45
45
|
# @!attribute [rw] display_name
|
46
46
|
# @return [::String]
|
47
47
|
# Output only. The value of
|
48
|
-
#
|
48
|
+
# [display_name][google.cloud.automl.v1p1beta.AnnotationSpec.display_name]
|
49
49
|
# when the model was trained. Because this field returns a value at model
|
50
50
|
# training time, for different models trained using the same dataset, the
|
51
51
|
# returned value could be different as model owner could update the
|
@@ -26,7 +26,6 @@ module Google
|
|
26
26
|
# @return [::String]
|
27
27
|
# Output only. Resource name of the annotation spec.
|
28
28
|
# Form:
|
29
|
-
#
|
30
29
|
# 'projects/\\{project_id}/locations/\\{location_id}/datasets/\\{dataset_id}/annotationSpecs/\\{annotation_spec_id}'
|
31
30
|
# @!attribute [rw] display_name
|
32
31
|
# @return [::String]
|
@@ -137,7 +137,6 @@ module Google
|
|
137
137
|
# @return [::Array<::String>]
|
138
138
|
# Output only. IDs of the annotation specs used in the confusion matrix.
|
139
139
|
# For Tables CLASSIFICATION
|
140
|
-
#
|
141
140
|
# [prediction_type][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]
|
142
141
|
# only list of [annotation_spec_display_name-s][] is populated.
|
143
142
|
# @!attribute [rw] display_name
|
@@ -145,7 +144,6 @@ module Google
|
|
145
144
|
# Output only. Display name of the annotation specs used in the confusion
|
146
145
|
# matrix, as they were at the moment of the evaluation. For Tables
|
147
146
|
# CLASSIFICATION
|
148
|
-
#
|
149
147
|
# [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type],
|
150
148
|
# distinct values of the target column at the moment of the model
|
151
149
|
# evaluation are populated here.
|
@@ -118,7 +118,6 @@ module Google
|
|
118
118
|
# @return [::Google::Cloud::AutoML::V1::BoundingPoly]
|
119
119
|
# The position of the {::Google::Cloud::AutoML::V1::Document::Layout#text_segment text_segment} in the page.
|
120
120
|
# Contains exactly 4
|
121
|
-
#
|
122
121
|
# [normalized_vertices][google.cloud.automl.v1p1beta.BoundingPoly.normalized_vertices]
|
123
122
|
# and they are connected by edges in the order provided, which will
|
124
123
|
# represent a rectangle parallel to the frame. The
|
@@ -46,7 +46,7 @@ module Google
|
|
46
46
|
# `model_type`.
|
47
47
|
# @!attribute [rw] train_budget_milli_node_hours
|
48
48
|
# @return [::Integer]
|
49
|
-
# The train budget of creating this model, expressed in milli node
|
49
|
+
# Optional. The train budget of creating this model, expressed in milli node
|
50
50
|
# hours i.e. 1,000 value in this field means 1 node hour. The actual
|
51
51
|
# `train_cost` will be equal or less than this value. If further model
|
52
52
|
# training ceases to provide any improvements, it will stop without using
|
@@ -60,12 +60,12 @@ module Google
|
|
60
60
|
# `mobile-core-ml-high-accuracy-1`, the train budget must be between 1,000
|
61
61
|
# and 100,000 milli node hours, inclusive. The default value is 24, 000 which
|
62
62
|
# represents one day in wall time.
|
63
|
-
# @!attribute [
|
63
|
+
# @!attribute [r] train_cost_milli_node_hours
|
64
64
|
# @return [::Integer]
|
65
65
|
# Output only. The actual train cost of creating this model, expressed in
|
66
66
|
# milli node hours, i.e. 1,000 value in this field means 1 node hour.
|
67
67
|
# Guaranteed to not exceed the train budget.
|
68
|
-
# @!attribute [
|
68
|
+
# @!attribute [r] stop_reason
|
69
69
|
# @return [::String]
|
70
70
|
# Output only. The reason that this create model operation stopped,
|
71
71
|
# e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
|
@@ -104,11 +104,11 @@ module Google
|
|
104
104
|
# Core ML afterwards. Expected to have a higher latency, but
|
105
105
|
# should also have a higher prediction quality than other
|
106
106
|
# models.
|
107
|
-
# @!attribute [
|
107
|
+
# @!attribute [r] node_qps
|
108
108
|
# @return [::Float]
|
109
109
|
# Output only. An approximate number of online prediction QPS that can
|
110
110
|
# be supported by this model per each node on which it is deployed.
|
111
|
-
# @!attribute [
|
111
|
+
# @!attribute [r] node_count
|
112
112
|
# @return [::Integer]
|
113
113
|
# Output only. The number of nodes this model is deployed on. A node is an
|
114
114
|
# abstraction of a machine resource, which can handle online prediction QPS
|
@@ -144,22 +144,22 @@ module Google
|
|
144
144
|
# with TensorFlow afterwards. Expected to have a higher
|
145
145
|
# latency, but should also have a higher prediction quality
|
146
146
|
# than other models.
|
147
|
-
# @!attribute [
|
147
|
+
# @!attribute [r] node_count
|
148
148
|
# @return [::Integer]
|
149
149
|
# Output only. The number of nodes this model is deployed on. A node is an
|
150
150
|
# abstraction of a machine resource, which can handle online prediction QPS
|
151
151
|
# as given in the qps_per_node field.
|
152
|
-
# @!attribute [
|
152
|
+
# @!attribute [r] node_qps
|
153
153
|
# @return [::Float]
|
154
154
|
# Output only. An approximate number of online prediction QPS that can
|
155
155
|
# be supported by this model per each node on which it is deployed.
|
156
|
-
# @!attribute [
|
156
|
+
# @!attribute [r] stop_reason
|
157
157
|
# @return [::String]
|
158
158
|
# Output only. The reason that this create model operation stopped,
|
159
159
|
# e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
|
160
160
|
# @!attribute [rw] train_budget_milli_node_hours
|
161
161
|
# @return [::Integer]
|
162
|
-
# The train budget of creating this model, expressed in milli node
|
162
|
+
# Optional. The train budget of creating this model, expressed in milli node
|
163
163
|
# hours i.e. 1,000 value in this field means 1 node hour. The actual
|
164
164
|
# `train_cost` will be equal or less than this value. If further model
|
165
165
|
# training ceases to provide any improvements, it will stop without using
|
@@ -174,7 +174,7 @@ module Google
|
|
174
174
|
# `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
|
175
175
|
# budget must be between 1,000 and 100,000 milli node hours, inclusive.
|
176
176
|
# The default value is 24, 000 which represents one day in wall time.
|
177
|
-
# @!attribute [
|
177
|
+
# @!attribute [r] train_cost_milli_node_hours
|
178
178
|
# @return [::Integer]
|
179
179
|
# Output only. The actual train cost of creating this model, expressed in
|
180
180
|
# milli node hours, i.e. 1,000 value in this field means 1 node hour.
|
@@ -190,7 +190,6 @@ module Google
|
|
190
190
|
# Input only. The number of nodes to deploy the model on. A node is an
|
191
191
|
# abstraction of a machine resource, which can handle online prediction QPS
|
192
192
|
# as given in the model's
|
193
|
-
#
|
194
193
|
# {::Google::Cloud::AutoML::V1::ImageClassificationModelMetadata#node_qps node_qps}.
|
195
194
|
# Must be between 1 and 100, inclusive on both ends.
|
196
195
|
class ImageClassificationModelDeploymentMetadata
|
@@ -204,7 +203,6 @@ module Google
|
|
204
203
|
# Input only. The number of nodes to deploy the model on. A node is an
|
205
204
|
# abstraction of a machine resource, which can handle online prediction QPS
|
206
205
|
# as given in the model's
|
207
|
-
#
|
208
206
|
# [qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
|
209
207
|
# Must be between 1 and 100, inclusive on both ends.
|
210
208
|
class ImageObjectDetectionModelDeploymentMetadata
|
@@ -527,7 +527,6 @@ module Google
|
|
527
527
|
# [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
|
528
528
|
# All input is concatenated into a
|
529
529
|
# single
|
530
|
-
#
|
531
530
|
# [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
|
532
531
|
#
|
533
532
|
# **For gcs_source:**
|
@@ -544,9 +543,7 @@ module Google
|
|
544
543
|
# First three sample rows of a CSV file:
|
545
544
|
# <pre>
|
546
545
|
# "Id","First Name","Last Name","Dob","Addresses"
|
547
|
-
#
|
548
546
|
# "1","John","Doe","1968-01-22","[\\{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},\\{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
|
549
|
-
#
|
550
547
|
# "2","Jane","Doe","1980-10-16","[\\{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},\\{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
|
551
548
|
# </pre>
|
552
549
|
# **For bigquery_source:**
|
@@ -882,7 +879,6 @@ module Google
|
|
882
879
|
# contain values for the corresponding columns.
|
883
880
|
#
|
884
881
|
# The column names must contain the model's
|
885
|
-
#
|
886
882
|
# [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
|
887
883
|
# display_name-s
|
888
884
|
# (order doesn't matter). The columns corresponding to the model's
|
@@ -894,9 +890,7 @@ module Google
|
|
894
890
|
# Sample rows from a CSV file:
|
895
891
|
# <pre>
|
896
892
|
# "First Name","Last Name","Dob","Addresses"
|
897
|
-
#
|
898
893
|
# "John","Doe","1968-01-22","[\\{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},\\{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
|
899
|
-
#
|
900
894
|
# "Jane","Doe","1980-10-16","[\\{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},\\{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
|
901
895
|
# </pre>
|
902
896
|
# **For bigquery_source:**
|
@@ -905,7 +899,6 @@ module Google
|
|
905
899
|
# table must be 100GB or smaller.
|
906
900
|
#
|
907
901
|
# The column names must contain the model's
|
908
|
-
#
|
909
902
|
# [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
|
910
903
|
# display_name-s
|
911
904
|
# (order doesn't matter). The columns corresponding to the model's
|
@@ -979,19 +972,16 @@ module Google
|
|
979
972
|
# Output depends on whether the dataset was imported from Google Cloud
|
980
973
|
# Storage or BigQuery.
|
981
974
|
# Google Cloud Storage case:
|
982
|
-
#
|
983
|
-
# [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
|
975
|
+
# [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
|
984
976
|
# must be set. Exported are CSV file(s) `tables_1.csv`,
|
985
977
|
# `tables_2.csv`,...,`tables_N.csv` with each having as header line
|
986
978
|
# the table's column names, and all other lines contain values for
|
987
979
|
# the header columns.
|
988
980
|
# BigQuery case:
|
989
|
-
#
|
990
|
-
# [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
|
981
|
+
# [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
|
991
982
|
# pointing to a BigQuery project must be set. In the given project a
|
992
983
|
# new dataset will be created with name
|
993
|
-
#
|
994
|
-
# `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
|
984
|
+
# `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
|
995
985
|
# where <automl-dataset-display-name> will be made
|
996
986
|
# BigQuery-dataset-name compatible (e.g. most special characters will
|
997
987
|
# become underscores), and timestamp will be in
|
@@ -1014,7 +1004,6 @@ module Google
|
|
1014
1004
|
# Output configuration for BatchPredict Action.
|
1015
1005
|
#
|
1016
1006
|
# As destination the
|
1017
|
-
#
|
1018
1007
|
# {::Google::Cloud::AutoML::V1::BatchPredictOutputConfig#gcs_destination gcs_destination}
|
1019
1008
|
# must be set unless specified otherwise for a domain. If gcs_destination is
|
1020
1009
|
# set then in the given directory a new directory is created. Its name
|
@@ -1040,8 +1029,7 @@ module Google
|
|
1040
1029
|
# predictions). These files will have a JSON representation of a proto
|
1041
1030
|
# that wraps the same "ID" : "<id_value>" but here followed by
|
1042
1031
|
# exactly one
|
1043
|
-
#
|
1044
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1032
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1045
1033
|
# containing only `code` and `message`fields.
|
1046
1034
|
#
|
1047
1035
|
# * For Image Object Detection:
|
@@ -1061,8 +1049,7 @@ module Google
|
|
1061
1049
|
# predictions). These files will have a JSON representation of a proto
|
1062
1050
|
# that wraps the same "ID" : "<id_value>" but here followed by
|
1063
1051
|
# exactly one
|
1064
|
-
#
|
1065
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1052
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1066
1053
|
# containing only `code` and `message`fields.
|
1067
1054
|
# * For Video Classification:
|
1068
1055
|
# In the created directory a video_classification.csv file, and a .JSON
|
@@ -1070,8 +1057,7 @@ module Google
|
|
1070
1057
|
# line in given CSV(s)), will be created.
|
1071
1058
|
#
|
1072
1059
|
# The format of video_classification.csv is:
|
1073
|
-
#
|
1074
|
-
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
|
1060
|
+
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
|
1075
1061
|
# where:
|
1076
1062
|
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
|
1077
1063
|
# the prediction input lines (i.e. video_classification.csv has
|
@@ -1099,8 +1085,7 @@ module Google
|
|
1099
1085
|
# lines in given CSV(s)).
|
1100
1086
|
#
|
1101
1087
|
# The format of video_object_tracking.csv is:
|
1102
|
-
#
|
1103
|
-
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
|
1088
|
+
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
|
1104
1089
|
# where:
|
1105
1090
|
# GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
|
1106
1091
|
# the prediction input lines (i.e. video_object_tracking.csv has
|
@@ -1135,8 +1120,7 @@ module Google
|
|
1135
1120
|
# `errors_N.jsonl` files will be created (N depends on total number of
|
1136
1121
|
# failed predictions). These files will have a JSON representation of a
|
1137
1122
|
# proto that wraps input file followed by exactly one
|
1138
|
-
#
|
1139
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1123
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1140
1124
|
# containing only `code` and `message`.
|
1141
1125
|
#
|
1142
1126
|
# * For Text Sentiment:
|
@@ -1158,8 +1142,7 @@ module Google
|
|
1158
1142
|
# `errors_N.jsonl` files will be created (N depends on total number of
|
1159
1143
|
# failed predictions). These files will have a JSON representation of a
|
1160
1144
|
# proto that wraps input file followed by exactly one
|
1161
|
-
#
|
1162
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1145
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1163
1146
|
# containing only `code` and `message`.
|
1164
1147
|
#
|
1165
1148
|
# * For Text Extraction:
|
@@ -1193,33 +1176,26 @@ module Google
|
|
1193
1176
|
# proto that wraps either the "id" : "<id_value>" (in case of inline)
|
1194
1177
|
# or the document proto (in case of document) but here followed by
|
1195
1178
|
# exactly one
|
1196
|
-
#
|
1197
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1179
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1198
1180
|
# containing only `code` and `message`.
|
1199
1181
|
#
|
1200
1182
|
# * For Tables:
|
1201
1183
|
# Output depends on whether
|
1202
|
-
#
|
1203
|
-
# [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
|
1184
|
+
# [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
|
1204
1185
|
# or
|
1205
|
-
#
|
1206
|
-
# [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
|
1186
|
+
# [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
|
1207
1187
|
# is set (either is allowed).
|
1208
1188
|
# Google Cloud Storage case:
|
1209
1189
|
# In the created directory files `tables_1.csv`, `tables_2.csv`,...,
|
1210
1190
|
# `tables_N.csv` will be created, where N may be 1, and depends on
|
1211
1191
|
# the total number of the successfully predicted rows.
|
1212
1192
|
# For all CLASSIFICATION
|
1213
|
-
#
|
1214
|
-
# [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
|
1193
|
+
# [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
|
1215
1194
|
# Each .csv file will contain a header, listing all columns'
|
1216
|
-
#
|
1217
|
-
# [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
|
1195
|
+
# [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
|
1218
1196
|
# given on input followed by M target column names in the format of
|
1219
|
-
#
|
1220
|
-
#
|
1221
|
-
#
|
1222
|
-
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
|
1197
|
+
# "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
|
1198
|
+
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
|
1223
1199
|
# value>_score" where M is the number of distinct target values,
|
1224
1200
|
# i.e. number of distinct values in the target column of the table
|
1225
1201
|
# used to train the model. Subsequent lines will contain the
|
@@ -1227,16 +1203,13 @@ module Google
|
|
1227
1203
|
# i.e. the target, columns having the corresponding prediction
|
1228
1204
|
# [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score].
|
1229
1205
|
# For REGRESSION and FORECASTING
|
1230
|
-
#
|
1231
|
-
# [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
|
1206
|
+
# [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
|
1232
1207
|
# Each .csv file will contain a header, listing all columns'
|
1233
1208
|
# [display_name-s][google.cloud.automl.v1p1beta.display_name]
|
1234
1209
|
# given on input followed by the predicted target column with name
|
1235
1210
|
# in the format of
|
1236
|
-
#
|
1237
|
-
#
|
1238
|
-
#
|
1239
|
-
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
|
1211
|
+
# "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
|
1212
|
+
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
|
1240
1213
|
# Subsequent lines will contain the respective values of
|
1241
1214
|
# successfully predicted rows, with the last, i.e. the target,
|
1242
1215
|
# column having the predicted target value.
|
@@ -1245,13 +1218,11 @@ module Google
|
|
1245
1218
|
# created (N depends on total number of failed rows). These files
|
1246
1219
|
# will have analogous format as `tables_*.csv`, but always with a
|
1247
1220
|
# single target column having
|
1248
|
-
#
|
1249
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1221
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1250
1222
|
# represented as a JSON string, and containing only `code` and
|
1251
1223
|
# `message`.
|
1252
1224
|
# BigQuery case:
|
1253
|
-
#
|
1254
|
-
# [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
|
1225
|
+
# [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
|
1255
1226
|
# pointing to a BigQuery project must be set. In the given project a
|
1256
1227
|
# new dataset will be created with name
|
1257
1228
|
# `prediction_<model-display-name>_<timestamp-of-prediction-call>`
|
@@ -1261,30 +1232,23 @@ module Google
|
|
1261
1232
|
# YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
|
1262
1233
|
# two tables will be created, `predictions`, and `errors`.
|
1263
1234
|
# The `predictions` table's column names will be the input columns'
|
1264
|
-
#
|
1265
|
-
# [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
|
1235
|
+
# [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
|
1266
1236
|
# followed by the target column with name in the format of
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
|
1237
|
+
# "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
|
1238
|
+
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
|
1271
1239
|
# The input feature columns will contain the respective values of
|
1272
1240
|
# successfully predicted rows, with the target column having an
|
1273
1241
|
# ARRAY of
|
1274
|
-
#
|
1275
|
-
# [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
|
1242
|
+
# [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
|
1276
1243
|
# represented as STRUCT-s, containing
|
1277
1244
|
# [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation].
|
1278
1245
|
# The `errors` table contains rows for which the prediction has
|
1279
1246
|
# failed, it has analogous input columns while the target column name
|
1280
1247
|
# is in the format of
|
1281
|
-
#
|
1282
|
-
#
|
1283
|
-
#
|
1284
|
-
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
|
1248
|
+
# "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
|
1249
|
+
# [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
|
1285
1250
|
# and as a value has
|
1286
|
-
#
|
1287
|
-
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1251
|
+
# [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
|
1288
1252
|
# represented as a STRUCT, and containing only `code` and `message`.
|
1289
1253
|
# @!attribute [rw] gcs_destination
|
1290
1254
|
# @return [::Google::Cloud::AutoML::V1::GcsDestination]
|
@@ -1338,9 +1302,7 @@ module Google
|
|
1338
1302
|
# the container. The container is verified to work correctly on
|
1339
1303
|
# ubuntu 16.04 operating system. See more at
|
1340
1304
|
# [containers
|
1341
|
-
#
|
1342
|
-
# quickstart](https:
|
1343
|
-
# //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
|
1305
|
+
# quickstart](https://cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
|
1344
1306
|
# * core_ml - Used for iOS mobile devices.
|
1345
1307
|
# @!attribute [rw] params
|
1346
1308
|
# @return [::Google::Protobuf::Map{::String => ::String}]
|
@@ -44,7 +44,6 @@ module Google
|
|
44
44
|
# @return [::String]
|
45
45
|
# Output only. Resource name of the model evaluation.
|
46
46
|
# Format:
|
47
|
-
#
|
48
47
|
# `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
|
49
48
|
# @!attribute [rw] annotation_spec_id
|
50
49
|
# @return [::String]
|
@@ -52,7 +51,6 @@ module Google
|
|
52
51
|
# The ID is empty for the overall model evaluation.
|
53
52
|
# For Tables annotation specs in the dataset do not exist and this ID is
|
54
53
|
# always not set, but for CLASSIFICATION
|
55
|
-
#
|
56
54
|
# [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
|
57
55
|
# the
|
58
56
|
# {::Google::Cloud::AutoML::V1::ModelEvaluation#display_name display_name}
|
@@ -65,7 +63,6 @@ module Google
|
|
65
63
|
# value at model training time, for different models trained from the same
|
66
64
|
# dataset, the values may differ, since display names could had been changed
|
67
65
|
# between the two model's trainings. For Tables CLASSIFICATION
|
68
|
-
#
|
69
66
|
# [prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
|
70
67
|
# distinct values of the target column at the moment of the model evaluation
|
71
68
|
# are populated here.
|
@@ -82,7 +79,6 @@ module Google
|
|
82
79
|
# the total number of all examples used for evaluation.
|
83
80
|
# Otherwise, this is the count of examples that according to the ground
|
84
81
|
# truth were annotated by the
|
85
|
-
#
|
86
82
|
# {::Google::Cloud::AutoML::V1::ModelEvaluation#annotation_spec_id annotation_spec_id}.
|
87
83
|
class ModelEvaluation
|
88
84
|
include ::Google::Protobuf::MessageExts
|
@@ -57,7 +57,6 @@ module Google
|
|
57
57
|
#
|
58
58
|
# `feature_importance`
|
59
59
|
# : (boolean) Whether
|
60
|
-
#
|
61
60
|
# [feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
|
62
61
|
# is populated in the returned list of
|
63
62
|
# [TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
|
@@ -51,8 +51,7 @@ module Google
|
|
51
51
|
# An expression for filtering the results of the request.
|
52
52
|
#
|
53
53
|
# * `dataset_metadata` - for existence of the case (e.g.
|
54
|
-
# `image_classification_dataset_metadata:*`). Some examples of
|
55
|
-
# using the filter are:
|
54
|
+
# `image_classification_dataset_metadata:*`). Some examples of using the filter are:
|
56
55
|
#
|
57
56
|
# * `translation_dataset_metadata:*` --> The dataset has
|
58
57
|
# `translation_dataset_metadata`.
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: google-cloud-automl-v1
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.4.
|
4
|
+
version: 0.4.7
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Google LLC
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-01-
|
11
|
+
date: 2022-01-13 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: gapic-common
|
@@ -256,7 +256,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
256
256
|
- !ruby/object:Gem::Version
|
257
257
|
version: '0'
|
258
258
|
requirements: []
|
259
|
-
rubygems_version: 3.3.
|
259
|
+
rubygems_version: 3.3.5
|
260
260
|
signing_key:
|
261
261
|
specification_version: 4
|
262
262
|
summary: API Client library for the Cloud AutoML V1 API
|