google-cloud-automl-v1 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. checksums.yaml +4 -4
  2. data/AUTHENTICATION.md +6 -6
  3. data/README.md +1 -1
  4. data/lib/google/cloud/automl/v1/automl/client.rb +373 -373
  5. data/lib/google/cloud/automl/v1/automl/credentials.rb +1 -1
  6. data/lib/google/cloud/automl/v1/automl/operations.rb +100 -100
  7. data/lib/google/cloud/automl/v1/automl/paths.rb +16 -16
  8. data/lib/google/cloud/automl/v1/automl.rb +1 -1
  9. data/lib/google/cloud/automl/v1/prediction_service/client.rb +116 -120
  10. data/lib/google/cloud/automl/v1/prediction_service/credentials.rb +1 -1
  11. data/lib/google/cloud/automl/v1/prediction_service/operations.rb +100 -100
  12. data/lib/google/cloud/automl/v1/prediction_service/paths.rb +3 -3
  13. data/lib/google/cloud/automl/v1/prediction_service.rb +1 -1
  14. data/lib/google/cloud/automl/v1/prediction_service_services_pb.rb +30 -34
  15. data/lib/google/cloud/automl/v1/version.rb +1 -1
  16. data/lib/google/cloud/automl/v1.rb +1 -1
  17. data/proto_docs/google/api/resource.rb +12 -12
  18. data/proto_docs/google/cloud/automl/v1/annotation_payload.rb +10 -10
  19. data/proto_docs/google/cloud/automl/v1/annotation_spec.rb +5 -5
  20. data/proto_docs/google/cloud/automl/v1/classification.rb +37 -37
  21. data/proto_docs/google/cloud/automl/v1/data_items.rb +38 -38
  22. data/proto_docs/google/cloud/automl/v1/dataset.rb +19 -19
  23. data/proto_docs/google/cloud/automl/v1/detection.rb +20 -20
  24. data/proto_docs/google/cloud/automl/v1/geometry.rb +7 -7
  25. data/proto_docs/google/cloud/automl/v1/image.rb +38 -38
  26. data/proto_docs/google/cloud/automl/v1/io.rb +46 -46
  27. data/proto_docs/google/cloud/automl/v1/model.rb +20 -20
  28. data/proto_docs/google/cloud/automl/v1/model_evaluation.rb +15 -15
  29. data/proto_docs/google/cloud/automl/v1/operations.rb +49 -49
  30. data/proto_docs/google/cloud/automl/v1/prediction_service.rb +53 -53
  31. data/proto_docs/google/cloud/automl/v1/service.rb +115 -115
  32. data/proto_docs/google/cloud/automl/v1/text.rb +15 -15
  33. data/proto_docs/google/cloud/automl/v1/text_extraction.rb +14 -14
  34. data/proto_docs/google/cloud/automl/v1/text_segment.rb +5 -5
  35. data/proto_docs/google/cloud/automl/v1/text_sentiment.rb +14 -14
  36. data/proto_docs/google/cloud/automl/v1/translation.rb +16 -16
  37. data/proto_docs/google/longrunning/operations.rb +30 -30
  38. data/proto_docs/google/protobuf/any.rb +4 -4
  39. data/proto_docs/google/protobuf/duration.rb +4 -4
  40. data/proto_docs/google/protobuf/empty.rb +2 -2
  41. data/proto_docs/google/protobuf/field_mask.rb +3 -3
  42. data/proto_docs/google/protobuf/struct.rb +18 -18
  43. data/proto_docs/google/protobuf/timestamp.rb +4 -4
  44. data/proto_docs/google/rpc/status.rb +6 -6
  45. metadata +2 -2
@@ -23,73 +23,73 @@ module Google
23
23
  module V1
24
24
  # Annotation details for image object detection.
25
25
  # @!attribute [rw] bounding_box
26
- # @return [Google::Cloud::AutoML::V1::BoundingPoly]
26
+ # @return [::Google::Cloud::AutoML::V1::BoundingPoly]
27
27
  # Output only. The rectangle representing the object location.
28
28
  # @!attribute [rw] score
29
- # @return [Float]
29
+ # @return [::Float]
30
30
  # Output only. The confidence that this annotation is positive for the parent example,
31
31
  # value in [0, 1], higher means higher positivity confidence.
32
32
  class ImageObjectDetectionAnnotation
33
- include Google::Protobuf::MessageExts
34
- extend Google::Protobuf::MessageExts::ClassMethods
33
+ include ::Google::Protobuf::MessageExts
34
+ extend ::Google::Protobuf::MessageExts::ClassMethods
35
35
  end
36
36
 
37
37
  # Bounding box matching model metrics for a single intersection-over-union
38
38
  # threshold and multiple label match confidence thresholds.
39
39
  # @!attribute [rw] iou_threshold
40
- # @return [Float]
40
+ # @return [::Float]
41
41
  # Output only. The intersection-over-union threshold value used to compute
42
42
  # this metrics entry.
43
43
  # @!attribute [rw] mean_average_precision
44
- # @return [Float]
44
+ # @return [::Float]
45
45
  # Output only. The mean average precision, most often close to au_prc.
46
46
  # @!attribute [rw] confidence_metrics_entries
47
- # @return [Array<Google::Cloud::AutoML::V1::BoundingBoxMetricsEntry::ConfidenceMetricsEntry>]
47
+ # @return [::Array<::Google::Cloud::AutoML::V1::BoundingBoxMetricsEntry::ConfidenceMetricsEntry>]
48
48
  # Output only. Metrics for each label-match confidence_threshold from
49
49
  # 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is
50
50
  # derived from them.
51
51
  class BoundingBoxMetricsEntry
52
- include Google::Protobuf::MessageExts
53
- extend Google::Protobuf::MessageExts::ClassMethods
52
+ include ::Google::Protobuf::MessageExts
53
+ extend ::Google::Protobuf::MessageExts::ClassMethods
54
54
 
55
55
  # Metrics for a single confidence threshold.
56
56
  # @!attribute [rw] confidence_threshold
57
- # @return [Float]
57
+ # @return [::Float]
58
58
  # Output only. The confidence threshold value used to compute the metrics.
59
59
  # @!attribute [rw] recall
60
- # @return [Float]
60
+ # @return [::Float]
61
61
  # Output only. Recall under the given confidence threshold.
62
62
  # @!attribute [rw] precision
63
- # @return [Float]
63
+ # @return [::Float]
64
64
  # Output only. Precision under the given confidence threshold.
65
65
  # @!attribute [rw] f1_score
66
- # @return [Float]
66
+ # @return [::Float]
67
67
  # Output only. The harmonic mean of recall and precision.
68
68
  class ConfidenceMetricsEntry
69
- include Google::Protobuf::MessageExts
70
- extend Google::Protobuf::MessageExts::ClassMethods
69
+ include ::Google::Protobuf::MessageExts
70
+ extend ::Google::Protobuf::MessageExts::ClassMethods
71
71
  end
72
72
  end
73
73
 
74
74
  # Model evaluation metrics for image object detection problems.
75
75
  # Evaluates prediction quality of labeled bounding boxes.
76
76
  # @!attribute [rw] evaluated_bounding_box_count
77
- # @return [Integer]
77
+ # @return [::Integer]
78
78
  # Output only. The total number of bounding boxes (i.e. summed over all
79
79
  # images) the ground truth used to create this evaluation had.
80
80
  # @!attribute [rw] bounding_box_metrics_entries
81
- # @return [Array<Google::Cloud::AutoML::V1::BoundingBoxMetricsEntry>]
81
+ # @return [::Array<::Google::Cloud::AutoML::V1::BoundingBoxMetricsEntry>]
82
82
  # Output only. The bounding boxes match metrics for each
83
83
  # Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
84
84
  # and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
85
85
  # pair.
86
86
  # @!attribute [rw] bounding_box_mean_average_precision
87
- # @return [Float]
87
+ # @return [::Float]
88
88
  # Output only. The single metric for bounding boxes evaluation:
89
89
  # the mean_average_precision averaged over all bounding_box_metrics_entries.
90
90
  class ImageObjectDetectionEvaluationMetrics
91
- include Google::Protobuf::MessageExts
92
- extend Google::Protobuf::MessageExts::ClassMethods
91
+ include ::Google::Protobuf::MessageExts
92
+ extend ::Google::Protobuf::MessageExts::ClassMethods
93
93
  end
94
94
  end
95
95
  end
@@ -27,25 +27,25 @@ module Google
27
27
  # have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would
28
28
  # be at the position (1, 6) on that plane.
29
29
  # @!attribute [rw] x
30
- # @return [Float]
30
+ # @return [::Float]
31
31
  # Required. Horizontal coordinate.
32
32
  # @!attribute [rw] y
33
- # @return [Float]
33
+ # @return [::Float]
34
34
  # Required. Vertical coordinate.
35
35
  class NormalizedVertex
36
- include Google::Protobuf::MessageExts
37
- extend Google::Protobuf::MessageExts::ClassMethods
36
+ include ::Google::Protobuf::MessageExts
37
+ extend ::Google::Protobuf::MessageExts::ClassMethods
38
38
  end
39
39
 
40
40
  # A bounding polygon of a detected object on a plane.
41
41
  # On output both vertices and normalized_vertices are provided.
42
42
  # The polygon is formed by connecting vertices in the order they are listed.
43
43
  # @!attribute [rw] normalized_vertices
44
- # @return [Array<Google::Cloud::AutoML::V1::NormalizedVertex>]
44
+ # @return [::Array<::Google::Cloud::AutoML::V1::NormalizedVertex>]
45
45
  # Output only . The bounding polygon normalized vertices.
46
46
  class BoundingPoly
47
- include Google::Protobuf::MessageExts
48
- extend Google::Protobuf::MessageExts::ClassMethods
47
+ include ::Google::Protobuf::MessageExts
48
+ extend ::Google::Protobuf::MessageExts::ClassMethods
49
49
  end
50
50
  end
51
51
  end
@@ -23,29 +23,29 @@ module Google
23
23
  module V1
24
24
  # Dataset metadata that is specific to image classification.
25
25
  # @!attribute [rw] classification_type
26
- # @return [Google::Cloud::AutoML::V1::ClassificationType]
26
+ # @return [::Google::Cloud::AutoML::V1::ClassificationType]
27
27
  # Required. Type of the classification problem.
28
28
  class ImageClassificationDatasetMetadata
29
- include Google::Protobuf::MessageExts
30
- extend Google::Protobuf::MessageExts::ClassMethods
29
+ include ::Google::Protobuf::MessageExts
30
+ extend ::Google::Protobuf::MessageExts::ClassMethods
31
31
  end
32
32
 
33
33
  # Dataset metadata specific to image object detection.
34
34
  class ImageObjectDetectionDatasetMetadata
35
- include Google::Protobuf::MessageExts
36
- extend Google::Protobuf::MessageExts::ClassMethods
35
+ include ::Google::Protobuf::MessageExts
36
+ extend ::Google::Protobuf::MessageExts::ClassMethods
37
37
  end
38
38
 
39
39
  # Model metadata for image classification.
40
40
  # @!attribute [rw] base_model_id
41
- # @return [String]
41
+ # @return [::String]
42
42
  # Optional. The ID of the `base` model. If it is specified, the new model
43
43
  # will be created based on the `base` model. Otherwise, the new model will be
44
44
  # created from scratch. The `base` model must be in the same
45
45
  # `project` and `location` as the new model to create, and have the same
46
46
  # `model_type`.
47
47
  # @!attribute [rw] train_budget_milli_node_hours
48
- # @return [Integer]
48
+ # @return [::Integer]
49
49
  # The train budget of creating this model, expressed in milli node
50
50
  # hours i.e. 1,000 value in this field means 1 node hour. The actual
51
51
  # `train_cost` will be equal or less than this value. If further model
@@ -61,66 +61,66 @@ module Google
61
61
  # and 100,000 milli node hours, inclusive. The default value is 24, 000 which
62
62
  # represents one day in wall time.
63
63
  # @!attribute [rw] train_cost_milli_node_hours
64
- # @return [Integer]
64
+ # @return [::Integer]
65
65
  # Output only. The actual train cost of creating this model, expressed in
66
66
  # milli node hours, i.e. 1,000 value in this field means 1 node hour.
67
67
  # Guaranteed to not exceed the train budget.
68
68
  # @!attribute [rw] stop_reason
69
- # @return [String]
69
+ # @return [::String]
70
70
  # Output only. The reason that this create model operation stopped,
71
71
  # e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
72
72
  # @!attribute [rw] model_type
73
- # @return [String]
73
+ # @return [::String]
74
74
  # Optional. Type of the model. The available values are:
75
75
  # * `cloud` - Model to be used via prediction calls to AutoML API.
76
76
  # This is the default value.
77
77
  # * `mobile-low-latency-1` - A model that, in addition to providing
78
78
  # prediction via AutoML API, can also be exported (see
79
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
79
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
80
80
  # with TensorFlow afterwards. Expected to have low latency, but
81
81
  # may have lower prediction quality than other models.
82
82
  # * `mobile-versatile-1` - A model that, in addition to providing
83
83
  # prediction via AutoML API, can also be exported (see
84
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
84
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
85
85
  # with TensorFlow afterwards.
86
86
  # * `mobile-high-accuracy-1` - A model that, in addition to providing
87
87
  # prediction via AutoML API, can also be exported (see
88
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
88
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
89
89
  # with TensorFlow afterwards. Expected to have a higher
90
90
  # latency, but should also have a higher prediction quality
91
91
  # than other models.
92
92
  # * `mobile-core-ml-low-latency-1` - A model that, in addition to providing
93
93
  # prediction via AutoML API, can also be exported (see
94
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with Core
94
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with Core
95
95
  # ML afterwards. Expected to have low latency, but may have
96
96
  # lower prediction quality than other models.
97
97
  # * `mobile-core-ml-versatile-1` - A model that, in addition to providing
98
98
  # prediction via AutoML API, can also be exported (see
99
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with Core
99
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with Core
100
100
  # ML afterwards.
101
101
  # * `mobile-core-ml-high-accuracy-1` - A model that, in addition to
102
102
  # providing prediction via AutoML API, can also be exported
103
- # (see {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with
103
+ # (see {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile device with
104
104
  # Core ML afterwards. Expected to have a higher latency, but
105
105
  # should also have a higher prediction quality than other
106
106
  # models.
107
107
  # @!attribute [rw] node_qps
108
- # @return [Float]
108
+ # @return [::Float]
109
109
  # Output only. An approximate number of online prediction QPS that can
110
110
  # be supported by this model per each node on which it is deployed.
111
111
  # @!attribute [rw] node_count
112
- # @return [Integer]
112
+ # @return [::Integer]
113
113
  # Output only. The number of nodes this model is deployed on. A node is an
114
114
  # abstraction of a machine resource, which can handle online prediction QPS
115
115
  # as given in the node_qps field.
116
116
  class ImageClassificationModelMetadata
117
- include Google::Protobuf::MessageExts
118
- extend Google::Protobuf::MessageExts::ClassMethods
117
+ include ::Google::Protobuf::MessageExts
118
+ extend ::Google::Protobuf::MessageExts::ClassMethods
119
119
  end
120
120
 
121
121
  # Model metadata specific to image object detection.
122
122
  # @!attribute [rw] model_type
123
- # @return [String]
123
+ # @return [::String]
124
124
  # Optional. Type of the model. The available values are:
125
125
  # * `cloud-high-accuracy-1` - (default) A model to be used via prediction
126
126
  # calls to AutoML API. Expected to have a higher latency, but
@@ -131,34 +131,34 @@ module Google
131
131
  # have lower prediction quality than other models.
132
132
  # * `mobile-low-latency-1` - A model that, in addition to providing
133
133
  # prediction via AutoML API, can also be exported (see
134
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
134
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
135
135
  # with TensorFlow afterwards. Expected to have low latency, but
136
136
  # may have lower prediction quality than other models.
137
137
  # * `mobile-versatile-1` - A model that, in addition to providing
138
138
  # prediction via AutoML API, can also be exported (see
139
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
139
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
140
140
  # with TensorFlow afterwards.
141
141
  # * `mobile-high-accuracy-1` - A model that, in addition to providing
142
142
  # prediction via AutoML API, can also be exported (see
143
- # {Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
143
+ # {::Google::Cloud::AutoML::V1::AutoML::Client#export_model AutoMl.ExportModel}) and used on a mobile or edge device
144
144
  # with TensorFlow afterwards. Expected to have a higher
145
145
  # latency, but should also have a higher prediction quality
146
146
  # than other models.
147
147
  # @!attribute [rw] node_count
148
- # @return [Integer]
148
+ # @return [::Integer]
149
149
  # Output only. The number of nodes this model is deployed on. A node is an
150
150
  # abstraction of a machine resource, which can handle online prediction QPS
151
151
  # as given in the qps_per_node field.
152
152
  # @!attribute [rw] node_qps
153
- # @return [Float]
153
+ # @return [::Float]
154
154
  # Output only. An approximate number of online prediction QPS that can
155
155
  # be supported by this model per each node on which it is deployed.
156
156
  # @!attribute [rw] stop_reason
157
- # @return [String]
157
+ # @return [::String]
158
158
  # Output only. The reason that this create model operation stopped,
159
159
  # e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
160
160
  # @!attribute [rw] train_budget_milli_node_hours
161
- # @return [Integer]
161
+ # @return [::Integer]
162
162
  # The train budget of creating this model, expressed in milli node
163
163
  # hours i.e. 1,000 value in this field means 1 node hour. The actual
164
164
  # `train_cost` will be equal or less than this value. If further model
@@ -175,32 +175,32 @@ module Google
175
175
  # budget must be between 1,000 and 100,000 milli node hours, inclusive.
176
176
  # The default value is 24, 000 which represents one day in wall time.
177
177
  # @!attribute [rw] train_cost_milli_node_hours
178
- # @return [Integer]
178
+ # @return [::Integer]
179
179
  # Output only. The actual train cost of creating this model, expressed in
180
180
  # milli node hours, i.e. 1,000 value in this field means 1 node hour.
181
181
  # Guaranteed to not exceed the train budget.
182
182
  class ImageObjectDetectionModelMetadata
183
- include Google::Protobuf::MessageExts
184
- extend Google::Protobuf::MessageExts::ClassMethods
183
+ include ::Google::Protobuf::MessageExts
184
+ extend ::Google::Protobuf::MessageExts::ClassMethods
185
185
  end
186
186
 
187
187
  # Model deployment metadata specific to Image Classification.
188
188
  # @!attribute [rw] node_count
189
- # @return [Integer]
189
+ # @return [::Integer]
190
190
  # Input only. The number of nodes to deploy the model on. A node is an
191
191
  # abstraction of a machine resource, which can handle online prediction QPS
192
192
  # as given in the model's
193
193
  #
194
- # {Google::Cloud::AutoML::V1::ImageClassificationModelMetadata#node_qps node_qps}.
194
+ # {::Google::Cloud::AutoML::V1::ImageClassificationModelMetadata#node_qps node_qps}.
195
195
  # Must be between 1 and 100, inclusive on both ends.
196
196
  class ImageClassificationModelDeploymentMetadata
197
- include Google::Protobuf::MessageExts
198
- extend Google::Protobuf::MessageExts::ClassMethods
197
+ include ::Google::Protobuf::MessageExts
198
+ extend ::Google::Protobuf::MessageExts::ClassMethods
199
199
  end
200
200
 
201
201
  # Model deployment metadata specific to Image Object Detection.
202
202
  # @!attribute [rw] node_count
203
- # @return [Integer]
203
+ # @return [::Integer]
204
204
  # Input only. The number of nodes to deploy the model on. A node is an
205
205
  # abstraction of a machine resource, which can handle online prediction QPS
206
206
  # as given in the model's
@@ -208,8 +208,8 @@ module Google
208
208
  # [qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
209
209
  # Must be between 1 and 100, inclusive on both ends.
210
210
  class ImageObjectDetectionModelDeploymentMetadata
211
- include Google::Protobuf::MessageExts
212
- extend Google::Protobuf::MessageExts::ClassMethods
211
+ include ::Google::Protobuf::MessageExts
212
+ extend ::Google::Protobuf::MessageExts::ClassMethods
213
213
  end
214
214
  end
215
215
  end
@@ -21,11 +21,11 @@ module Google
21
21
  module Cloud
22
22
  module AutoML
23
23
  module V1
24
- # Input configuration for {Google::Cloud::AutoML::V1::AutoML::Client#import_data AutoMl.ImportData} action.
24
+ # Input configuration for {::Google::Cloud::AutoML::V1::AutoML::Client#import_data AutoMl.ImportData} action.
25
25
  #
26
26
  # The format of input depends on dataset_metadata the Dataset into which
27
27
  # the import is happening has. As input source the
28
- # {Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source}
28
+ # {::Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source}
29
29
  # is expected, unless specified otherwise. Additionally any input .CSV file
30
30
  # by itself must be 100MB or smaller, unless specified otherwise.
31
31
  # If an "example" file (that is, image, video etc.) with identical content
@@ -259,8 +259,8 @@ module Google
259
259
  # **In-line JSONL files**
260
260
  #
261
261
  # In-line .JSONL files contain, per line, a JSON document that wraps a
262
- # {Google::Cloud::AutoML::V1::TextSnippet `text_snippet`} field followed by
263
- # one or more {Google::Cloud::AutoML::V1::AnnotationPayload `annotations`}
262
+ # {::Google::Cloud::AutoML::V1::TextSnippet `text_snippet`} field followed by
263
+ # one or more {::Google::Cloud::AutoML::V1::AnnotationPayload `annotations`}
264
264
  # fields, which have `display_name` and `text_extraction` fields to describe
265
265
  # the entity from the text snippet. Multiple JSON documents can be separated
266
266
  # using line breaks (\n).
@@ -523,7 +523,7 @@ module Google
523
523
  # information.
524
524
  #
525
525
  # You can use either
526
- # {Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source} or
526
+ # {::Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source} or
527
527
  # [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
528
528
  # All input is concatenated into a
529
529
  # single
@@ -636,12 +636,12 @@ module Google
636
636
  # failures, up to a certain count cap, is listed in
637
637
  # Operation.metadata.partial_failures.
638
638
  # @!attribute [rw] gcs_source
639
- # @return [Google::Cloud::AutoML::V1::GcsSource]
639
+ # @return [::Google::Cloud::AutoML::V1::GcsSource]
640
640
  # The Google Cloud Storage location for the input content.
641
- # For {Google::Cloud::AutoML::V1::AutoML::Client#import_data AutoMl.ImportData}, `gcs_source` points to a CSV file with
642
- # a structure described in {Google::Cloud::AutoML::V1::InputConfig InputConfig}.
641
+ # For {::Google::Cloud::AutoML::V1::AutoML::Client#import_data AutoMl.ImportData}, `gcs_source` points to a CSV file with
642
+ # a structure described in {::Google::Cloud::AutoML::V1::InputConfig InputConfig}.
643
643
  # @!attribute [rw] params
644
- # @return [Google::Protobuf::Map{String => String}]
644
+ # @return [::Google::Protobuf::Map{::String => ::String}]
645
645
  # Additional domain-specific parameters describing the semantic of the
646
646
  # imported data, any string must be up to 25000
647
647
  # characters long.
@@ -654,16 +654,16 @@ module Google
654
654
  # algorithm to use for the initial inference of the
655
655
  # column data types of the imported table. Allowed values: "1".
656
656
  class InputConfig
657
- include Google::Protobuf::MessageExts
658
- extend Google::Protobuf::MessageExts::ClassMethods
657
+ include ::Google::Protobuf::MessageExts
658
+ extend ::Google::Protobuf::MessageExts::ClassMethods
659
659
 
660
660
  # @!attribute [rw] key
661
- # @return [String]
661
+ # @return [::String]
662
662
  # @!attribute [rw] value
663
- # @return [String]
663
+ # @return [::String]
664
664
  class ParamsEntry
665
- include Google::Protobuf::MessageExts
666
- extend Google::Protobuf::MessageExts::ClassMethods
665
+ include ::Google::Protobuf::MessageExts
666
+ extend ::Google::Protobuf::MessageExts::ClassMethods
667
667
  end
668
668
  end
669
669
 
@@ -671,7 +671,7 @@ module Google
671
671
  #
672
672
  # The format of input depends on the ML problem of the model used for
673
673
  # prediction. As input source the
674
- # {Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source}
674
+ # {::Google::Cloud::AutoML::V1::InputConfig#gcs_source gcs_source}
675
675
  # is expected, unless specified otherwise.
676
676
  #
677
677
  # The formats are represented in EBNF with commas being literal and with
@@ -869,7 +869,7 @@ module Google
869
869
  # information.
870
870
  #
871
871
  # You can use either
872
- # {Google::Cloud::AutoML::V1::BatchPredictInputConfig#gcs_source gcs_source}
872
+ # {::Google::Cloud::AutoML::V1::BatchPredictInputConfig#gcs_source gcs_source}
873
873
  # or
874
874
  # [bigquery_source][BatchPredictInputConfig.bigquery_source].
875
875
  #
@@ -946,16 +946,16 @@ module Google
946
946
  # per-row failures, up to a certain count cap, will be listed in
947
947
  # Operation.metadata.partial_failures.
948
948
  # @!attribute [rw] gcs_source
949
- # @return [Google::Cloud::AutoML::V1::GcsSource]
949
+ # @return [::Google::Cloud::AutoML::V1::GcsSource]
950
950
  # Required. The Google Cloud Storage location for the input content.
951
951
  class BatchPredictInputConfig
952
- include Google::Protobuf::MessageExts
953
- extend Google::Protobuf::MessageExts::ClassMethods
952
+ include ::Google::Protobuf::MessageExts
953
+ extend ::Google::Protobuf::MessageExts::ClassMethods
954
954
  end
955
955
 
956
- # Input configuration of a {Google::Cloud::AutoML::V1::Document Document}.
956
+ # Input configuration of a {::Google::Cloud::AutoML::V1::Document Document}.
957
957
  # @!attribute [rw] gcs_source
958
- # @return [Google::Cloud::AutoML::V1::GcsSource]
958
+ # @return [::Google::Cloud::AutoML::V1::GcsSource]
959
959
  # The Google Cloud Storage location of the document file. Only a single path
960
960
  # should be given.
961
961
  #
@@ -963,8 +963,8 @@ module Google
963
963
  #
964
964
  # Supported extensions: .PDF.
965
965
  class DocumentInputConfig
966
- include Google::Protobuf::MessageExts
967
- extend Google::Protobuf::MessageExts::ClassMethods
966
+ include ::Google::Protobuf::MessageExts
967
+ extend ::Google::Protobuf::MessageExts::ClassMethods
968
968
  end
969
969
 
970
970
  # * For Translation:
@@ -999,7 +999,7 @@ module Google
999
999
  # dataset a new table called `primary_table` will be created, and
1000
1000
  # filled with precisely the same data as this obtained on import.
1001
1001
  # @!attribute [rw] gcs_destination
1002
- # @return [Google::Cloud::AutoML::V1::GcsDestination]
1002
+ # @return [::Google::Cloud::AutoML::V1::GcsDestination]
1003
1003
  # Required. The Google Cloud Storage location where the output is to be written to.
1004
1004
  # For Image Object Detection, Text Extraction, Video Classification and
1005
1005
  # Tables, in the given directory a new directory will be created with name:
@@ -1007,15 +1007,15 @@ module Google
1007
1007
  # timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export
1008
1008
  # output will be written into that directory.
1009
1009
  class OutputConfig
1010
- include Google::Protobuf::MessageExts
1011
- extend Google::Protobuf::MessageExts::ClassMethods
1010
+ include ::Google::Protobuf::MessageExts
1011
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1012
1012
  end
1013
1013
 
1014
1014
  # Output configuration for BatchPredict Action.
1015
1015
  #
1016
1016
  # As destination the
1017
1017
  #
1018
- # {Google::Cloud::AutoML::V1::BatchPredictOutputConfig#gcs_destination gcs_destination}
1018
+ # {::Google::Cloud::AutoML::V1::BatchPredictOutputConfig#gcs_destination gcs_destination}
1019
1019
  # must be set unless specified otherwise for a domain. If gcs_destination is
1020
1020
  # set then in the given directory a new directory is created. Its name
1021
1021
  # will be
@@ -1294,17 +1294,17 @@ module Google
1294
1294
  # //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
1295
1295
  # represented as a STRUCT, and containing only `code` and `message`.
1296
1296
  # @!attribute [rw] gcs_destination
1297
- # @return [Google::Cloud::AutoML::V1::GcsDestination]
1297
+ # @return [::Google::Cloud::AutoML::V1::GcsDestination]
1298
1298
  # Required. The Google Cloud Storage location of the directory where the output is to
1299
1299
  # be written to.
1300
1300
  class BatchPredictOutputConfig
1301
- include Google::Protobuf::MessageExts
1302
- extend Google::Protobuf::MessageExts::ClassMethods
1301
+ include ::Google::Protobuf::MessageExts
1302
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1303
1303
  end
1304
1304
 
1305
1305
  # Output configuration for ModelExport Action.
1306
1306
  # @!attribute [rw] gcs_destination
1307
- # @return [Google::Cloud::AutoML::V1::GcsDestination]
1307
+ # @return [::Google::Cloud::AutoML::V1::GcsDestination]
1308
1308
  # Required. The Google Cloud Storage location where the model is to be written to.
1309
1309
  # This location may only be set for the following model formats:
1310
1310
  # "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
@@ -1315,7 +1315,7 @@ module Google
1315
1315
  # will be created. Inside the model and any of its supporting files
1316
1316
  # will be written.
1317
1317
  # @!attribute [rw] model_format
1318
- # @return [String]
1318
+ # @return [::String]
1319
1319
  # The format in which the model must be exported. The available, and default,
1320
1320
  # formats depend on the problem and model type (if given problem and type
1321
1321
  # combination doesn't have a format listed, it means its models are not
@@ -1350,7 +1350,7 @@ module Google
1350
1350
  # //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
1351
1351
  # * core_ml - Used for iOS mobile devices.
1352
1352
  # @!attribute [rw] params
1353
- # @return [Google::Protobuf::Map{String => String}]
1353
+ # @return [::Google::Protobuf::Map{::String => ::String}]
1354
1354
  # Additional model-type and format specific parameters describing the
1355
1355
  # requirements for the to be exported model files, any string must be up to
1356
1356
  # 25000 characters long.
@@ -1359,33 +1359,33 @@ module Google
1359
1359
  # `cpu_architecture` - (string) "x86_64" (default).
1360
1360
  # `gpu_architecture` - (string) "none" (default), "nvidia".
1361
1361
  class ModelExportOutputConfig
1362
- include Google::Protobuf::MessageExts
1363
- extend Google::Protobuf::MessageExts::ClassMethods
1362
+ include ::Google::Protobuf::MessageExts
1363
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1364
1364
 
1365
1365
  # @!attribute [rw] key
1366
- # @return [String]
1366
+ # @return [::String]
1367
1367
  # @!attribute [rw] value
1368
- # @return [String]
1368
+ # @return [::String]
1369
1369
  class ParamsEntry
1370
- include Google::Protobuf::MessageExts
1371
- extend Google::Protobuf::MessageExts::ClassMethods
1370
+ include ::Google::Protobuf::MessageExts
1371
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1372
1372
  end
1373
1373
  end
1374
1374
 
1375
1375
  # The Google Cloud Storage location for the input content.
1376
1376
  # @!attribute [rw] input_uris
1377
- # @return [Array<String>]
1377
+ # @return [::Array<::String>]
1378
1378
  # Required. Google Cloud Storage URIs to input files, up to 2000
1379
1379
  # characters long. Accepted forms:
1380
1380
  # * Full object path, e.g. gs://bucket/directory/object.csv
1381
1381
  class GcsSource
1382
- include Google::Protobuf::MessageExts
1383
- extend Google::Protobuf::MessageExts::ClassMethods
1382
+ include ::Google::Protobuf::MessageExts
1383
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1384
1384
  end
1385
1385
 
1386
1386
  # The Google Cloud Storage location where the output is to be written to.
1387
1387
  # @!attribute [rw] output_uri_prefix
1388
- # @return [String]
1388
+ # @return [::String]
1389
1389
  # Required. Google Cloud Storage URI to output directory, up to 2000
1390
1390
  # characters long.
1391
1391
  # Accepted forms:
@@ -1393,8 +1393,8 @@ module Google
1393
1393
  # The requesting user must have write permission to the bucket.
1394
1394
  # The directory is created if it doesn't exist.
1395
1395
  class GcsDestination
1396
- include Google::Protobuf::MessageExts
1397
- extend Google::Protobuf::MessageExts::ClassMethods
1396
+ include ::Google::Protobuf::MessageExts
1397
+ extend ::Google::Protobuf::MessageExts::ClassMethods
1398
1398
  end
1399
1399
  end
1400
1400
  end