google-cloud-ai_platform-v1 0.1.0 → 0.4.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (103) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +5 -0
  3. data/lib/google/cloud/ai_platform/v1/featurestore_service/client.rb +10 -4
  4. data/lib/google/cloud/ai_platform/v1/metadata_service/client.rb +3 -3
  5. data/lib/google/cloud/ai_platform/v1/model_service/client.rb +112 -0
  6. data/lib/google/cloud/ai_platform/v1/pipeline_service/client.rb +3 -0
  7. data/lib/google/cloud/ai_platform/v1/version.rb +1 -1
  8. data/lib/google/cloud/ai_platform/v1.rb +2 -0
  9. data/lib/google/cloud/aiplatform/v1/accelerator_type_pb.rb +2 -1
  10. data/lib/google/cloud/aiplatform/v1/annotation_pb.rb +2 -2
  11. data/lib/google/cloud/aiplatform/v1/annotation_spec_pb.rb +2 -2
  12. data/lib/google/cloud/aiplatform/v1/artifact_pb.rb +2 -3
  13. data/lib/google/cloud/aiplatform/v1/batch_prediction_job_pb.rb +2 -3
  14. data/lib/google/cloud/aiplatform/v1/completion_stats_pb.rb +2 -3
  15. data/lib/google/cloud/aiplatform/v1/context_pb.rb +2 -3
  16. data/lib/google/cloud/aiplatform/v1/custom_job_pb.rb +4 -2
  17. data/lib/google/cloud/aiplatform/v1/data_item_pb.rb +2 -2
  18. data/lib/google/cloud/aiplatform/v1/data_labeling_job_pb.rb +2 -4
  19. data/lib/google/cloud/aiplatform/v1/dataset_pb.rb +2 -2
  20. data/lib/google/cloud/aiplatform/v1/dataset_service_pb.rb +2 -2
  21. data/lib/google/cloud/aiplatform/v1/deployed_index_ref_pb.rb +2 -2
  22. data/lib/google/cloud/aiplatform/v1/deployed_model_ref_pb.rb +2 -2
  23. data/lib/google/cloud/aiplatform/v1/encryption_spec_pb.rb +2 -2
  24. data/lib/google/cloud/aiplatform/v1/endpoint_pb.rb +9 -4
  25. data/lib/google/cloud/aiplatform/v1/endpoint_service_pb.rb +2 -1
  26. data/lib/google/cloud/aiplatform/v1/entity_type_pb.rb +4 -3
  27. data/lib/google/cloud/aiplatform/v1/env_var_pb.rb +2 -2
  28. data/lib/google/cloud/aiplatform/v1/event_pb.rb +2 -2
  29. data/lib/google/cloud/aiplatform/v1/execution_pb.rb +2 -3
  30. data/lib/google/cloud/aiplatform/v1/explanation_metadata_pb.rb +2 -2
  31. data/lib/google/cloud/aiplatform/v1/explanation_pb.rb +2 -3
  32. data/lib/google/cloud/aiplatform/v1/feature_monitoring_stats_pb.rb +2 -2
  33. data/lib/google/cloud/aiplatform/v1/feature_pb.rb +15 -2
  34. data/lib/google/cloud/aiplatform/v1/feature_selector_pb.rb +2 -2
  35. data/lib/google/cloud/aiplatform/v1/featurestore_monitoring_pb.rb +56 -0
  36. data/lib/google/cloud/aiplatform/v1/featurestore_online_service_pb.rb +2 -1
  37. data/lib/google/cloud/aiplatform/v1/featurestore_pb.rb +2 -2
  38. data/lib/google/cloud/aiplatform/v1/featurestore_service_pb.rb +3 -3
  39. data/lib/google/cloud/aiplatform/v1/hyperparameter_tuning_job_pb.rb +2 -2
  40. data/lib/google/cloud/aiplatform/v1/index_endpoint_pb.rb +2 -3
  41. data/lib/google/cloud/aiplatform/v1/index_endpoint_service_pb.rb +2 -1
  42. data/lib/google/cloud/aiplatform/v1/index_pb.rb +2 -3
  43. data/lib/google/cloud/aiplatform/v1/index_service_pb.rb +2 -1
  44. data/lib/google/cloud/aiplatform/v1/io_pb.rb +2 -2
  45. data/lib/google/cloud/aiplatform/v1/job_service_pb.rb +2 -1
  46. data/lib/google/cloud/aiplatform/v1/job_state_pb.rb +1 -1
  47. data/lib/google/cloud/aiplatform/v1/lineage_subgraph_pb.rb +2 -2
  48. data/lib/google/cloud/aiplatform/v1/machine_resources_pb.rb +8 -2
  49. data/lib/google/cloud/aiplatform/v1/manual_batch_tuning_parameters_pb.rb +2 -2
  50. data/lib/google/cloud/aiplatform/v1/metadata_schema_pb.rb +2 -2
  51. data/lib/google/cloud/aiplatform/v1/metadata_service_pb.rb +2 -1
  52. data/lib/google/cloud/aiplatform/v1/metadata_store_pb.rb +2 -2
  53. data/lib/google/cloud/aiplatform/v1/migratable_resource_pb.rb +2 -2
  54. data/lib/google/cloud/aiplatform/v1/migration_service_pb.rb +2 -3
  55. data/lib/google/cloud/aiplatform/v1/model_deployment_monitoring_job_pb.rb +8 -2
  56. data/lib/google/cloud/aiplatform/v1/model_evaluation_pb.rb +12 -2
  57. data/lib/google/cloud/aiplatform/v1/model_evaluation_slice_pb.rb +2 -2
  58. data/lib/google/cloud/aiplatform/v1/model_monitoring_pb.rb +2 -2
  59. data/lib/google/cloud/aiplatform/v1/model_pb.rb +2 -3
  60. data/lib/google/cloud/aiplatform/v1/model_service_pb.rb +7 -3
  61. data/lib/google/cloud/aiplatform/v1/model_service_services_pb.rb +2 -0
  62. data/lib/google/cloud/aiplatform/v1/operation_pb.rb +2 -2
  63. data/lib/google/cloud/aiplatform/v1/pipeline_job_pb.rb +2 -2
  64. data/lib/google/cloud/aiplatform/v1/pipeline_service_pb.rb +2 -1
  65. data/lib/google/cloud/aiplatform/v1/pipeline_state_pb.rb +0 -1
  66. data/lib/google/cloud/aiplatform/v1/prediction_service_pb.rb +2 -1
  67. data/lib/google/cloud/aiplatform/v1/specialist_pool_pb.rb +2 -2
  68. data/lib/google/cloud/aiplatform/v1/specialist_pool_service_pb.rb +2 -1
  69. data/lib/google/cloud/aiplatform/v1/study_pb.rb +11 -2
  70. data/lib/google/cloud/aiplatform/v1/tensorboard_data_pb.rb +2 -2
  71. data/lib/google/cloud/aiplatform/v1/tensorboard_experiment_pb.rb +2 -2
  72. data/lib/google/cloud/aiplatform/v1/tensorboard_pb.rb +2 -2
  73. data/lib/google/cloud/aiplatform/v1/tensorboard_run_pb.rb +2 -2
  74. data/lib/google/cloud/aiplatform/v1/tensorboard_service_pb.rb +2 -1
  75. data/lib/google/cloud/aiplatform/v1/tensorboard_time_series_pb.rb +2 -2
  76. data/lib/google/cloud/aiplatform/v1/training_pipeline_pb.rb +2 -4
  77. data/lib/google/cloud/aiplatform/v1/types_pb.rb +0 -1
  78. data/lib/google/cloud/aiplatform/v1/unmanaged_container_model_pb.rb +2 -2
  79. data/lib/google/cloud/aiplatform/v1/user_action_reference_pb.rb +0 -1
  80. data/lib/google/cloud/aiplatform/v1/value_pb.rb +0 -1
  81. data/lib/google/cloud/aiplatform/v1/vizier_service_pb.rb +2 -1
  82. data/proto_docs/google/cloud/aiplatform/v1/accelerator_type.rb +6 -0
  83. data/proto_docs/google/cloud/aiplatform/v1/custom_job.rb +13 -0
  84. data/proto_docs/google/cloud/aiplatform/v1/endpoint.rb +25 -1
  85. data/proto_docs/google/cloud/aiplatform/v1/entity_type.rb +10 -0
  86. data/proto_docs/google/cloud/aiplatform/v1/feature.rb +42 -0
  87. data/proto_docs/google/cloud/aiplatform/v1/featurestore.rb +20 -18
  88. data/proto_docs/google/cloud/aiplatform/v1/featurestore_monitoring.rb +160 -0
  89. data/proto_docs/google/cloud/aiplatform/v1/featurestore_service.rb +10 -3
  90. data/proto_docs/google/cloud/aiplatform/v1/index_endpoint.rb +4 -4
  91. data/proto_docs/google/cloud/aiplatform/v1/job_state.rb +7 -0
  92. data/proto_docs/google/cloud/aiplatform/v1/machine_resources.rb +23 -0
  93. data/proto_docs/google/cloud/aiplatform/v1/metadata_service.rb +3 -3
  94. data/proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb +16 -0
  95. data/proto_docs/google/cloud/aiplatform/v1/model_evaluation.rb +59 -8
  96. data/proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb +1 -1
  97. data/proto_docs/google/cloud/aiplatform/v1/model_service.rb +30 -0
  98. data/proto_docs/google/cloud/aiplatform/v1/pipeline_job.rb +1 -1
  99. data/proto_docs/google/cloud/aiplatform/v1/pipeline_service.rb +3 -0
  100. data/proto_docs/google/cloud/aiplatform/v1/study.rb +54 -0
  101. data/proto_docs/google/protobuf/any.rb +3 -3
  102. data/proto_docs/google/protobuf/struct.rb +2 -2
  103. metadata +4 -2
@@ -53,7 +53,8 @@ module Google
53
53
  # and are immutable.
54
54
  # @!attribute [rw] online_serving_config
55
55
  # @return [::Google::Cloud::AIPlatform::V1::Featurestore::OnlineServingConfig]
56
- # Required. Config for online serving resources.
56
+ # Optional. Config for online storage resources. If unset, the featurestore will
57
+ # not have an online store and cannot be used for online serving.
57
58
  # @!attribute [r] state
58
59
  # @return [::Google::Cloud::AIPlatform::V1::Featurestore::State]
59
60
  # Output only. State of the featurestore.
@@ -69,11 +70,10 @@ module Google
69
70
  # resources.
70
71
  # @!attribute [rw] fixed_node_count
71
72
  # @return [::Integer]
72
- # The number of nodes for each cluster. The number of nodes will not
73
- # scale automatically but can be scaled manually by providing different
74
- # values when updating.
75
- # Only one of `fixed_node_count` and `scaling` can be set. Setting one will
76
- # reset the other.
73
+ # The number of nodes for the online store. The number of nodes doesn't
74
+ # scale automatically, but you can manually update the number of
75
+ # nodes. If set to 0, the featurestore will not have an
76
+ # online store and cannot be used for online serving.
77
77
  class OnlineServingConfig
78
78
  include ::Google::Protobuf::MessageExts
79
79
  extend ::Google::Protobuf::MessageExts::ClassMethods
@@ -88,24 +88,26 @@ module Google
88
88
  extend ::Google::Protobuf::MessageExts::ClassMethods
89
89
  end
90
90
 
91
- # Possible states a Featurestore can have.
91
+ # Possible states a featurestore can have.
92
92
  module State
93
93
  # Default value. This value is unused.
94
94
  STATE_UNSPECIFIED = 0
95
95
 
96
- # State when the Featurestore configuration is not being updated and the
97
- # fields reflect the current configuration of the Featurestore. The
98
- # Featurestore is usable in this state.
96
+ # State when the featurestore configuration is not being updated and the
97
+ # fields reflect the current configuration of the featurestore. The
98
+ # featurestore is usable in this state.
99
99
  STABLE = 1
100
100
 
101
- # State when the Featurestore configuration is being updated and the fields
102
- # reflect the updated configuration of the Featurestore, not the current
103
- # one. For example, `online_serving_config.fixed_node_count` can take
104
- # minutes to update. While the update is in progress, the Featurestore
105
- # will be in the UPDATING state and the value of `fixed_node_count` will be
106
- # the updated value. Until the update completes, the actual number of nodes
107
- # can still be the original value of `fixed_node_count`. The Featurestore
108
- # is still usable in this state.
101
+ # The state of the featurestore configuration when it is being updated.
102
+ # During an update, the fields reflect either the original configuration
103
+ # or the updated configuration of the featurestore. For example,
104
+ # `online_serving_config.fixed_node_count` can take minutes to update.
105
+ # While the update is in progress, the featurestore is in the UPDATING
106
+ # state, and the value of `fixed_node_count` can be the original value or
107
+ # the updated value, depending on the progress of the operation. Until the
108
+ # update completes, the actual number of nodes can still be the original
109
+ # value of `fixed_node_count`. The featurestore is still usable in this
110
+ # state.
109
111
  UPDATING = 2
110
112
  end
111
113
  end
@@ -0,0 +1,160 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Copyright 2022 Google LLC
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # https://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Auto-generated by gapic-generator-ruby. DO NOT EDIT!
18
+
19
+
20
+ module Google
21
+ module Cloud
22
+ module AIPlatform
23
+ module V1
24
+ # Configuration of how features in Featurestore are monitored.
25
+ # @!attribute [rw] snapshot_analysis
26
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::SnapshotAnalysis]
27
+ # The config for Snapshot Analysis Based Feature Monitoring.
28
+ # @!attribute [rw] import_features_analysis
29
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::ImportFeaturesAnalysis]
30
+ # The config for ImportFeatures Analysis Based Feature Monitoring.
31
+ # @!attribute [rw] numerical_threshold_config
32
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::ThresholdConfig]
33
+ # Threshold for numerical features of anomaly detection.
34
+ # This is shared by all objectives of Featurestore Monitoring for numerical
35
+ # features (i.e. Features with type ({::Google::Cloud::AIPlatform::V1::Feature::ValueType Feature.ValueType}) DOUBLE or INT64).
36
+ # @!attribute [rw] categorical_threshold_config
37
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::ThresholdConfig]
38
+ # Threshold for categorical features of anomaly detection.
39
+ # This is shared by all types of Featurestore Monitoring for categorical
40
+ # features (i.e. Features with type ({::Google::Cloud::AIPlatform::V1::Feature::ValueType Feature.ValueType}) BOOL or STRING).
41
+ class FeaturestoreMonitoringConfig
42
+ include ::Google::Protobuf::MessageExts
43
+ extend ::Google::Protobuf::MessageExts::ClassMethods
44
+
45
+ # Configuration of the Featurestore's Snapshot Analysis Based Monitoring.
46
+ # This type of analysis generates statistics for each Feature based on a
47
+ # snapshot of the latest feature value of each entities every
48
+ # monitoring_interval.
49
+ # @!attribute [rw] disabled
50
+ # @return [::Boolean]
51
+ # The monitoring schedule for snapshot analysis.
52
+ # For EntityType-level config:
53
+ # unset / disabled = true indicates disabled by
54
+ # default for Features under it; otherwise by default enable snapshot
55
+ # analysis monitoring with monitoring_interval for Features under it.
56
+ # Feature-level config:
57
+ # disabled = true indicates disabled regardless of the EntityType-level
58
+ # config; unset monitoring_interval indicates going with EntityType-level
59
+ # config; otherwise run snapshot analysis monitoring with
60
+ # monitoring_interval regardless of the EntityType-level config.
61
+ # Explicitly Disable the snapshot analysis based monitoring.
62
+ # @!attribute [rw] monitoring_interval_days
63
+ # @return [::Integer]
64
+ # Configuration of the snapshot analysis based monitoring pipeline
65
+ # running interval. The value indicates number of days.
66
+ # If both
67
+ # {::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::SnapshotAnalysis#monitoring_interval_days FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days}
68
+ # and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][]
69
+ # are set when creating/updating EntityTypes/Features,
70
+ # {::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::SnapshotAnalysis#monitoring_interval_days FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days}
71
+ # will be used.
72
+ # @!attribute [rw] staleness_days
73
+ # @return [::Integer]
74
+ # Customized export features time window for snapshot analysis. Unit is one
75
+ # day. Default value is 3 weeks. Minimum value is 1 day. Maximum value is
76
+ # 4000 days.
77
+ class SnapshotAnalysis
78
+ include ::Google::Protobuf::MessageExts
79
+ extend ::Google::Protobuf::MessageExts::ClassMethods
80
+ end
81
+
82
+ # Configuration of the Featurestore's ImportFeature Analysis Based
83
+ # Monitoring. This type of analysis generates statistics for values of each
84
+ # Feature imported by every [ImportFeatureValues][] operation.
85
+ # @!attribute [rw] state
86
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::ImportFeaturesAnalysis::State]
87
+ # Whether to enable / disable / inherite default hebavior for import
88
+ # features analysis.
89
+ # @!attribute [rw] anomaly_detection_baseline
90
+ # @return [::Google::Cloud::AIPlatform::V1::FeaturestoreMonitoringConfig::ImportFeaturesAnalysis::Baseline]
91
+ # The baseline used to do anomaly detection for the statistics generated by
92
+ # import features analysis.
93
+ class ImportFeaturesAnalysis
94
+ include ::Google::Protobuf::MessageExts
95
+ extend ::Google::Protobuf::MessageExts::ClassMethods
96
+
97
+ # The state defines whether to enable ImportFeature analysis.
98
+ module State
99
+ # Should not be used.
100
+ STATE_UNSPECIFIED = 0
101
+
102
+ # The default behavior of whether to enable the monitoring.
103
+ # EntityType-level config: disabled.
104
+ # Feature-level config: inherited from the configuration of EntityType
105
+ # this Feature belongs to.
106
+ DEFAULT = 1
107
+
108
+ # Explicitly enables import features analysis.
109
+ # EntityType-level config: by default enables import features analysis
110
+ # for all Features under it. Feature-level config: enables import
111
+ # features analysis regardless of the EntityType-level config.
112
+ ENABLED = 2
113
+
114
+ # Explicitly disables import features analysis.
115
+ # EntityType-level config: by default disables import features analysis
116
+ # for all Features under it. Feature-level config: disables import
117
+ # features analysis regardless of the EntityType-level config.
118
+ DISABLED = 3
119
+ end
120
+
121
+ # Defines the baseline to do anomaly detection for feature values imported
122
+ # by each [ImportFeatureValues][] operation.
123
+ module Baseline
124
+ # Should not be used.
125
+ BASELINE_UNSPECIFIED = 0
126
+
127
+ # Choose the later one statistics generated by either most recent
128
+ # snapshot analysis or previous import features analysis. If non of them
129
+ # exists, skip anomaly detection and only generate a statistics.
130
+ LATEST_STATS = 1
131
+
132
+ # Use the statistics generated by the most recent snapshot analysis if
133
+ # exists.
134
+ MOST_RECENT_SNAPSHOT_STATS = 2
135
+
136
+ # Use the statistics generated by the previous import features analysis
137
+ # if exists.
138
+ PREVIOUS_IMPORT_FEATURES_STATS = 3
139
+ end
140
+ end
141
+
142
+ # The config for Featurestore Monitoring threshold.
143
+ # @!attribute [rw] value
144
+ # @return [::Float]
145
+ # Specify a threshold value that can trigger the alert.
146
+ # 1. For categorical feature, the distribution distance is calculated by
147
+ # L-inifinity norm.
148
+ # 2. For numerical feature, the distribution distance is calculated by
149
+ # Jensen–Shannon divergence. Each feature must have a non-zero threshold
150
+ # if they need to be monitored. Otherwise no alert will be triggered for
151
+ # that feature.
152
+ class ThresholdConfig
153
+ include ::Google::Protobuf::MessageExts
154
+ extend ::Google::Protobuf::MessageExts::ClassMethods
155
+ end
156
+ end
157
+ end
158
+ end
159
+ end
160
+ end
@@ -210,6 +210,9 @@ module Google
210
210
  # serving. The value must be positive, and less than or equal to 100.
211
211
  # If not set, defaults to using 1 worker. The low count ensures minimal
212
212
  # impact on online serving performance.
213
+ # @!attribute [rw] disable_ingestion_analysis
214
+ # @return [::Boolean]
215
+ # If true, API doesn't start ingestion analysis pipeline.
213
216
  class ImportFeatureValuesRequest
214
217
  include ::Google::Protobuf::MessageExts
215
218
  extend ::Google::Protobuf::MessageExts::ClassMethods
@@ -578,7 +581,12 @@ module Google
578
581
  # * `description`
579
582
  # * `labels`
580
583
  # * `monitoring_config.snapshot_analysis.disabled`
581
- # * `monitoring_config.snapshot_analysis.monitoring_interval`
584
+ # * `monitoring_config.snapshot_analysis.monitoring_interval_days`
585
+ # * `monitoring_config.snapshot_analysis.staleness_days`
586
+ # * `monitoring_config.import_features_analysis.state`
587
+ # * `monitoring_config.import_features_analysis.anomaly_detection_baseline`
588
+ # * `monitoring_config.numerical_threshold_config.value`
589
+ # * `monitoring_config.categorical_threshold_config.value`
582
590
  class UpdateEntityTypeRequest
583
591
  include ::Google::Protobuf::MessageExts
584
592
  extend ::Google::Protobuf::MessageExts::ClassMethods
@@ -870,8 +878,7 @@ module Google
870
878
  #
871
879
  # * `description`
872
880
  # * `labels`
873
- # * `monitoring_config.snapshot_analysis.disabled`
874
- # * `monitoring_config.snapshot_analysis.monitoring_interval`
881
+ # * `disable_monitoring`
875
882
  class UpdateFeatureRequest
876
883
  include ::Google::Protobuf::MessageExts
877
884
  extend ::Google::Protobuf::MessageExts::ClassMethods
@@ -68,9 +68,9 @@ module Google
68
68
  # Private services access must already be configured for the network. If left
69
69
  # unspecified, the Endpoint is not peered with any network.
70
70
  #
71
- # Only one of the fields, {::Google::Cloud::AIPlatform::V1::IndexEndpoint#network network} or
72
- # {::Google::Cloud::AIPlatform::V1::IndexEndpoint#enable_private_service_connect enable_private_service_connect},
73
- # can be set.
71
+ # {::Google::Cloud::AIPlatform::V1::IndexEndpoint#network network} and
72
+ # [private_service_connect_config][google.cloud.aiplatform.v1.IndexEndpoint.private_service_connect_config]
73
+ # are mutually exclusive.
74
74
  #
75
75
  # [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert):
76
76
  # projects/\\{project}/global/networks/\\{network}.
@@ -78,7 +78,7 @@ module Google
78
78
  # network name.
79
79
  # @!attribute [rw] enable_private_service_connect
80
80
  # @return [::Boolean]
81
- # Optional. If true, expose the IndexEndpoint via private service connect.
81
+ # Optional. Deprecated: If true, expose the IndexEndpoint via private service connect.
82
82
  #
83
83
  # Only one of the fields, {::Google::Cloud::AIPlatform::V1::IndexEndpoint#network network} or
84
84
  # {::Google::Cloud::AIPlatform::V1::IndexEndpoint#enable_private_service_connect enable_private_service_connect},
@@ -53,6 +53,13 @@ module Google
53
53
 
54
54
  # The job has expired.
55
55
  JOB_STATE_EXPIRED = 9
56
+
57
+ # The job is being updated. The job is only able to be updated at RUNNING
58
+ # state; if the update operation succeeds, job goes back to RUNNING state; if
59
+ # the update operation fails, the job goes back to RUNNING state with error
60
+ # messages written to [ModelDeploymentMonitoringJob.partial_errors][] field
61
+ # if it is a ModelDeploymentMonitoringJob.
62
+ JOB_STATE_UPDATING = 10
56
63
  end
57
64
  end
58
65
  end
@@ -70,6 +70,11 @@ module Google
70
70
  # replicas at maximum may handle, a portion of the traffic will be dropped.
71
71
  # If this value is not provided, will use {::Google::Cloud::AIPlatform::V1::DedicatedResources#min_replica_count min_replica_count} as the
72
72
  # default value.
73
+ #
74
+ # The value of this field impacts the charge against Vertex CPU and GPU
75
+ # quotas. Specifically, you will be charged for (max_replica_count *
76
+ # number of cores in the selected machine type) and (max_replica_count *
77
+ # number of GPUs per replica in the selected machine type).
73
78
  # @!attribute [rw] autoscaling_metric_specs
74
79
  # @return [::Array<::Google::Cloud::AIPlatform::V1::AutoscalingMetricSpec>]
75
80
  # Immutable. The metric specifications that overrides a resource
@@ -167,6 +172,24 @@ module Google
167
172
  extend ::Google::Protobuf::MessageExts::ClassMethods
168
173
  end
169
174
 
175
+ # Represents a mount configuration for Network File System (NFS) to mount.
176
+ # @!attribute [rw] server
177
+ # @return [::String]
178
+ # Required. IP address of the NFS server.
179
+ # @!attribute [rw] path
180
+ # @return [::String]
181
+ # Required. Source path exported from NFS server.
182
+ # Has to start with '/', and combined with the ip address, it indicates
183
+ # the source mount path in the form of `server:path`
184
+ # @!attribute [rw] mount_point
185
+ # @return [::String]
186
+ # Required. Destination mount path. The NFS will be mounted for the user under
187
+ # /mnt/nfs/<mount_point>
188
+ class NfsMount
189
+ include ::Google::Protobuf::MessageExts
190
+ extend ::Google::Protobuf::MessageExts::ClassMethods
191
+ end
192
+
170
193
  # The metric specification that defines the target resource utilization
171
194
  # (CPU utilization, accelerator's duty cycle, and so on) for calculating the
172
195
  # desired replica count.
@@ -238,7 +238,7 @@ module Google
238
238
  # `projects/{project}/locations/{location}/metadataStores/{metadatastore}/artifacts/{artifact}`
239
239
  # @!attribute [rw] update_mask
240
240
  # @return [::Google::Protobuf::FieldMask]
241
- # Required. A FieldMask indicating which fields should be updated.
241
+ # Optional. A FieldMask indicating which fields should be updated.
242
242
  # Functionality of this field is not yet supported.
243
243
  # @!attribute [rw] allow_missing
244
244
  # @return [::Boolean]
@@ -424,7 +424,7 @@ module Google
424
424
  # `projects/{project}/locations/{location}/metadataStores/{metadatastore}/contexts/{context}`
425
425
  # @!attribute [rw] update_mask
426
426
  # @return [::Google::Protobuf::FieldMask]
427
- # Required. A FieldMask indicating which fields should be updated.
427
+ # Optional. A FieldMask indicating which fields should be updated.
428
428
  # Functionality of this field is not yet supported.
429
429
  # @!attribute [rw] allow_missing
430
430
  # @return [::Boolean]
@@ -678,7 +678,7 @@ module Google
678
678
  # `projects/{project}/locations/{location}/metadataStores/{metadatastore}/executions/{execution}`
679
679
  # @!attribute [rw] update_mask
680
680
  # @return [::Google::Protobuf::FieldMask]
681
- # Required. A FieldMask indicating which fields should be updated.
681
+ # Optional. A FieldMask indicating which fields should be updated.
682
682
  # Functionality of this field is not yet supported.
683
683
  # @!attribute [rw] allow_missing
684
684
  # @return [::Boolean]
@@ -47,6 +47,9 @@ module Google
47
47
  # @!attribute [r] schedule_state
48
48
  # @return [::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::MonitoringScheduleState]
49
49
  # Output only. Schedule state when the monitoring job is in Running state.
50
+ # @!attribute [r] latest_monitoring_pipeline_metadata
51
+ # @return [::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::LatestMonitoringPipelineMetadata]
52
+ # Output only. Latest triggered monitoring pipeline metadata.
50
53
  # @!attribute [rw] model_deployment_monitoring_objective_configs
51
54
  # @return [::Array<::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringObjectiveConfig>]
52
55
  # Required. The config for monitoring objectives. This is a per DeployedModel config.
@@ -139,6 +142,19 @@ module Google
139
142
  include ::Google::Protobuf::MessageExts
140
143
  extend ::Google::Protobuf::MessageExts::ClassMethods
141
144
 
145
+ # All metadata of most recent monitoring pipelines.
146
+ # @!attribute [rw] run_time
147
+ # @return [::Google::Protobuf::Timestamp]
148
+ # The time that most recent monitoring pipelines that is related to this
149
+ # run.
150
+ # @!attribute [rw] status
151
+ # @return [::Google::Rpc::Status]
152
+ # The status of the most recent monitoring pipeline.
153
+ class LatestMonitoringPipelineMetadata
154
+ include ::Google::Protobuf::MessageExts
155
+ extend ::Google::Protobuf::MessageExts::ClassMethods
156
+ end
157
+
142
158
  # @!attribute [rw] key
143
159
  # @return [::String]
144
160
  # @!attribute [rw] value
@@ -26,33 +26,84 @@ module Google
26
26
  # @!attribute [r] name
27
27
  # @return [::String]
28
28
  # Output only. The resource name of the ModelEvaluation.
29
- # @!attribute [r] metrics_schema_uri
29
+ # @!attribute [rw] display_name
30
30
  # @return [::String]
31
- # Output only. Points to a YAML file stored on Google Cloud Storage describing the
31
+ # The display name of the ModelEvaluation.
32
+ # @!attribute [rw] metrics_schema_uri
33
+ # @return [::String]
34
+ # Points to a YAML file stored on Google Cloud Storage describing the
32
35
  # {::Google::Cloud::AIPlatform::V1::ModelEvaluation#metrics metrics} of this ModelEvaluation. The schema is
33
36
  # defined as an OpenAPI 3.0.2 [Schema
34
37
  # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject).
35
- # @!attribute [r] metrics
38
+ # @!attribute [rw] metrics
36
39
  # @return [::Google::Protobuf::Value]
37
- # Output only. Evaluation metrics of the Model. The schema of the metrics is stored in
40
+ # Evaluation metrics of the Model. The schema of the metrics is stored in
38
41
  # {::Google::Cloud::AIPlatform::V1::ModelEvaluation#metrics_schema_uri metrics_schema_uri}
39
42
  # @!attribute [r] create_time
40
43
  # @return [::Google::Protobuf::Timestamp]
41
44
  # Output only. Timestamp when this ModelEvaluation was created.
42
- # @!attribute [r] slice_dimensions
45
+ # @!attribute [rw] slice_dimensions
43
46
  # @return [::Array<::String>]
44
- # Output only. All possible [dimensions][ModelEvaluationSlice.slice.dimension] of
47
+ # All possible [dimensions][ModelEvaluationSlice.slice.dimension] of
45
48
  # ModelEvaluationSlices. The dimensions can be used as the filter of the
46
49
  # {::Google::Cloud::AIPlatform::V1::ModelService::Client#list_model_evaluation_slices ModelService.ListModelEvaluationSlices} request, in the form of
47
50
  # `slice.dimension = <dimension>`.
48
- # @!attribute [r] model_explanation
51
+ # @!attribute [rw] data_item_schema_uri
52
+ # @return [::String]
53
+ # Points to a YAML file stored on Google Cloud Storage describing
54
+ # [EvaluatedDataItemView.data_item_payload][] and
55
+ # [EvaluatedAnnotation.data_item_payload][]. The schema is defined as an
56
+ # OpenAPI 3.0.2 [Schema
57
+ # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject).
58
+ #
59
+ # This field is not populated if there are neither EvaluatedDataItemViews nor
60
+ # EvaluatedAnnotations under this ModelEvaluation.
61
+ # @!attribute [rw] annotation_schema_uri
62
+ # @return [::String]
63
+ # Points to a YAML file stored on Google Cloud Storage describing
64
+ # [EvaluatedDataItemView.predictions][],
65
+ # [EvaluatedDataItemView.ground_truths][],
66
+ # [EvaluatedAnnotation.predictions][], and
67
+ # [EvaluatedAnnotation.ground_truths][]. The schema is defined as an
68
+ # OpenAPI 3.0.2 [Schema
69
+ # Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject).
70
+ #
71
+ # This field is not populated if there are neither EvaluatedDataItemViews nor
72
+ # EvaluatedAnnotations under this ModelEvaluation.
73
+ # @!attribute [rw] model_explanation
49
74
  # @return [::Google::Cloud::AIPlatform::V1::ModelExplanation]
50
- # Output only. Aggregated explanation metrics for the Model's prediction output over the
75
+ # Aggregated explanation metrics for the Model's prediction output over the
51
76
  # data this ModelEvaluation uses. This field is populated only if the Model
52
77
  # is evaluated with explanations, and only for AutoML tabular Models.
78
+ # @!attribute [rw] explanation_specs
79
+ # @return [::Array<::Google::Cloud::AIPlatform::V1::ModelEvaluation::ModelEvaluationExplanationSpec>]
80
+ # Describes the values of {::Google::Cloud::AIPlatform::V1::ExplanationSpec ExplanationSpec} that are used for explaining
81
+ # the predicted values on the evaluated data.
82
+ # @!attribute [rw] metadata
83
+ # @return [::Google::Protobuf::Value]
84
+ # The metadata of the ModelEvaluation.
85
+ # For the ModelEvaluation uploaded from Managed Pipeline, metadata contains a
86
+ # structured value with keys of "pipeline_job_id", "evaluation_dataset_type",
87
+ # "evaluation_dataset_path".
53
88
  class ModelEvaluation
54
89
  include ::Google::Protobuf::MessageExts
55
90
  extend ::Google::Protobuf::MessageExts::ClassMethods
91
+
92
+ # @!attribute [rw] explanation_type
93
+ # @return [::String]
94
+ # Explanation type.
95
+ #
96
+ # For AutoML Image Classification models, possible values are:
97
+ #
98
+ # * `image-integrated-gradients`
99
+ # * `image-xrai`
100
+ # @!attribute [rw] explanation_spec
101
+ # @return [::Google::Cloud::AIPlatform::V1::ExplanationSpec]
102
+ # Explanation spec details.
103
+ class ModelEvaluationExplanationSpec
104
+ include ::Google::Protobuf::MessageExts
105
+ extend ::Google::Protobuf::MessageExts::ClassMethods
106
+ end
56
107
  end
57
108
  end
58
109
  end
@@ -21,7 +21,7 @@ module Google
21
21
  module Cloud
22
22
  module AIPlatform
23
23
  module V1
24
- # Next ID: 6
24
+ # Next ID: 8
25
25
  # @!attribute [rw] training_dataset
26
26
  # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingDataset]
27
27
  # Training dataset for models. This field has to be set only if
@@ -129,6 +129,23 @@ module Google
129
129
  # @!attribute [rw] model
130
130
  # @return [::Google::Cloud::AIPlatform::V1::Model]
131
131
  # Required. The Model which replaces the resource on the server.
132
+ # When Model Versioning is enabled, the model.name will be used to determine
133
+ # whether to update the model or model version.
134
+ # 1. model.name with the @ value, e.g. models/123@1, refers to a version
135
+ # specific update.
136
+ # 2. model.name without the @ value, e.g. models/123, refers to a model
137
+ # update.
138
+ # 3. model.name with @-, e.g. models/123@-, refers to a model update.
139
+ # 4. Supported model fields: display_name, description; supported
140
+ # version-specific fields: version_description. Labels are supported in both
141
+ # scenarios. Both the model labels and the version labels are merged when a
142
+ # model is returned. When updating labels, if the request is for
143
+ # model-specific update, model label gets updated. Otherwise, version labels
144
+ # get updated.
145
+ # 5. A model name or model version name fields update mismatch will cause a
146
+ # precondition error.
147
+ # 6. One request cannot update both the model and the version fields. You
148
+ # must update them separately.
132
149
  # @!attribute [rw] update_mask
133
150
  # @return [::Google::Protobuf::FieldMask]
134
151
  # Required. The update mask applies to the resource.
@@ -222,6 +239,19 @@ module Google
222
239
  extend ::Google::Protobuf::MessageExts::ClassMethods
223
240
  end
224
241
 
242
+ # Request message for {::Google::Cloud::AIPlatform::V1::ModelService::Client#import_model_evaluation ModelService.ImportModelEvaluation}
243
+ # @!attribute [rw] parent
244
+ # @return [::String]
245
+ # Required. The name of the parent model resource.
246
+ # Format: `projects/{project}/locations/{location}/models/{model}`
247
+ # @!attribute [rw] model_evaluation
248
+ # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluation]
249
+ # Required. Model evaluation resource to be imported.
250
+ class ImportModelEvaluationRequest
251
+ include ::Google::Protobuf::MessageExts
252
+ extend ::Google::Protobuf::MessageExts::ClassMethods
253
+ end
254
+
225
255
  # Request message for {::Google::Cloud::AIPlatform::V1::ModelService::Client#get_model_evaluation ModelService.GetModelEvaluation}.
226
256
  # @!attribute [rw] name
227
257
  # @return [::String]
@@ -44,7 +44,7 @@ module Google
44
44
  # Output only. Timestamp when this PipelineJob was most recently updated.
45
45
  # @!attribute [rw] pipeline_spec
46
46
  # @return [::Google::Protobuf::Struct]
47
- # Required. The spec of the pipeline.
47
+ # The spec of the pipeline.
48
48
  # @!attribute [r] state
49
49
  # @return [::Google::Cloud::AIPlatform::V1::PipelineState]
50
50
  # Output only. The detailed state of the job.
@@ -175,6 +175,9 @@ module Google
175
175
  # * `end_time`: Supports `=`, `!=`, `<`, `>`, `<=`, and `>=` comparisons.
176
176
  # Values must be in RFC 3339 format.
177
177
  # * `labels`: Supports key-value equality and key presence.
178
+ # * `template_uri`: Supports `=`, `!=` comparisons, and `:` wildcard.
179
+ # * `template_metadata.version_name`: Supports `=`, `!=` comparisons, and `:`
180
+ # wildcard.
178
181
  #
179
182
  # Filter expressions can be combined together using logical operators
180
183
  # (`AND` & `OR`).
@@ -187,6 +187,9 @@ module Google
187
187
  # @!attribute [rw] median_automated_stopping_spec
188
188
  # @return [::Google::Cloud::AIPlatform::V1::StudySpec::MedianAutomatedStoppingSpec]
189
189
  # The automated early stopping spec using median rule.
190
+ # @!attribute [rw] convex_automated_stopping_spec
191
+ # @return [::Google::Cloud::AIPlatform::V1::StudySpec::ConvexAutomatedStoppingSpec]
192
+ # The automated early stopping spec using convex stopping rule.
190
193
  # @!attribute [rw] metrics
191
194
  # @return [::Array<::Google::Cloud::AIPlatform::V1::StudySpec::MetricSpec>]
192
195
  # Required. Metric specs for the Study.
@@ -448,6 +451,57 @@ module Google
448
451
  extend ::Google::Protobuf::MessageExts::ClassMethods
449
452
  end
450
453
 
454
+ # Configuration for ConvexAutomatedStoppingSpec.
455
+ # When there are enough completed trials (configured by
456
+ # min_measurement_count), for pending trials with enough measurements and
457
+ # steps, the policy first computes an overestimate of the objective value at
458
+ # max_num_steps according to the slope of the incomplete objective value
459
+ # curve. No prediction can be made if the curve is completely flat. If the
460
+ # overestimation is worse than the best objective value of the completed
461
+ # trials, this pending trial will be early-stopped, but a last measurement
462
+ # will be added to the pending trial with max_num_steps and predicted
463
+ # objective value from the autoregression model.
464
+ # @!attribute [rw] max_step_count
465
+ # @return [::Integer]
466
+ # Steps used in predicting the final objective for early stopped trials. In
467
+ # general, it's set to be the same as the defined steps in training /
468
+ # tuning. If not defined, it will learn it from the completed trials. When
469
+ # use_steps is false, this field is set to the maximum elapsed seconds.
470
+ # @!attribute [rw] min_step_count
471
+ # @return [::Integer]
472
+ # Minimum number of steps for a trial to complete. Trials which do not have
473
+ # a measurement with step_count > min_step_count won't be considered for
474
+ # early stopping. It's ok to set it to 0, and a trial can be early stopped
475
+ # at any stage. By default, min_step_count is set to be one-tenth of the
476
+ # max_step_count.
477
+ # When use_elapsed_duration is true, this field is set to the minimum
478
+ # elapsed seconds.
479
+ # @!attribute [rw] min_measurement_count
480
+ # @return [::Integer]
481
+ # The minimal number of measurements in a Trial. Early-stopping checks
482
+ # will not trigger if less than min_measurement_count+1 completed trials or
483
+ # pending trials with less than min_measurement_count measurements. If not
484
+ # defined, the default value is 5.
485
+ # @!attribute [rw] learning_rate_parameter_name
486
+ # @return [::String]
487
+ # The hyper-parameter name used in the tuning job that stands for learning
488
+ # rate. Leave it blank if learning rate is not in a parameter in tuning.
489
+ # The learning_rate is used to estimate the objective value of the ongoing
490
+ # trial.
491
+ # @!attribute [rw] use_elapsed_duration
492
+ # @return [::Boolean]
493
+ # This bool determines whether or not the rule is applied based on
494
+ # elapsed_secs or steps. If use_elapsed_duration==false, the early stopping
495
+ # decision is made according to the predicted objective values according to
496
+ # the target steps. If use_elapsed_duration==true, elapsed_secs is used
497
+ # instead of steps. Also, in this case, the parameters max_num_steps and
498
+ # min_num_steps are overloaded to contain max_elapsed_seconds and
499
+ # min_elapsed_seconds.
500
+ class ConvexAutomatedStoppingSpec
501
+ include ::Google::Protobuf::MessageExts
502
+ extend ::Google::Protobuf::MessageExts::ClassMethods
503
+ end
504
+
451
505
  # The available search algorithms for the Study.
452
506
  module Algorithm
453
507
  # The default algorithm used by Vertex AI for [hyperparameter