google-apis-spanner_v1 0.23.0 → 0.26.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -59,6 +59,15 @@ module Google
59
59
  # @return [String]
60
60
  attr_accessor :expire_time
61
61
 
62
+ # Output only. The max allowed expiration time of the backup, with microseconds
63
+ # granularity. A backup's expiration time can be configured in multiple APIs:
64
+ # CreateBackup, UpdateBackup, CopyBackup. When updating or copying an existing
65
+ # backup, the expiration time specified must be less than `Backup.
66
+ # max_expire_time`.
67
+ # Corresponds to the JSON property `maxExpireTime`
68
+ # @return [String]
69
+ attr_accessor :max_expire_time
70
+
62
71
  # Output only for the CreateBackup operation. Required for the UpdateBackup
63
72
  # operation. A globally unique identifier for the backup which cannot be changed.
64
73
  # Values are of the form `projects//instances//backups/a-z*[a-z0-9]` The final
@@ -70,6 +79,16 @@ module Google
70
79
  # @return [String]
71
80
  attr_accessor :name
72
81
 
82
+ # Output only. The names of the destination backups being created by copying
83
+ # this source backup. The backup names are of the form `projects//instances//
84
+ # backups/`. Referencing backups may exist in different instances. The existence
85
+ # of any referencing backup prevents the backup from being deleted. When the
86
+ # copy operation is done (either successfully completed or cancelled or the
87
+ # destination backup is deleted), the reference to the backup is removed.
88
+ # Corresponds to the JSON property `referencingBackups`
89
+ # @return [Array<String>]
90
+ attr_accessor :referencing_backups
91
+
73
92
  # Output only. The names of the restored databases that reference the backup.
74
93
  # The database names are of the form `projects//instances//databases/`.
75
94
  # Referencing databases may exist in different instances. The existence of any
@@ -108,7 +127,9 @@ module Google
108
127
  @database_dialect = args[:database_dialect] if args.key?(:database_dialect)
109
128
  @encryption_info = args[:encryption_info] if args.key?(:encryption_info)
110
129
  @expire_time = args[:expire_time] if args.key?(:expire_time)
130
+ @max_expire_time = args[:max_expire_time] if args.key?(:max_expire_time)
111
131
  @name = args[:name] if args.key?(:name)
132
+ @referencing_backups = args[:referencing_backups] if args.key?(:referencing_backups)
112
133
  @referencing_databases = args[:referencing_databases] if args.key?(:referencing_databases)
113
134
  @size_bytes = args[:size_bytes] if args.key?(:size_bytes)
114
135
  @state = args[:state] if args.key?(:state)
@@ -212,7 +233,7 @@ module Google
212
233
  # count towards the one transaction limit). After the active transaction is
213
234
  # completed, the session can immediately be re-used for the next transaction. It
214
235
  # is not necessary to create a new session for each transaction. Transaction
215
- # Modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
236
+ # modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
216
237
  # This type of transaction is the only way to write data into Cloud Spanner.
217
238
  # These transactions rely on pessimistic locking and, if necessary, two-phase
218
239
  # commit. Locking read-write transactions may abort, requiring the application
@@ -228,9 +249,9 @@ module Google
228
249
  # simpler semantics and are almost always faster. In particular, read-only
229
250
  # transactions do not take locks, so they do not conflict with read-write
230
251
  # transactions. As a consequence of not taking locks, they also do not abort, so
231
- # retry loops are not needed. Transactions may only read/write data in a single
232
- # database. They may, however, read/write data in different tables within that
233
- # database. Locking Read-Write Transactions: Locking transactions may be used to
252
+ # retry loops are not needed. Transactions may only read-write data in a single
253
+ # database. They may, however, read-write data in different tables within that
254
+ # database. Locking read-write transactions: Locking transactions may be used to
234
255
  # atomically read-modify-write data anywhere in a database. This type of
235
256
  # transaction is externally consistent. Clients should attempt to minimize the
236
257
  # amount of time a transaction is active. Faster transactions commit with higher
@@ -249,7 +270,7 @@ module Google
249
270
  # Cloud Spanner makes no guarantees about how long the transaction's locks were
250
271
  # held for. It is an error to use Cloud Spanner locks for any sort of mutual
251
272
  # exclusion other than between Cloud Spanner transactions themselves. Retrying
252
- # Aborted Transactions: When a transaction aborts, the application can choose to
273
+ # aborted transactions: When a transaction aborts, the application can choose to
253
274
  # retry the whole transaction again. To maximize the chances of successfully
254
275
  # committing the retry, the client should execute the retry in the same session
255
276
  # as the original attempt. The original session's lock priority increases with
@@ -258,14 +279,14 @@ module Google
258
279
  # transactions attempting to modify the same row(s)), a transaction can abort
259
280
  # many times in a short period before successfully committing. Thus, it is not a
260
281
  # good idea to cap the number of retries a transaction can attempt; instead, it
261
- # is better to limit the total amount of time spent retrying. Idle Transactions:
282
+ # is better to limit the total amount of time spent retrying. Idle transactions:
262
283
  # A transaction is considered idle if it has no outstanding reads or SQL queries
263
284
  # and has not started a read or SQL query within the last 10 seconds. Idle
264
285
  # transactions can be aborted by Cloud Spanner so that they don't hold on to
265
286
  # locks indefinitely. If an idle transaction is aborted, the commit will fail
266
287
  # with error `ABORTED`. If this behavior is undesirable, periodically executing
267
288
  # a simple SQL query in the transaction (for example, `SELECT 1`) prevents the
268
- # transaction from becoming idle. Snapshot Read-Only Transactions: Snapshot read-
289
+ # transaction from becoming idle. Snapshot read-only transactions: Snapshot read-
269
290
  # only transactions provides a simpler method than locking read-write
270
291
  # transactions for doing several consistent reads. However, this type of
271
292
  # transaction does not support writes. Snapshot transactions do not take locks.
@@ -281,7 +302,7 @@ module Google
281
302
  # how to choose a read timestamp. The types of timestamp bound are: - Strong (
282
303
  # the default). - Bounded staleness. - Exact staleness. If the Cloud Spanner
283
304
  # database to be read is geographically distributed, stale read-only
284
- # transactions can execute more quickly than strong or read-write transaction,
305
+ # transactions can execute more quickly than strong or read-write transactions,
285
306
  # because they are able to execute far from the leader replica. Each type of
286
307
  # timestamp bound is discussed in detail below. Strong: Strong reads are
287
308
  # guaranteed to see the effects of all transactions that have committed before
@@ -291,7 +312,7 @@ module Google
291
312
  # two consecutive strong read-only transactions might return inconsistent
292
313
  # results if there are concurrent writes. If consistency across reads is
293
314
  # required, the reads should be executed within a transaction or at an exact
294
- # read timestamp. See TransactionOptions.ReadOnly.strong. Exact Staleness: These
315
+ # read timestamp. See TransactionOptions.ReadOnly.strong. Exact staleness: These
295
316
  # timestamp bounds execute reads at a user-specified timestamp. Reads at a
296
317
  # timestamp are guaranteed to see a consistent prefix of the global transaction
297
318
  # history: they observe modifications done by all transactions with a commit
@@ -305,7 +326,7 @@ module Google
305
326
  # equivalent boundedly stale concurrency modes. On the other hand, boundedly
306
327
  # stale reads usually return fresher results. See TransactionOptions.ReadOnly.
307
328
  # read_timestamp and TransactionOptions.ReadOnly.exact_staleness. Bounded
308
- # Staleness: Bounded staleness modes allow Cloud Spanner to pick the read
329
+ # staleness: Bounded staleness modes allow Cloud Spanner to pick the read
309
330
  # timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
310
331
  # the newest timestamp within the staleness bound that allows execution of the
311
332
  # reads at the closest available replica without blocking. All rows yielded are
@@ -322,51 +343,54 @@ module Google
322
343
  # timestamp negotiation requires up-front knowledge of which rows will be read,
323
344
  # it can only be used with single-use read-only transactions. See
324
345
  # TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
325
- # min_read_timestamp. Old Read Timestamps and Garbage Collection: Cloud Spanner
346
+ # min_read_timestamp. Old read timestamps and garbage collection: Cloud Spanner
326
347
  # continuously garbage collects deleted and overwritten data in the background
327
348
  # to reclaim storage space. This process is known as "version GC". By default,
328
349
  # version GC reclaims versions after they are one hour old. Because of this,
329
350
  # Cloud Spanner cannot perform reads at read timestamps more than one hour in
330
351
  # the past. This restriction also applies to in-progress reads and/or SQL
331
352
  # queries whose timestamp become too old while executing. Reads and SQL queries
332
- # with too-old read timestamps fail with the error `FAILED_PRECONDITION`.
333
- # Partitioned DML Transactions: Partitioned DML transactions are used to execute
334
- # DML statements with a different execution strategy that provides different,
335
- # and often better, scalability properties for large, table-wide operations than
336
- # DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
337
- # workload, should prefer using ReadWrite transactions. Partitioned DML
338
- # partitions the keyspace and runs the DML statement on each partition in
339
- # separate, internal transactions. These transactions commit automatically when
340
- # complete, and run independently from one another. To reduce lock contention,
341
- # this execution strategy only acquires read locks on rows that match the WHERE
342
- # clause of the statement. Additionally, the smaller per-partition transactions
343
- # hold locks for less time. That said, Partitioned DML is not a drop-in
344
- # replacement for standard DML used in ReadWrite transactions. - The DML
345
- # statement must be fully-partitionable. Specifically, the statement must be
346
- # expressible as the union of many statements which each access only a single
347
- # row of the table. - The statement is not applied atomically to all rows of the
348
- # table. Rather, the statement is applied atomically to partitions of the table,
349
- # in independent transactions. Secondary index rows are updated atomically with
350
- # the base table rows. - Partitioned DML does not guarantee exactly-once
351
- # execution semantics against a partition. The statement will be applied at
352
- # least once to each partition. It is strongly recommended that the DML
353
- # statement should be idempotent to avoid unexpected results. For instance, it
354
- # is potentially dangerous to run a statement such as `UPDATE table SET column =
355
- # column + 1` as it could be run multiple times against some rows. - The
356
- # partitions are committed automatically - there is no support for Commit or
357
- # Rollback. If the call returns an error, or if the client issuing the
358
- # ExecuteSql call dies, it is possible that some rows had the statement executed
359
- # on them successfully. It is also possible that statement was never executed
360
- # against other rows. - Partitioned DML transactions may only contain the
361
- # execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
362
- # If any error is encountered during the execution of the partitioned DML
363
- # operation (for instance, a UNIQUE INDEX violation, division by zero, or a
364
- # value that cannot be stored due to schema constraints), then the operation is
365
- # stopped at that point and an error is returned. It is possible that at this
366
- # point, some partitions have been committed (or even committed multiple times),
367
- # and other partitions have not been run at all. Given the above, Partitioned
368
- # DML is good fit for large, database-wide, operations that are idempotent, such
369
- # as deleting old rows from a very large table.
353
+ # with too-old read timestamps fail with the error `FAILED_PRECONDITION`. You
354
+ # can configure and extend the `VERSION_RETENTION_PERIOD` of a database up to a
355
+ # period as long as one week, which allows Cloud Spanner to perform reads up to
356
+ # one week in the past. Partitioned DML transactions: Partitioned DML
357
+ # transactions are used to execute DML statements with a different execution
358
+ # strategy that provides different, and often better, scalability properties for
359
+ # large, table-wide operations than DML in a ReadWrite transaction. Smaller
360
+ # scoped statements, such as an OLTP workload, should prefer using ReadWrite
361
+ # transactions. Partitioned DML partitions the keyspace and runs the DML
362
+ # statement on each partition in separate, internal transactions. These
363
+ # transactions commit automatically when complete, and run independently from
364
+ # one another. To reduce lock contention, this execution strategy only acquires
365
+ # read locks on rows that match the WHERE clause of the statement. Additionally,
366
+ # the smaller per-partition transactions hold locks for less time. That said,
367
+ # Partitioned DML is not a drop-in replacement for standard DML used in
368
+ # ReadWrite transactions. - The DML statement must be fully-partitionable.
369
+ # Specifically, the statement must be expressible as the union of many
370
+ # statements which each access only a single row of the table. - The statement
371
+ # is not applied atomically to all rows of the table. Rather, the statement is
372
+ # applied atomically to partitions of the table, in independent transactions.
373
+ # Secondary index rows are updated atomically with the base table rows. -
374
+ # Partitioned DML does not guarantee exactly-once execution semantics against a
375
+ # partition. The statement will be applied at least once to each partition. It
376
+ # is strongly recommended that the DML statement should be idempotent to avoid
377
+ # unexpected results. For instance, it is potentially dangerous to run a
378
+ # statement such as `UPDATE table SET column = column + 1` as it could be run
379
+ # multiple times against some rows. - The partitions are committed automatically
380
+ # - there is no support for Commit or Rollback. If the call returns an error, or
381
+ # if the client issuing the ExecuteSql call dies, it is possible that some rows
382
+ # had the statement executed on them successfully. It is also possible that
383
+ # statement was never executed against other rows. - Partitioned DML
384
+ # transactions may only contain the execution of a single DML statement via
385
+ # ExecuteSql or ExecuteStreamingSql. - If any error is encountered during the
386
+ # execution of the partitioned DML operation (for instance, a UNIQUE INDEX
387
+ # violation, division by zero, or a value that cannot be stored due to schema
388
+ # constraints), then the operation is stopped at that point and an error is
389
+ # returned. It is possible that at this point, some partitions have been
390
+ # committed (or even committed multiple times), and other partitions have not
391
+ # been run at all. Given the above, Partitioned DML is good fit for large,
392
+ # database-wide, operations that are idempotent, such as deleting old rows from
393
+ # a very large table.
370
394
  # Corresponds to the JSON property `options`
371
395
  # @return [Google::Apis::SpannerV1::TransactionOptions]
372
396
  attr_accessor :options
@@ -524,7 +548,7 @@ module Google
524
548
  # count towards the one transaction limit). After the active transaction is
525
549
  # completed, the session can immediately be re-used for the next transaction. It
526
550
  # is not necessary to create a new session for each transaction. Transaction
527
- # Modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
551
+ # modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
528
552
  # This type of transaction is the only way to write data into Cloud Spanner.
529
553
  # These transactions rely on pessimistic locking and, if necessary, two-phase
530
554
  # commit. Locking read-write transactions may abort, requiring the application
@@ -540,9 +564,9 @@ module Google
540
564
  # simpler semantics and are almost always faster. In particular, read-only
541
565
  # transactions do not take locks, so they do not conflict with read-write
542
566
  # transactions. As a consequence of not taking locks, they also do not abort, so
543
- # retry loops are not needed. Transactions may only read/write data in a single
544
- # database. They may, however, read/write data in different tables within that
545
- # database. Locking Read-Write Transactions: Locking transactions may be used to
567
+ # retry loops are not needed. Transactions may only read-write data in a single
568
+ # database. They may, however, read-write data in different tables within that
569
+ # database. Locking read-write transactions: Locking transactions may be used to
546
570
  # atomically read-modify-write data anywhere in a database. This type of
547
571
  # transaction is externally consistent. Clients should attempt to minimize the
548
572
  # amount of time a transaction is active. Faster transactions commit with higher
@@ -561,7 +585,7 @@ module Google
561
585
  # Cloud Spanner makes no guarantees about how long the transaction's locks were
562
586
  # held for. It is an error to use Cloud Spanner locks for any sort of mutual
563
587
  # exclusion other than between Cloud Spanner transactions themselves. Retrying
564
- # Aborted Transactions: When a transaction aborts, the application can choose to
588
+ # aborted transactions: When a transaction aborts, the application can choose to
565
589
  # retry the whole transaction again. To maximize the chances of successfully
566
590
  # committing the retry, the client should execute the retry in the same session
567
591
  # as the original attempt. The original session's lock priority increases with
@@ -570,14 +594,14 @@ module Google
570
594
  # transactions attempting to modify the same row(s)), a transaction can abort
571
595
  # many times in a short period before successfully committing. Thus, it is not a
572
596
  # good idea to cap the number of retries a transaction can attempt; instead, it
573
- # is better to limit the total amount of time spent retrying. Idle Transactions:
597
+ # is better to limit the total amount of time spent retrying. Idle transactions:
574
598
  # A transaction is considered idle if it has no outstanding reads or SQL queries
575
599
  # and has not started a read or SQL query within the last 10 seconds. Idle
576
600
  # transactions can be aborted by Cloud Spanner so that they don't hold on to
577
601
  # locks indefinitely. If an idle transaction is aborted, the commit will fail
578
602
  # with error `ABORTED`. If this behavior is undesirable, periodically executing
579
603
  # a simple SQL query in the transaction (for example, `SELECT 1`) prevents the
580
- # transaction from becoming idle. Snapshot Read-Only Transactions: Snapshot read-
604
+ # transaction from becoming idle. Snapshot read-only transactions: Snapshot read-
581
605
  # only transactions provides a simpler method than locking read-write
582
606
  # transactions for doing several consistent reads. However, this type of
583
607
  # transaction does not support writes. Snapshot transactions do not take locks.
@@ -593,7 +617,7 @@ module Google
593
617
  # how to choose a read timestamp. The types of timestamp bound are: - Strong (
594
618
  # the default). - Bounded staleness. - Exact staleness. If the Cloud Spanner
595
619
  # database to be read is geographically distributed, stale read-only
596
- # transactions can execute more quickly than strong or read-write transaction,
620
+ # transactions can execute more quickly than strong or read-write transactions,
597
621
  # because they are able to execute far from the leader replica. Each type of
598
622
  # timestamp bound is discussed in detail below. Strong: Strong reads are
599
623
  # guaranteed to see the effects of all transactions that have committed before
@@ -603,7 +627,7 @@ module Google
603
627
  # two consecutive strong read-only transactions might return inconsistent
604
628
  # results if there are concurrent writes. If consistency across reads is
605
629
  # required, the reads should be executed within a transaction or at an exact
606
- # read timestamp. See TransactionOptions.ReadOnly.strong. Exact Staleness: These
630
+ # read timestamp. See TransactionOptions.ReadOnly.strong. Exact staleness: These
607
631
  # timestamp bounds execute reads at a user-specified timestamp. Reads at a
608
632
  # timestamp are guaranteed to see a consistent prefix of the global transaction
609
633
  # history: they observe modifications done by all transactions with a commit
@@ -617,7 +641,7 @@ module Google
617
641
  # equivalent boundedly stale concurrency modes. On the other hand, boundedly
618
642
  # stale reads usually return fresher results. See TransactionOptions.ReadOnly.
619
643
  # read_timestamp and TransactionOptions.ReadOnly.exact_staleness. Bounded
620
- # Staleness: Bounded staleness modes allow Cloud Spanner to pick the read
644
+ # staleness: Bounded staleness modes allow Cloud Spanner to pick the read
621
645
  # timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
622
646
  # the newest timestamp within the staleness bound that allows execution of the
623
647
  # reads at the closest available replica without blocking. All rows yielded are
@@ -634,51 +658,54 @@ module Google
634
658
  # timestamp negotiation requires up-front knowledge of which rows will be read,
635
659
  # it can only be used with single-use read-only transactions. See
636
660
  # TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
637
- # min_read_timestamp. Old Read Timestamps and Garbage Collection: Cloud Spanner
661
+ # min_read_timestamp. Old read timestamps and garbage collection: Cloud Spanner
638
662
  # continuously garbage collects deleted and overwritten data in the background
639
663
  # to reclaim storage space. This process is known as "version GC". By default,
640
664
  # version GC reclaims versions after they are one hour old. Because of this,
641
665
  # Cloud Spanner cannot perform reads at read timestamps more than one hour in
642
666
  # the past. This restriction also applies to in-progress reads and/or SQL
643
667
  # queries whose timestamp become too old while executing. Reads and SQL queries
644
- # with too-old read timestamps fail with the error `FAILED_PRECONDITION`.
645
- # Partitioned DML Transactions: Partitioned DML transactions are used to execute
646
- # DML statements with a different execution strategy that provides different,
647
- # and often better, scalability properties for large, table-wide operations than
648
- # DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
649
- # workload, should prefer using ReadWrite transactions. Partitioned DML
650
- # partitions the keyspace and runs the DML statement on each partition in
651
- # separate, internal transactions. These transactions commit automatically when
652
- # complete, and run independently from one another. To reduce lock contention,
653
- # this execution strategy only acquires read locks on rows that match the WHERE
654
- # clause of the statement. Additionally, the smaller per-partition transactions
655
- # hold locks for less time. That said, Partitioned DML is not a drop-in
656
- # replacement for standard DML used in ReadWrite transactions. - The DML
657
- # statement must be fully-partitionable. Specifically, the statement must be
658
- # expressible as the union of many statements which each access only a single
659
- # row of the table. - The statement is not applied atomically to all rows of the
660
- # table. Rather, the statement is applied atomically to partitions of the table,
661
- # in independent transactions. Secondary index rows are updated atomically with
662
- # the base table rows. - Partitioned DML does not guarantee exactly-once
663
- # execution semantics against a partition. The statement will be applied at
664
- # least once to each partition. It is strongly recommended that the DML
665
- # statement should be idempotent to avoid unexpected results. For instance, it
666
- # is potentially dangerous to run a statement such as `UPDATE table SET column =
667
- # column + 1` as it could be run multiple times against some rows. - The
668
- # partitions are committed automatically - there is no support for Commit or
669
- # Rollback. If the call returns an error, or if the client issuing the
670
- # ExecuteSql call dies, it is possible that some rows had the statement executed
671
- # on them successfully. It is also possible that statement was never executed
672
- # against other rows. - Partitioned DML transactions may only contain the
673
- # execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
674
- # If any error is encountered during the execution of the partitioned DML
675
- # operation (for instance, a UNIQUE INDEX violation, division by zero, or a
676
- # value that cannot be stored due to schema constraints), then the operation is
677
- # stopped at that point and an error is returned. It is possible that at this
678
- # point, some partitions have been committed (or even committed multiple times),
679
- # and other partitions have not been run at all. Given the above, Partitioned
680
- # DML is good fit for large, database-wide, operations that are idempotent, such
681
- # as deleting old rows from a very large table.
668
+ # with too-old read timestamps fail with the error `FAILED_PRECONDITION`. You
669
+ # can configure and extend the `VERSION_RETENTION_PERIOD` of a database up to a
670
+ # period as long as one week, which allows Cloud Spanner to perform reads up to
671
+ # one week in the past. Partitioned DML transactions: Partitioned DML
672
+ # transactions are used to execute DML statements with a different execution
673
+ # strategy that provides different, and often better, scalability properties for
674
+ # large, table-wide operations than DML in a ReadWrite transaction. Smaller
675
+ # scoped statements, such as an OLTP workload, should prefer using ReadWrite
676
+ # transactions. Partitioned DML partitions the keyspace and runs the DML
677
+ # statement on each partition in separate, internal transactions. These
678
+ # transactions commit automatically when complete, and run independently from
679
+ # one another. To reduce lock contention, this execution strategy only acquires
680
+ # read locks on rows that match the WHERE clause of the statement. Additionally,
681
+ # the smaller per-partition transactions hold locks for less time. That said,
682
+ # Partitioned DML is not a drop-in replacement for standard DML used in
683
+ # ReadWrite transactions. - The DML statement must be fully-partitionable.
684
+ # Specifically, the statement must be expressible as the union of many
685
+ # statements which each access only a single row of the table. - The statement
686
+ # is not applied atomically to all rows of the table. Rather, the statement is
687
+ # applied atomically to partitions of the table, in independent transactions.
688
+ # Secondary index rows are updated atomically with the base table rows. -
689
+ # Partitioned DML does not guarantee exactly-once execution semantics against a
690
+ # partition. The statement will be applied at least once to each partition. It
691
+ # is strongly recommended that the DML statement should be idempotent to avoid
692
+ # unexpected results. For instance, it is potentially dangerous to run a
693
+ # statement such as `UPDATE table SET column = column + 1` as it could be run
694
+ # multiple times against some rows. - The partitions are committed automatically
695
+ # - there is no support for Commit or Rollback. If the call returns an error, or
696
+ # if the client issuing the ExecuteSql call dies, it is possible that some rows
697
+ # had the statement executed on them successfully. It is also possible that
698
+ # statement was never executed against other rows. - Partitioned DML
699
+ # transactions may only contain the execution of a single DML statement via
700
+ # ExecuteSql or ExecuteStreamingSql. - If any error is encountered during the
701
+ # execution of the partitioned DML operation (for instance, a UNIQUE INDEX
702
+ # violation, division by zero, or a value that cannot be stored due to schema
703
+ # constraints), then the operation is stopped at that point and an error is
704
+ # returned. It is possible that at this point, some partitions have been
705
+ # committed (or even committed multiple times), and other partitions have not
706
+ # been run at all. Given the above, Partitioned DML is good fit for large,
707
+ # database-wide, operations that are idempotent, such as deleting old rows from
708
+ # a very large table.
682
709
  # Corresponds to the JSON property `singleUseTransaction`
683
710
  # @return [Google::Apis::SpannerV1::TransactionOptions]
684
711
  attr_accessor :single_use_transaction
@@ -793,6 +820,125 @@ module Google
793
820
  end
794
821
  end
795
822
 
823
+ # Encryption configuration for the copied backup.
824
+ class CopyBackupEncryptionConfig
825
+ include Google::Apis::Core::Hashable
826
+
827
+ # Required. The encryption type of the backup.
828
+ # Corresponds to the JSON property `encryptionType`
829
+ # @return [String]
830
+ attr_accessor :encryption_type
831
+
832
+ # Optional. The Cloud KMS key that will be used to protect the backup. This
833
+ # field should be set only when encryption_type is `CUSTOMER_MANAGED_ENCRYPTION`.
834
+ # Values are of the form `projects//locations//keyRings//cryptoKeys/`.
835
+ # Corresponds to the JSON property `kmsKeyName`
836
+ # @return [String]
837
+ attr_accessor :kms_key_name
838
+
839
+ def initialize(**args)
840
+ update!(**args)
841
+ end
842
+
843
+ # Update properties of this object
844
+ def update!(**args)
845
+ @encryption_type = args[:encryption_type] if args.key?(:encryption_type)
846
+ @kms_key_name = args[:kms_key_name] if args.key?(:kms_key_name)
847
+ end
848
+ end
849
+
850
+ # Metadata type for the google.longrunning.Operation returned by CopyBackup.
851
+ class CopyBackupMetadata
852
+ include Google::Apis::Core::Hashable
853
+
854
+ # The time at which cancellation of CopyBackup operation was received.
855
+ # Operations.CancelOperation starts asynchronous cancellation on a long-running
856
+ # operation. The server makes a best effort to cancel the operation, but success
857
+ # is not guaranteed. Clients can use Operations.GetOperation or other methods to
858
+ # check whether the cancellation succeeded or whether the operation completed
859
+ # despite cancellation. On successful cancellation, the operation is not deleted;
860
+ # instead, it becomes an operation with an Operation.error value with a google.
861
+ # rpc.Status.code of 1, corresponding to `Code.CANCELLED`.
862
+ # Corresponds to the JSON property `cancelTime`
863
+ # @return [String]
864
+ attr_accessor :cancel_time
865
+
866
+ # The name of the backup being created through the copy operation. Values are of
867
+ # the form `projects//instances//backups/`.
868
+ # Corresponds to the JSON property `name`
869
+ # @return [String]
870
+ attr_accessor :name
871
+
872
+ # Encapsulates progress related information for a Cloud Spanner long running
873
+ # operation.
874
+ # Corresponds to the JSON property `progress`
875
+ # @return [Google::Apis::SpannerV1::OperationProgress]
876
+ attr_accessor :progress
877
+
878
+ # The name of the source backup that is being copied. Values are of the form `
879
+ # projects//instances//backups/`.
880
+ # Corresponds to the JSON property `sourceBackup`
881
+ # @return [String]
882
+ attr_accessor :source_backup
883
+
884
+ def initialize(**args)
885
+ update!(**args)
886
+ end
887
+
888
+ # Update properties of this object
889
+ def update!(**args)
890
+ @cancel_time = args[:cancel_time] if args.key?(:cancel_time)
891
+ @name = args[:name] if args.key?(:name)
892
+ @progress = args[:progress] if args.key?(:progress)
893
+ @source_backup = args[:source_backup] if args.key?(:source_backup)
894
+ end
895
+ end
896
+
897
+ # The request for CopyBackup.
898
+ class CopyBackupRequest
899
+ include Google::Apis::Core::Hashable
900
+
901
+ # Required. The id of the backup copy. The `backup_id` appended to `parent`
902
+ # forms the full backup_uri of the form `projects//instances//backups/`.
903
+ # Corresponds to the JSON property `backupId`
904
+ # @return [String]
905
+ attr_accessor :backup_id
906
+
907
+ # Encryption configuration for the copied backup.
908
+ # Corresponds to the JSON property `encryptionConfig`
909
+ # @return [Google::Apis::SpannerV1::CopyBackupEncryptionConfig]
910
+ attr_accessor :encryption_config
911
+
912
+ # Required. The expiration time of the backup in microsecond granularity. The
913
+ # expiration time must be at least 6 hours and at most 366 days from the `
914
+ # create_time` of the source backup. Once the `expire_time` has passed, the
915
+ # backup is eligible to be automatically deleted by Cloud Spanner to free the
916
+ # resources used by the backup.
917
+ # Corresponds to the JSON property `expireTime`
918
+ # @return [String]
919
+ attr_accessor :expire_time
920
+
921
+ # Required. The source backup to be copied. The source backup needs to be in
922
+ # READY state for it to be copied. Once CopyBackup is in progress, the source
923
+ # backup cannot be deleted or cleaned up on expiration until CopyBackup is
924
+ # finished. Values are of the form: `projects//instances//backups/`.
925
+ # Corresponds to the JSON property `sourceBackup`
926
+ # @return [String]
927
+ attr_accessor :source_backup
928
+
929
+ def initialize(**args)
930
+ update!(**args)
931
+ end
932
+
933
+ # Update properties of this object
934
+ def update!(**args)
935
+ @backup_id = args[:backup_id] if args.key?(:backup_id)
936
+ @encryption_config = args[:encryption_config] if args.key?(:encryption_config)
937
+ @expire_time = args[:expire_time] if args.key?(:expire_time)
938
+ @source_backup = args[:source_backup] if args.key?(:source_backup)
939
+ end
940
+ end
941
+
796
942
  # Metadata type for the operation returned by CreateBackup.
797
943
  class CreateBackupMetadata
798
944
  include Google::Apis::Core::Hashable
@@ -1186,8 +1332,7 @@ module Google
1186
1332
  # A generic empty message that you can re-use to avoid defining duplicated empty
1187
1333
  # messages in your APIs. A typical example is to use it as the request or the
1188
1334
  # response type of an API method. For instance: service Foo ` rpc Bar(google.
1189
- # protobuf.Empty) returns (google.protobuf.Empty); ` The JSON representation for
1190
- # `Empty` is empty JSON object ````.
1335
+ # protobuf.Empty) returns (google.protobuf.Empty); `
1191
1336
  class Empty
1192
1337
  include Google::Apis::Core::Hashable
1193
1338
 
@@ -1657,6 +1802,11 @@ module Google
1657
1802
  # @return [String]
1658
1803
  attr_accessor :config
1659
1804
 
1805
+ # Output only. The time at which the instance was created.
1806
+ # Corresponds to the JSON property `createTime`
1807
+ # @return [String]
1808
+ attr_accessor :create_time
1809
+
1660
1810
  # Required. The descriptive name for this instance as it appears in UIs. Must be
1661
1811
  # unique per project and between 4 and 30 characters in length.
1662
1812
  # Corresponds to the JSON property `displayName`
@@ -1721,6 +1871,11 @@ module Google
1721
1871
  # @return [String]
1722
1872
  attr_accessor :state
1723
1873
 
1874
+ # Output only. The time at which the instance was most recently updated.
1875
+ # Corresponds to the JSON property `updateTime`
1876
+ # @return [String]
1877
+ attr_accessor :update_time
1878
+
1724
1879
  def initialize(**args)
1725
1880
  update!(**args)
1726
1881
  end
@@ -1728,6 +1883,7 @@ module Google
1728
1883
  # Update properties of this object
1729
1884
  def update!(**args)
1730
1885
  @config = args[:config] if args.key?(:config)
1886
+ @create_time = args[:create_time] if args.key?(:create_time)
1731
1887
  @display_name = args[:display_name] if args.key?(:display_name)
1732
1888
  @endpoint_uris = args[:endpoint_uris] if args.key?(:endpoint_uris)
1733
1889
  @labels = args[:labels] if args.key?(:labels)
@@ -1735,6 +1891,7 @@ module Google
1735
1891
  @node_count = args[:node_count] if args.key?(:node_count)
1736
1892
  @processing_units = args[:processing_units] if args.key?(:processing_units)
1737
1893
  @state = args[:state] if args.key?(:state)
1894
+ @update_time = args[:update_time] if args.key?(:update_time)
1738
1895
  end
1739
1896
  end
1740
1897
 
@@ -4044,7 +4201,7 @@ module Google
4044
4201
  # count towards the one transaction limit). After the active transaction is
4045
4202
  # completed, the session can immediately be re-used for the next transaction. It
4046
4203
  # is not necessary to create a new session for each transaction. Transaction
4047
- # Modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4204
+ # modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4048
4205
  # This type of transaction is the only way to write data into Cloud Spanner.
4049
4206
  # These transactions rely on pessimistic locking and, if necessary, two-phase
4050
4207
  # commit. Locking read-write transactions may abort, requiring the application
@@ -4060,9 +4217,9 @@ module Google
4060
4217
  # simpler semantics and are almost always faster. In particular, read-only
4061
4218
  # transactions do not take locks, so they do not conflict with read-write
4062
4219
  # transactions. As a consequence of not taking locks, they also do not abort, so
4063
- # retry loops are not needed. Transactions may only read/write data in a single
4064
- # database. They may, however, read/write data in different tables within that
4065
- # database. Locking Read-Write Transactions: Locking transactions may be used to
4220
+ # retry loops are not needed. Transactions may only read-write data in a single
4221
+ # database. They may, however, read-write data in different tables within that
4222
+ # database. Locking read-write transactions: Locking transactions may be used to
4066
4223
  # atomically read-modify-write data anywhere in a database. This type of
4067
4224
  # transaction is externally consistent. Clients should attempt to minimize the
4068
4225
  # amount of time a transaction is active. Faster transactions commit with higher
@@ -4081,7 +4238,7 @@ module Google
4081
4238
  # Cloud Spanner makes no guarantees about how long the transaction's locks were
4082
4239
  # held for. It is an error to use Cloud Spanner locks for any sort of mutual
4083
4240
  # exclusion other than between Cloud Spanner transactions themselves. Retrying
4084
- # Aborted Transactions: When a transaction aborts, the application can choose to
4241
+ # aborted transactions: When a transaction aborts, the application can choose to
4085
4242
  # retry the whole transaction again. To maximize the chances of successfully
4086
4243
  # committing the retry, the client should execute the retry in the same session
4087
4244
  # as the original attempt. The original session's lock priority increases with
@@ -4090,14 +4247,14 @@ module Google
4090
4247
  # transactions attempting to modify the same row(s)), a transaction can abort
4091
4248
  # many times in a short period before successfully committing. Thus, it is not a
4092
4249
  # good idea to cap the number of retries a transaction can attempt; instead, it
4093
- # is better to limit the total amount of time spent retrying. Idle Transactions:
4250
+ # is better to limit the total amount of time spent retrying. Idle transactions:
4094
4251
  # A transaction is considered idle if it has no outstanding reads or SQL queries
4095
4252
  # and has not started a read or SQL query within the last 10 seconds. Idle
4096
4253
  # transactions can be aborted by Cloud Spanner so that they don't hold on to
4097
4254
  # locks indefinitely. If an idle transaction is aborted, the commit will fail
4098
4255
  # with error `ABORTED`. If this behavior is undesirable, periodically executing
4099
4256
  # a simple SQL query in the transaction (for example, `SELECT 1`) prevents the
4100
- # transaction from becoming idle. Snapshot Read-Only Transactions: Snapshot read-
4257
+ # transaction from becoming idle. Snapshot read-only transactions: Snapshot read-
4101
4258
  # only transactions provides a simpler method than locking read-write
4102
4259
  # transactions for doing several consistent reads. However, this type of
4103
4260
  # transaction does not support writes. Snapshot transactions do not take locks.
@@ -4113,7 +4270,7 @@ module Google
4113
4270
  # how to choose a read timestamp. The types of timestamp bound are: - Strong (
4114
4271
  # the default). - Bounded staleness. - Exact staleness. If the Cloud Spanner
4115
4272
  # database to be read is geographically distributed, stale read-only
4116
- # transactions can execute more quickly than strong or read-write transaction,
4273
+ # transactions can execute more quickly than strong or read-write transactions,
4117
4274
  # because they are able to execute far from the leader replica. Each type of
4118
4275
  # timestamp bound is discussed in detail below. Strong: Strong reads are
4119
4276
  # guaranteed to see the effects of all transactions that have committed before
@@ -4123,7 +4280,7 @@ module Google
4123
4280
  # two consecutive strong read-only transactions might return inconsistent
4124
4281
  # results if there are concurrent writes. If consistency across reads is
4125
4282
  # required, the reads should be executed within a transaction or at an exact
4126
- # read timestamp. See TransactionOptions.ReadOnly.strong. Exact Staleness: These
4283
+ # read timestamp. See TransactionOptions.ReadOnly.strong. Exact staleness: These
4127
4284
  # timestamp bounds execute reads at a user-specified timestamp. Reads at a
4128
4285
  # timestamp are guaranteed to see a consistent prefix of the global transaction
4129
4286
  # history: they observe modifications done by all transactions with a commit
@@ -4137,7 +4294,7 @@ module Google
4137
4294
  # equivalent boundedly stale concurrency modes. On the other hand, boundedly
4138
4295
  # stale reads usually return fresher results. See TransactionOptions.ReadOnly.
4139
4296
  # read_timestamp and TransactionOptions.ReadOnly.exact_staleness. Bounded
4140
- # Staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4297
+ # staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4141
4298
  # timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
4142
4299
  # the newest timestamp within the staleness bound that allows execution of the
4143
4300
  # reads at the closest available replica without blocking. All rows yielded are
@@ -4154,51 +4311,54 @@ module Google
4154
4311
  # timestamp negotiation requires up-front knowledge of which rows will be read,
4155
4312
  # it can only be used with single-use read-only transactions. See
4156
4313
  # TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
4157
- # min_read_timestamp. Old Read Timestamps and Garbage Collection: Cloud Spanner
4314
+ # min_read_timestamp. Old read timestamps and garbage collection: Cloud Spanner
4158
4315
  # continuously garbage collects deleted and overwritten data in the background
4159
4316
  # to reclaim storage space. This process is known as "version GC". By default,
4160
4317
  # version GC reclaims versions after they are one hour old. Because of this,
4161
4318
  # Cloud Spanner cannot perform reads at read timestamps more than one hour in
4162
4319
  # the past. This restriction also applies to in-progress reads and/or SQL
4163
4320
  # queries whose timestamp become too old while executing. Reads and SQL queries
4164
- # with too-old read timestamps fail with the error `FAILED_PRECONDITION`.
4165
- # Partitioned DML Transactions: Partitioned DML transactions are used to execute
4166
- # DML statements with a different execution strategy that provides different,
4167
- # and often better, scalability properties for large, table-wide operations than
4168
- # DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
4169
- # workload, should prefer using ReadWrite transactions. Partitioned DML
4170
- # partitions the keyspace and runs the DML statement on each partition in
4171
- # separate, internal transactions. These transactions commit automatically when
4172
- # complete, and run independently from one another. To reduce lock contention,
4173
- # this execution strategy only acquires read locks on rows that match the WHERE
4174
- # clause of the statement. Additionally, the smaller per-partition transactions
4175
- # hold locks for less time. That said, Partitioned DML is not a drop-in
4176
- # replacement for standard DML used in ReadWrite transactions. - The DML
4177
- # statement must be fully-partitionable. Specifically, the statement must be
4178
- # expressible as the union of many statements which each access only a single
4179
- # row of the table. - The statement is not applied atomically to all rows of the
4180
- # table. Rather, the statement is applied atomically to partitions of the table,
4181
- # in independent transactions. Secondary index rows are updated atomically with
4182
- # the base table rows. - Partitioned DML does not guarantee exactly-once
4183
- # execution semantics against a partition. The statement will be applied at
4184
- # least once to each partition. It is strongly recommended that the DML
4185
- # statement should be idempotent to avoid unexpected results. For instance, it
4186
- # is potentially dangerous to run a statement such as `UPDATE table SET column =
4187
- # column + 1` as it could be run multiple times against some rows. - The
4188
- # partitions are committed automatically - there is no support for Commit or
4189
- # Rollback. If the call returns an error, or if the client issuing the
4190
- # ExecuteSql call dies, it is possible that some rows had the statement executed
4191
- # on them successfully. It is also possible that statement was never executed
4192
- # against other rows. - Partitioned DML transactions may only contain the
4193
- # execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
4194
- # If any error is encountered during the execution of the partitioned DML
4195
- # operation (for instance, a UNIQUE INDEX violation, division by zero, or a
4196
- # value that cannot be stored due to schema constraints), then the operation is
4197
- # stopped at that point and an error is returned. It is possible that at this
4198
- # point, some partitions have been committed (or even committed multiple times),
4199
- # and other partitions have not been run at all. Given the above, Partitioned
4200
- # DML is good fit for large, database-wide, operations that are idempotent, such
4201
- # as deleting old rows from a very large table.
4321
+ # with too-old read timestamps fail with the error `FAILED_PRECONDITION`. You
4322
+ # can configure and extend the `VERSION_RETENTION_PERIOD` of a database up to a
4323
+ # period as long as one week, which allows Cloud Spanner to perform reads up to
4324
+ # one week in the past. Partitioned DML transactions: Partitioned DML
4325
+ # transactions are used to execute DML statements with a different execution
4326
+ # strategy that provides different, and often better, scalability properties for
4327
+ # large, table-wide operations than DML in a ReadWrite transaction. Smaller
4328
+ # scoped statements, such as an OLTP workload, should prefer using ReadWrite
4329
+ # transactions. Partitioned DML partitions the keyspace and runs the DML
4330
+ # statement on each partition in separate, internal transactions. These
4331
+ # transactions commit automatically when complete, and run independently from
4332
+ # one another. To reduce lock contention, this execution strategy only acquires
4333
+ # read locks on rows that match the WHERE clause of the statement. Additionally,
4334
+ # the smaller per-partition transactions hold locks for less time. That said,
4335
+ # Partitioned DML is not a drop-in replacement for standard DML used in
4336
+ # ReadWrite transactions. - The DML statement must be fully-partitionable.
4337
+ # Specifically, the statement must be expressible as the union of many
4338
+ # statements which each access only a single row of the table. - The statement
4339
+ # is not applied atomically to all rows of the table. Rather, the statement is
4340
+ # applied atomically to partitions of the table, in independent transactions.
4341
+ # Secondary index rows are updated atomically with the base table rows. -
4342
+ # Partitioned DML does not guarantee exactly-once execution semantics against a
4343
+ # partition. The statement will be applied at least once to each partition. It
4344
+ # is strongly recommended that the DML statement should be idempotent to avoid
4345
+ # unexpected results. For instance, it is potentially dangerous to run a
4346
+ # statement such as `UPDATE table SET column = column + 1` as it could be run
4347
+ # multiple times against some rows. - The partitions are committed automatically
4348
+ # - there is no support for Commit or Rollback. If the call returns an error, or
4349
+ # if the client issuing the ExecuteSql call dies, it is possible that some rows
4350
+ # had the statement executed on them successfully. It is also possible that
4351
+ # statement was never executed against other rows. - Partitioned DML
4352
+ # transactions may only contain the execution of a single DML statement via
4353
+ # ExecuteSql or ExecuteStreamingSql. - If any error is encountered during the
4354
+ # execution of the partitioned DML operation (for instance, a UNIQUE INDEX
4355
+ # violation, division by zero, or a value that cannot be stored due to schema
4356
+ # constraints), then the operation is stopped at that point and an error is
4357
+ # returned. It is possible that at this point, some partitions have been
4358
+ # committed (or even committed multiple times), and other partitions have not
4359
+ # been run at all. Given the above, Partitioned DML is good fit for large,
4360
+ # database-wide, operations that are idempotent, such as deleting old rows from
4361
+ # a very large table.
4202
4362
  class TransactionOptions
4203
4363
  include Google::Apis::Core::Hashable
4204
4364
 
@@ -4240,7 +4400,7 @@ module Google
4240
4400
  # count towards the one transaction limit). After the active transaction is
4241
4401
  # completed, the session can immediately be re-used for the next transaction. It
4242
4402
  # is not necessary to create a new session for each transaction. Transaction
4243
- # Modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4403
+ # modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4244
4404
  # This type of transaction is the only way to write data into Cloud Spanner.
4245
4405
  # These transactions rely on pessimistic locking and, if necessary, two-phase
4246
4406
  # commit. Locking read-write transactions may abort, requiring the application
@@ -4256,9 +4416,9 @@ module Google
4256
4416
  # simpler semantics and are almost always faster. In particular, read-only
4257
4417
  # transactions do not take locks, so they do not conflict with read-write
4258
4418
  # transactions. As a consequence of not taking locks, they also do not abort, so
4259
- # retry loops are not needed. Transactions may only read/write data in a single
4260
- # database. They may, however, read/write data in different tables within that
4261
- # database. Locking Read-Write Transactions: Locking transactions may be used to
4419
+ # retry loops are not needed. Transactions may only read-write data in a single
4420
+ # database. They may, however, read-write data in different tables within that
4421
+ # database. Locking read-write transactions: Locking transactions may be used to
4262
4422
  # atomically read-modify-write data anywhere in a database. This type of
4263
4423
  # transaction is externally consistent. Clients should attempt to minimize the
4264
4424
  # amount of time a transaction is active. Faster transactions commit with higher
@@ -4277,7 +4437,7 @@ module Google
4277
4437
  # Cloud Spanner makes no guarantees about how long the transaction's locks were
4278
4438
  # held for. It is an error to use Cloud Spanner locks for any sort of mutual
4279
4439
  # exclusion other than between Cloud Spanner transactions themselves. Retrying
4280
- # Aborted Transactions: When a transaction aborts, the application can choose to
4440
+ # aborted transactions: When a transaction aborts, the application can choose to
4281
4441
  # retry the whole transaction again. To maximize the chances of successfully
4282
4442
  # committing the retry, the client should execute the retry in the same session
4283
4443
  # as the original attempt. The original session's lock priority increases with
@@ -4286,14 +4446,14 @@ module Google
4286
4446
  # transactions attempting to modify the same row(s)), a transaction can abort
4287
4447
  # many times in a short period before successfully committing. Thus, it is not a
4288
4448
  # good idea to cap the number of retries a transaction can attempt; instead, it
4289
- # is better to limit the total amount of time spent retrying. Idle Transactions:
4449
+ # is better to limit the total amount of time spent retrying. Idle transactions:
4290
4450
  # A transaction is considered idle if it has no outstanding reads or SQL queries
4291
4451
  # and has not started a read or SQL query within the last 10 seconds. Idle
4292
4452
  # transactions can be aborted by Cloud Spanner so that they don't hold on to
4293
4453
  # locks indefinitely. If an idle transaction is aborted, the commit will fail
4294
4454
  # with error `ABORTED`. If this behavior is undesirable, periodically executing
4295
4455
  # a simple SQL query in the transaction (for example, `SELECT 1`) prevents the
4296
- # transaction from becoming idle. Snapshot Read-Only Transactions: Snapshot read-
4456
+ # transaction from becoming idle. Snapshot read-only transactions: Snapshot read-
4297
4457
  # only transactions provides a simpler method than locking read-write
4298
4458
  # transactions for doing several consistent reads. However, this type of
4299
4459
  # transaction does not support writes. Snapshot transactions do not take locks.
@@ -4309,7 +4469,7 @@ module Google
4309
4469
  # how to choose a read timestamp. The types of timestamp bound are: - Strong (
4310
4470
  # the default). - Bounded staleness. - Exact staleness. If the Cloud Spanner
4311
4471
  # database to be read is geographically distributed, stale read-only
4312
- # transactions can execute more quickly than strong or read-write transaction,
4472
+ # transactions can execute more quickly than strong or read-write transactions,
4313
4473
  # because they are able to execute far from the leader replica. Each type of
4314
4474
  # timestamp bound is discussed in detail below. Strong: Strong reads are
4315
4475
  # guaranteed to see the effects of all transactions that have committed before
@@ -4319,7 +4479,7 @@ module Google
4319
4479
  # two consecutive strong read-only transactions might return inconsistent
4320
4480
  # results if there are concurrent writes. If consistency across reads is
4321
4481
  # required, the reads should be executed within a transaction or at an exact
4322
- # read timestamp. See TransactionOptions.ReadOnly.strong. Exact Staleness: These
4482
+ # read timestamp. See TransactionOptions.ReadOnly.strong. Exact staleness: These
4323
4483
  # timestamp bounds execute reads at a user-specified timestamp. Reads at a
4324
4484
  # timestamp are guaranteed to see a consistent prefix of the global transaction
4325
4485
  # history: they observe modifications done by all transactions with a commit
@@ -4333,7 +4493,7 @@ module Google
4333
4493
  # equivalent boundedly stale concurrency modes. On the other hand, boundedly
4334
4494
  # stale reads usually return fresher results. See TransactionOptions.ReadOnly.
4335
4495
  # read_timestamp and TransactionOptions.ReadOnly.exact_staleness. Bounded
4336
- # Staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4496
+ # staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4337
4497
  # timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
4338
4498
  # the newest timestamp within the staleness bound that allows execution of the
4339
4499
  # reads at the closest available replica without blocking. All rows yielded are
@@ -4350,51 +4510,54 @@ module Google
4350
4510
  # timestamp negotiation requires up-front knowledge of which rows will be read,
4351
4511
  # it can only be used with single-use read-only transactions. See
4352
4512
  # TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
4353
- # min_read_timestamp. Old Read Timestamps and Garbage Collection: Cloud Spanner
4513
+ # min_read_timestamp. Old read timestamps and garbage collection: Cloud Spanner
4354
4514
  # continuously garbage collects deleted and overwritten data in the background
4355
4515
  # to reclaim storage space. This process is known as "version GC". By default,
4356
4516
  # version GC reclaims versions after they are one hour old. Because of this,
4357
4517
  # Cloud Spanner cannot perform reads at read timestamps more than one hour in
4358
4518
  # the past. This restriction also applies to in-progress reads and/or SQL
4359
4519
  # queries whose timestamp become too old while executing. Reads and SQL queries
4360
- # with too-old read timestamps fail with the error `FAILED_PRECONDITION`.
4361
- # Partitioned DML Transactions: Partitioned DML transactions are used to execute
4362
- # DML statements with a different execution strategy that provides different,
4363
- # and often better, scalability properties for large, table-wide operations than
4364
- # DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
4365
- # workload, should prefer using ReadWrite transactions. Partitioned DML
4366
- # partitions the keyspace and runs the DML statement on each partition in
4367
- # separate, internal transactions. These transactions commit automatically when
4368
- # complete, and run independently from one another. To reduce lock contention,
4369
- # this execution strategy only acquires read locks on rows that match the WHERE
4370
- # clause of the statement. Additionally, the smaller per-partition transactions
4371
- # hold locks for less time. That said, Partitioned DML is not a drop-in
4372
- # replacement for standard DML used in ReadWrite transactions. - The DML
4373
- # statement must be fully-partitionable. Specifically, the statement must be
4374
- # expressible as the union of many statements which each access only a single
4375
- # row of the table. - The statement is not applied atomically to all rows of the
4376
- # table. Rather, the statement is applied atomically to partitions of the table,
4377
- # in independent transactions. Secondary index rows are updated atomically with
4378
- # the base table rows. - Partitioned DML does not guarantee exactly-once
4379
- # execution semantics against a partition. The statement will be applied at
4380
- # least once to each partition. It is strongly recommended that the DML
4381
- # statement should be idempotent to avoid unexpected results. For instance, it
4382
- # is potentially dangerous to run a statement such as `UPDATE table SET column =
4383
- # column + 1` as it could be run multiple times against some rows. - The
4384
- # partitions are committed automatically - there is no support for Commit or
4385
- # Rollback. If the call returns an error, or if the client issuing the
4386
- # ExecuteSql call dies, it is possible that some rows had the statement executed
4387
- # on them successfully. It is also possible that statement was never executed
4388
- # against other rows. - Partitioned DML transactions may only contain the
4389
- # execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
4390
- # If any error is encountered during the execution of the partitioned DML
4391
- # operation (for instance, a UNIQUE INDEX violation, division by zero, or a
4392
- # value that cannot be stored due to schema constraints), then the operation is
4393
- # stopped at that point and an error is returned. It is possible that at this
4394
- # point, some partitions have been committed (or even committed multiple times),
4395
- # and other partitions have not been run at all. Given the above, Partitioned
4396
- # DML is good fit for large, database-wide, operations that are idempotent, such
4397
- # as deleting old rows from a very large table.
4520
+ # with too-old read timestamps fail with the error `FAILED_PRECONDITION`. You
4521
+ # can configure and extend the `VERSION_RETENTION_PERIOD` of a database up to a
4522
+ # period as long as one week, which allows Cloud Spanner to perform reads up to
4523
+ # one week in the past. Partitioned DML transactions: Partitioned DML
4524
+ # transactions are used to execute DML statements with a different execution
4525
+ # strategy that provides different, and often better, scalability properties for
4526
+ # large, table-wide operations than DML in a ReadWrite transaction. Smaller
4527
+ # scoped statements, such as an OLTP workload, should prefer using ReadWrite
4528
+ # transactions. Partitioned DML partitions the keyspace and runs the DML
4529
+ # statement on each partition in separate, internal transactions. These
4530
+ # transactions commit automatically when complete, and run independently from
4531
+ # one another. To reduce lock contention, this execution strategy only acquires
4532
+ # read locks on rows that match the WHERE clause of the statement. Additionally,
4533
+ # the smaller per-partition transactions hold locks for less time. That said,
4534
+ # Partitioned DML is not a drop-in replacement for standard DML used in
4535
+ # ReadWrite transactions. - The DML statement must be fully-partitionable.
4536
+ # Specifically, the statement must be expressible as the union of many
4537
+ # statements which each access only a single row of the table. - The statement
4538
+ # is not applied atomically to all rows of the table. Rather, the statement is
4539
+ # applied atomically to partitions of the table, in independent transactions.
4540
+ # Secondary index rows are updated atomically with the base table rows. -
4541
+ # Partitioned DML does not guarantee exactly-once execution semantics against a
4542
+ # partition. The statement will be applied at least once to each partition. It
4543
+ # is strongly recommended that the DML statement should be idempotent to avoid
4544
+ # unexpected results. For instance, it is potentially dangerous to run a
4545
+ # statement such as `UPDATE table SET column = column + 1` as it could be run
4546
+ # multiple times against some rows. - The partitions are committed automatically
4547
+ # - there is no support for Commit or Rollback. If the call returns an error, or
4548
+ # if the client issuing the ExecuteSql call dies, it is possible that some rows
4549
+ # had the statement executed on them successfully. It is also possible that
4550
+ # statement was never executed against other rows. - Partitioned DML
4551
+ # transactions may only contain the execution of a single DML statement via
4552
+ # ExecuteSql or ExecuteStreamingSql. - If any error is encountered during the
4553
+ # execution of the partitioned DML operation (for instance, a UNIQUE INDEX
4554
+ # violation, division by zero, or a value that cannot be stored due to schema
4555
+ # constraints), then the operation is stopped at that point and an error is
4556
+ # returned. It is possible that at this point, some partitions have been
4557
+ # committed (or even committed multiple times), and other partitions have not
4558
+ # been run at all. Given the above, Partitioned DML is good fit for large,
4559
+ # database-wide, operations that are idempotent, such as deleting old rows from
4560
+ # a very large table.
4398
4561
  # Corresponds to the JSON property `begin`
4399
4562
  # @return [Google::Apis::SpannerV1::TransactionOptions]
4400
4563
  attr_accessor :begin
@@ -4410,7 +4573,7 @@ module Google
4410
4573
  # count towards the one transaction limit). After the active transaction is
4411
4574
  # completed, the session can immediately be re-used for the next transaction. It
4412
4575
  # is not necessary to create a new session for each transaction. Transaction
4413
- # Modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4576
+ # modes: Cloud Spanner supports three transaction modes: 1. Locking read-write.
4414
4577
  # This type of transaction is the only way to write data into Cloud Spanner.
4415
4578
  # These transactions rely on pessimistic locking and, if necessary, two-phase
4416
4579
  # commit. Locking read-write transactions may abort, requiring the application
@@ -4426,9 +4589,9 @@ module Google
4426
4589
  # simpler semantics and are almost always faster. In particular, read-only
4427
4590
  # transactions do not take locks, so they do not conflict with read-write
4428
4591
  # transactions. As a consequence of not taking locks, they also do not abort, so
4429
- # retry loops are not needed. Transactions may only read/write data in a single
4430
- # database. They may, however, read/write data in different tables within that
4431
- # database. Locking Read-Write Transactions: Locking transactions may be used to
4592
+ # retry loops are not needed. Transactions may only read-write data in a single
4593
+ # database. They may, however, read-write data in different tables within that
4594
+ # database. Locking read-write transactions: Locking transactions may be used to
4432
4595
  # atomically read-modify-write data anywhere in a database. This type of
4433
4596
  # transaction is externally consistent. Clients should attempt to minimize the
4434
4597
  # amount of time a transaction is active. Faster transactions commit with higher
@@ -4447,7 +4610,7 @@ module Google
4447
4610
  # Cloud Spanner makes no guarantees about how long the transaction's locks were
4448
4611
  # held for. It is an error to use Cloud Spanner locks for any sort of mutual
4449
4612
  # exclusion other than between Cloud Spanner transactions themselves. Retrying
4450
- # Aborted Transactions: When a transaction aborts, the application can choose to
4613
+ # aborted transactions: When a transaction aborts, the application can choose to
4451
4614
  # retry the whole transaction again. To maximize the chances of successfully
4452
4615
  # committing the retry, the client should execute the retry in the same session
4453
4616
  # as the original attempt. The original session's lock priority increases with
@@ -4456,14 +4619,14 @@ module Google
4456
4619
  # transactions attempting to modify the same row(s)), a transaction can abort
4457
4620
  # many times in a short period before successfully committing. Thus, it is not a
4458
4621
  # good idea to cap the number of retries a transaction can attempt; instead, it
4459
- # is better to limit the total amount of time spent retrying. Idle Transactions:
4622
+ # is better to limit the total amount of time spent retrying. Idle transactions:
4460
4623
  # A transaction is considered idle if it has no outstanding reads or SQL queries
4461
4624
  # and has not started a read or SQL query within the last 10 seconds. Idle
4462
4625
  # transactions can be aborted by Cloud Spanner so that they don't hold on to
4463
4626
  # locks indefinitely. If an idle transaction is aborted, the commit will fail
4464
4627
  # with error `ABORTED`. If this behavior is undesirable, periodically executing
4465
4628
  # a simple SQL query in the transaction (for example, `SELECT 1`) prevents the
4466
- # transaction from becoming idle. Snapshot Read-Only Transactions: Snapshot read-
4629
+ # transaction from becoming idle. Snapshot read-only transactions: Snapshot read-
4467
4630
  # only transactions provides a simpler method than locking read-write
4468
4631
  # transactions for doing several consistent reads. However, this type of
4469
4632
  # transaction does not support writes. Snapshot transactions do not take locks.
@@ -4479,7 +4642,7 @@ module Google
4479
4642
  # how to choose a read timestamp. The types of timestamp bound are: - Strong (
4480
4643
  # the default). - Bounded staleness. - Exact staleness. If the Cloud Spanner
4481
4644
  # database to be read is geographically distributed, stale read-only
4482
- # transactions can execute more quickly than strong or read-write transaction,
4645
+ # transactions can execute more quickly than strong or read-write transactions,
4483
4646
  # because they are able to execute far from the leader replica. Each type of
4484
4647
  # timestamp bound is discussed in detail below. Strong: Strong reads are
4485
4648
  # guaranteed to see the effects of all transactions that have committed before
@@ -4489,7 +4652,7 @@ module Google
4489
4652
  # two consecutive strong read-only transactions might return inconsistent
4490
4653
  # results if there are concurrent writes. If consistency across reads is
4491
4654
  # required, the reads should be executed within a transaction or at an exact
4492
- # read timestamp. See TransactionOptions.ReadOnly.strong. Exact Staleness: These
4655
+ # read timestamp. See TransactionOptions.ReadOnly.strong. Exact staleness: These
4493
4656
  # timestamp bounds execute reads at a user-specified timestamp. Reads at a
4494
4657
  # timestamp are guaranteed to see a consistent prefix of the global transaction
4495
4658
  # history: they observe modifications done by all transactions with a commit
@@ -4503,7 +4666,7 @@ module Google
4503
4666
  # equivalent boundedly stale concurrency modes. On the other hand, boundedly
4504
4667
  # stale reads usually return fresher results. See TransactionOptions.ReadOnly.
4505
4668
  # read_timestamp and TransactionOptions.ReadOnly.exact_staleness. Bounded
4506
- # Staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4669
+ # staleness: Bounded staleness modes allow Cloud Spanner to pick the read
4507
4670
  # timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
4508
4671
  # the newest timestamp within the staleness bound that allows execution of the
4509
4672
  # reads at the closest available replica without blocking. All rows yielded are
@@ -4520,51 +4683,54 @@ module Google
4520
4683
  # timestamp negotiation requires up-front knowledge of which rows will be read,
4521
4684
  # it can only be used with single-use read-only transactions. See
4522
4685
  # TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
4523
- # min_read_timestamp. Old Read Timestamps and Garbage Collection: Cloud Spanner
4686
+ # min_read_timestamp. Old read timestamps and garbage collection: Cloud Spanner
4524
4687
  # continuously garbage collects deleted and overwritten data in the background
4525
4688
  # to reclaim storage space. This process is known as "version GC". By default,
4526
4689
  # version GC reclaims versions after they are one hour old. Because of this,
4527
4690
  # Cloud Spanner cannot perform reads at read timestamps more than one hour in
4528
4691
  # the past. This restriction also applies to in-progress reads and/or SQL
4529
4692
  # queries whose timestamp become too old while executing. Reads and SQL queries
4530
- # with too-old read timestamps fail with the error `FAILED_PRECONDITION`.
4531
- # Partitioned DML Transactions: Partitioned DML transactions are used to execute
4532
- # DML statements with a different execution strategy that provides different,
4533
- # and often better, scalability properties for large, table-wide operations than
4534
- # DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
4535
- # workload, should prefer using ReadWrite transactions. Partitioned DML
4536
- # partitions the keyspace and runs the DML statement on each partition in
4537
- # separate, internal transactions. These transactions commit automatically when
4538
- # complete, and run independently from one another. To reduce lock contention,
4539
- # this execution strategy only acquires read locks on rows that match the WHERE
4540
- # clause of the statement. Additionally, the smaller per-partition transactions
4541
- # hold locks for less time. That said, Partitioned DML is not a drop-in
4542
- # replacement for standard DML used in ReadWrite transactions. - The DML
4543
- # statement must be fully-partitionable. Specifically, the statement must be
4544
- # expressible as the union of many statements which each access only a single
4545
- # row of the table. - The statement is not applied atomically to all rows of the
4546
- # table. Rather, the statement is applied atomically to partitions of the table,
4547
- # in independent transactions. Secondary index rows are updated atomically with
4548
- # the base table rows. - Partitioned DML does not guarantee exactly-once
4549
- # execution semantics against a partition. The statement will be applied at
4550
- # least once to each partition. It is strongly recommended that the DML
4551
- # statement should be idempotent to avoid unexpected results. For instance, it
4552
- # is potentially dangerous to run a statement such as `UPDATE table SET column =
4553
- # column + 1` as it could be run multiple times against some rows. - The
4554
- # partitions are committed automatically - there is no support for Commit or
4555
- # Rollback. If the call returns an error, or if the client issuing the
4556
- # ExecuteSql call dies, it is possible that some rows had the statement executed
4557
- # on them successfully. It is also possible that statement was never executed
4558
- # against other rows. - Partitioned DML transactions may only contain the
4559
- # execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
4560
- # If any error is encountered during the execution of the partitioned DML
4561
- # operation (for instance, a UNIQUE INDEX violation, division by zero, or a
4562
- # value that cannot be stored due to schema constraints), then the operation is
4563
- # stopped at that point and an error is returned. It is possible that at this
4564
- # point, some partitions have been committed (or even committed multiple times),
4565
- # and other partitions have not been run at all. Given the above, Partitioned
4566
- # DML is good fit for large, database-wide, operations that are idempotent, such
4567
- # as deleting old rows from a very large table.
4693
+ # with too-old read timestamps fail with the error `FAILED_PRECONDITION`. You
4694
+ # can configure and extend the `VERSION_RETENTION_PERIOD` of a database up to a
4695
+ # period as long as one week, which allows Cloud Spanner to perform reads up to
4696
+ # one week in the past. Partitioned DML transactions: Partitioned DML
4697
+ # transactions are used to execute DML statements with a different execution
4698
+ # strategy that provides different, and often better, scalability properties for
4699
+ # large, table-wide operations than DML in a ReadWrite transaction. Smaller
4700
+ # scoped statements, such as an OLTP workload, should prefer using ReadWrite
4701
+ # transactions. Partitioned DML partitions the keyspace and runs the DML
4702
+ # statement on each partition in separate, internal transactions. These
4703
+ # transactions commit automatically when complete, and run independently from
4704
+ # one another. To reduce lock contention, this execution strategy only acquires
4705
+ # read locks on rows that match the WHERE clause of the statement. Additionally,
4706
+ # the smaller per-partition transactions hold locks for less time. That said,
4707
+ # Partitioned DML is not a drop-in replacement for standard DML used in
4708
+ # ReadWrite transactions. - The DML statement must be fully-partitionable.
4709
+ # Specifically, the statement must be expressible as the union of many
4710
+ # statements which each access only a single row of the table. - The statement
4711
+ # is not applied atomically to all rows of the table. Rather, the statement is
4712
+ # applied atomically to partitions of the table, in independent transactions.
4713
+ # Secondary index rows are updated atomically with the base table rows. -
4714
+ # Partitioned DML does not guarantee exactly-once execution semantics against a
4715
+ # partition. The statement will be applied at least once to each partition. It
4716
+ # is strongly recommended that the DML statement should be idempotent to avoid
4717
+ # unexpected results. For instance, it is potentially dangerous to run a
4718
+ # statement such as `UPDATE table SET column = column + 1` as it could be run
4719
+ # multiple times against some rows. - The partitions are committed automatically
4720
+ # - there is no support for Commit or Rollback. If the call returns an error, or
4721
+ # if the client issuing the ExecuteSql call dies, it is possible that some rows
4722
+ # had the statement executed on them successfully. It is also possible that
4723
+ # statement was never executed against other rows. - Partitioned DML
4724
+ # transactions may only contain the execution of a single DML statement via
4725
+ # ExecuteSql or ExecuteStreamingSql. - If any error is encountered during the
4726
+ # execution of the partitioned DML operation (for instance, a UNIQUE INDEX
4727
+ # violation, division by zero, or a value that cannot be stored due to schema
4728
+ # constraints), then the operation is stopped at that point and an error is
4729
+ # returned. It is possible that at this point, some partitions have been
4730
+ # committed (or even committed multiple times), and other partitions have not
4731
+ # been run at all. Given the above, Partitioned DML is good fit for large,
4732
+ # database-wide, operations that are idempotent, such as deleting old rows from
4733
+ # a very large table.
4568
4734
  # Corresponds to the JSON property `singleUse`
4569
4735
  # @return [Google::Apis::SpannerV1::TransactionOptions]
4570
4736
  attr_accessor :single_use